
Citation: Lyubimov, V.V. A Method

of Qualitative Analysis for

Determining Monotonic Stability

Regions of Particular Solutions of

Differential Equations of Dynamic

Systems. Mathematics 2023, 11, 3142.

https://doi.org/10.3390/

math11143142

Academic Editor: Xiangmin Jiao

Received: 25 May 2023

Revised: 11 July 2023

Accepted: 13 July 2023

Published: 16 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Method of Qualitative Analysis for Determining Monotonic
Stability Regions of Particular Solutions of Differential
Equations of Dynamic Systems
Vladislav V. Lyubimov

Department of Further Mathematics, Faculty of Mechanics and Mathematics, Natural Science Institute,
Samara National Research University, 443086 Samara, Russia; vlubimov@mail.ru

Abstract: Developing stability analysis methods for modern dynamical system solutions has been
a significant challenge in the field. This study aims to formulate a qualitative analysis approach
for the monotone stability region of a specific solution to a single differential equation within a
dynamical system. The system in question comprises two first-order nonlinear ordinary differential
equations of a particular kind. The method proposed hinges on applying elements of combinatorics
to the traditional mathematical investigation of a function with a single independent variable. This
approach enables the exact determination of the different qualitative scenarios in which the desired
solution changes, under the assumption that the function values monotonically diminish from a
specified value down to a finite zero. This paper outlines the creation and decomposition of the
monotone stability region associated with the solution under consideration.
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1. Introduction

Maintaining the stability of solutions in contemporary nonlinear dynamical systems
has been a major challenge in their operation [1–4]. Conventionally [5–17], Lyapunov’s
second method is used to study the stability and optimization of solutions in systems
composed of ordinary differential equations. For instance, in [5], Lyapunov’s stability
theory is employed to establish the global asymptotic stability of the periodic solution in a
recognized ecosystem model. Paper [6] suggests a neural network controller for an adaptive
radial basis, predicated on the use of Lyapunov’s stability theory in uncertain fractional-
order chaotic systems with varying time delays. Meanwhile, in [7], the Lyapunov approach
is adopted to demonstrate the stability of control logic in a proposed unmanned vehicle.

In modeling and studying the operational patterns of damping devices, various
methods are employed to analyze the stability of solutions to differential equations. It is
important to mention that contemporary differential equation theory introduces the notions
of strong and weak solution stability. These concepts allow for the categorization of various
types of stable solution behaviors. Additionally, the concepts of strong and weak resonances
are employed in solving certain types of mathematical physics equations, as explored
in papers [18,19]. Notably, the external and internal stability analyses of resonances in
perturbed motion of solid bodies theory are conducted independently. More specifically,
the internal stability of resonances is examined in studies [20,21]. These referenced works
provide an analysis of the stability of oscillations of coupled oscillators in the small vicinity
of resonances.

In contemporary aviation and space technology, ensuring motion stability is often of
paramount importance. Traditionally, Lyapunov’s second method is frequently employed
in this field. For instance, in [22], Lyapunov optimization is utilized in modeling the
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distribution of reception tasks among satellites in a constellation. In another example, [23],
Lyapunov’s second method is used to analyze the external stability of the primary resonance
in the problem of a spacecraft’s descent with slight asymmetry in Mars’ atmosphere.

However, the practical implementation of Lyapunov’s method often encounters com-
plexities during the Lyapunov function selection procedure. It is worth noting that stability
analysis in nonlinear differential equations can be built upon the properties of monoton-
ically decreasing solutions of these equations [24–26]. Specifically, paper [24] presents a
study of the external monotonic stability of average resonance in a perturbed dynami-
cal system with one fast and one slow variable without employing Lyapunov’s second
method. In the paper [24], sufficient conditions for external stability of resonance were
obtained while preserving the signs of the analyzed derivatives on the right-hand side
of the differential equations throughout a nonresonant interval of independent variable
change. The goal of [25] was to devise an asymptotic method to investigate the nonlinear
monotonic stability of the amplitude of plane oscillations in the problem of a symmetric
spacecraft’s descent in Mars’ atmosphere. This method was predicated on the use of the
arbitrary constant variation method, the averaging method, and the classical method of
mathematical investigation of a function with one independent variable. Paper [26] devel-
oped a method for scrutinizing the nonlinear monotonic simultaneous stability of solutions
in a system of two ordinary autonomous differential equations. The approach employed
the small parameter method, insights from combinatorics, and the classical method of
mathematical investigation of functions with two variables. This method is applied in the
paper to the problem of analyzing the nonlinear monotonic simultaneous stability of the
unguided motion of an asymmetric spacecraft relative to its center of mass during descent
in Mars’ atmosphere by angles of attack and sideslip. In general, conducting a simultaneous
examination of the signs of the first and second derivatives of the variables of interest,
which retain their signs over the considered intervals of the independent variable’s change,
proves to be a fruitful approach in the stability investigation of these variables [24–26].

2. Calculation of the Number of Qualitatively Different Cases of Monotonic Stability

Consider a dynamical system written in the form of the following ordinary differential
equations:

dy
dt

= f(g(t)), (1)

dg
dt

= u(g(t)), (2)

where y = y(t) ≥ 0 is a non-negative and twice continuously differentiable function, which
serves as a particular solution to Equation (1), defined within interval t ∈ [t0, t1]; f(g(t)) ≤ 0
is a known nonpositive and continuously differentiable 2-function, defined within interval
t ∈ [t0, t1], where g(t) is a continuously differentiable function, presenting a particular
solution to Equation (2), defined within interval t ∈ [t0, t1], u(g(t)) is a known continuous
2-function, defined, and of constant sign within the interval t ∈ [t0, t1], t is an independent
real variable, t ∈ [0,+∞).

Let us formulate the notion of monotone stability for a particular solution y = y(t) of
Equation (1) within the dynamical system (1)–(2).

Assume that for a non-negative solution y = y(t) of system (1)–(2) the following
conditions are satisfied on interval t ∈ [t0, t1] (excluding the point g = 0):

(i). the function y = y(t) are defined and twice continuously differentiable;

(ii). the derivative d2y
dt2 retains its strong signs consistently within intervals between inflec-

tion points k = 0, 1, 2, . . . , m, m < ∞ or the derivative d2y
dt2 = 0 (∀t ∈ [t0, t1]).
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Definition 1. If a non-negative solution y = y(t) of system (1)–(2) satisfies conditions (i)–(ii), and
the solution decreases monotonically on intervalt ∈ [t0, t1], it is termed a monotone stable solution
with respect to variable y(t) on this interval.

Let us examine a theorem outlining the sufficient condition for the monotonic stability
of the solution y = y(t) of Equation (1).

Theorem 1. (Sufficient condition of the monotonic stability). If a non-negative solution y = y(t)
of system (1)–(2) satisfies conditions (i)–(ii), and the derivative dy(t)

dt < 0 on interval t ∈ [t0, t1],
then the solution is monotone stable within this interval.

Proof of Theorem 1. As per Definition 1, the non-negative function y = y(t) has a continu-
ous first derivative on interval t ∈ [t0, t1]. If the derivative is negative, i.e., dy(t)

dt < 0, then
the function y = y(t) decreases on interval t ∈ [t0, t1]. This follows from the fundamen-
tal sufficient condition for a real variable function to decrease. Hence, the non-negative
solution y = y(t) of system (1)–(2) satisfies conditions (i)–(ii) and the solution decreases
monotonically on interval t ∈ [t0, t1]. Consequently, according to Definition 1, the solution
y = y(t) is monotone stable on interval t ∈ [t0, t1].

The theorem has been proven. �

Note. The phrase “qualitatively different cases of monotonic stability of solutions”
pertains to monotone stable solutions of Equation (1) that exhibit a unique type of convexity
compared to other solutions exhibiting monotonic stability.

Further analysis of monotone stability will utilize expressions of the first and second
derivatives of the solution y = y(t). For the count of qualitatively different cases of
monotonic stability of solution y = y(t), the following theorem holds.

Theorem 2. If a particular solution y = y(t) of Equation (1) from the system Equation (1)–(2)
satisfies Definition 1, and the number of inflection points of the solution is 0, 1, 2, . . . , m, then the
total number of qualitatively different cases of monotonic stability of the solution equals (2m+3C1).

Proof of Theorem 2. We shall determine the count of all distinct cases of monotone stability
for a particular solution y = y(t) of Equation (1). Initially, we identifiy the number of
distinct cases of monotonic stability in the absence of inflection points for the function
y = y(t) on the considered interval [t0, t1]. There are three such cases. Indeed, in the first
linear case ∀t ∈ [t0, t1], the derivatives of the particular solution have the following signs:
dy
dt < 0 and d2y

dt2 = 0. In the second case, the derivatives of the particular solution exhibit

the signs: dy
dt < 0 and d2y

dt2 > 0. In the third case, the derivatives of the particular solution

have the signs: dy
dt < 0 and d2y

dt2 < 0. Next, imagine that the function y = y(t) has one
inflection point within the interval [t0, t1]. Function y = y(t) is continuously differentiable.
Consequently, when passing through this point, a change in the nature of the convexity of
the function’s graph is observed. Adding one inflection point leads to the formation of a
new interval with the constant convexity of two possible types of the function y = y(t). As
a result, we derive two new qualitatively distinct cases of monotonic stability, differentiated
by the sign of the second derivative for all t belonging to the new interval. The formation
of each subsequent inflection point also introduces the potential for two more qualitatively
different cases of monotonic stability, and so on. In conclusion, for m inflection points, the
number of qualitatively distinct cases of monotonic stability is ascertained by the following
equality: 2m+3C1 = 2m + 3.

The theorem has been proven. �

Let us consider an example of applying the obtained equality 2m+3C1 = 2m + 3.
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Sample. Determine the number of qualitatively different cases of monotonic stability
given the presence of 1, 2, 3, and 4 inflection points on the solution curve within the
specified interval.

Solution. According to Theorem 2, the number of qualitatively different cases of
monotonic stability is obtained from the equation 2m+3C1 = 2m + 3, where m is the
number of the inflection points within the given interval. Applying this equation, we find
the desired number of qualitatively different cases of monotonic stability: 5C1 = 2 + 3 = 5
(for m = 1), 7C1 = 4 + 3 = 7 (for m = 2), 9C1 = 6 + 3 = 9 (for m = 3), and 11C1 = 8 + 3 = 11
(for m = 4).

Note. In line with [26], for each characteristic case of monotonic stability of the

particular solution y = y(t), where the conditions dy
dt < 0; d2y

dt2 > 0 and ( dy
dt < 0; d2y

dt2 < 0) are
fulfilled within each interval of independent variable t change with a consistent convexity
type, there exists another corresponding characteristic case of monotonic stability of the

particular solution ỹ = ỹ(t), for which the conditions dỹ
dt < 0; d2ỹ

dt2 < 0 and ( dỹ
dt < 0;

d2ỹ
dt2 > 0) are met within each similar interval with an unchanging convexity type. These
two qualitatively different cases of monotone stability differ in the sign of the second
derivatives, while preserving the sign of their first derivatives. Hence, they exhibit opposite
convexity types within the same intervals of change in the independent variable. In this
regard, we should mention a pairwise symmetry of characteristic cases of monotonic
stability with the same number of inflection points, differing solely in the convexity type
within the same intervals of independent variable variation.

Next, we will examine a method for qualitative analysis of the monotonic stability of
the particular solution y = y(t) of Equation (1).

Definition 2. The “qualitative analysis of the monotonic stability of the solution y = y(t) of
Equation (1) within the interval t ∈ [t0, t1] ” refers to the study of convexity of a given strictly
monotonically decreasing solution within this interval.

The following theorem is established.

Theorem 3. For a qualitative analysis of the monotonic stability of an unknown particular non-
negative solution y = y(t) of Equation (1), the following conditions must be satisfied:

(i) the particular solution y = y(t) fulfills Definition 1 within the interval t ∈ [t0, t1] and the
solution is not linear;

(ii) the derivative dg(t)
dt of the known continuously differentiable function g(t) is defined within

the interval t ∈ [t0, t1] and maintains the same sign within this interval;
(iii) the initial condition y(0) > 0, the initial value g(0), and the final value g(t1) are known.

Proof of Theorem 3. Let us assume that the conditions of Definition 1 are met and that the
solution y = y(t) is not linear. Obviously, the function y = y(t) decreases monotonically

within the interval t ∈ [t0, t1]. The second derivative of this function d2y
dt2 either keeps its

positive (or negative) sign or switches to its opposite only at a finite number of inflection
points of the function y = y(t) within the interval t ∈ [t0, t1]. Note that the function y = y(t)
maybe unknown. Let us formulate a method for analyzing the sign of the second derivative
d2y
dt2 of the function y = y(t) within the interval t ∈ [t0, t1] for the above-mentioned case.

We will express the second derivative d2y
dt2 of the function y = y(t). As the function f(g(t))

is a twice differentiable function, we have:

d2y
dt2 =

df
dg

dg
dt

. (3)
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According to system (1)–(2), the sign of the derivative dg
dt is known and remains

unchanged ∀t ∈ [t0, t1]. Therefore, to determine the sign of the second derivative d2y
dt2 of

the function y = y(t) for all t in the interval [t0, t1], we need to determine the sign of the
derivative df

dg for all t over the interval. It is important to note that the derivative df
dg is a

known smooth function df
dg = F(g). Note, that the argument g of the function F(g) changes

strictly monotonically ∀t ∈ [t0, t1]. In this case, if the initial value g(0) is known, then the
sign of the derivative df

dg = F(g) can be determined by directly calculating the values of
the function F(g) for all g within the given interval [g(0), g1]. This provides a method for

analyzing the sign of the second derivative d2y
dt2 of the function y = y(t) over the interval

t ∈ [t0, t1]. With the sign of the second derivative d2y
dt2 of the function y = y(t) determined

over the interval t ∈ [t0, t1], we can also determine the type of convexity of the strictly
decreasing solution y = y(t) at each point t ∈ [t0, t1]. Thus, according to Definition 2, we
have completed a qualitative analysis of the monotonic stability of the solution y = y(t) of
Equation (1), which is strictly decreasing within interval t ∈ [t0, t1].

Therefore, the proof of Theorem 3 is completed. �

Note. Theorem 3 forms the mathematical basis for the method of analyzing the
monotonic stability of solutions to Equation (1), a method that does not require direct
calculation of these solutions.

Note. The proof of Theorem 3 is constructive, in that it describes all steps to be taken
when using the method for analyzing monotonic stability of the solutions in question.

3. Construction and Decomposition of a Monotonic Stability Region

Assume that there are (2m+3C1) qualitatively distinct particular solutions of Equation
(1) that satisfy the monotonic stability conditions outlined in Definition 1, Theorem 1, and
Theorem 2. The goal is to identify the boundaries of the monotonic stability region for these
solutions in the (t,y)-coordinate plane. In this context, the following theorem is applicable.

Theorem 4. If all non-negative particular solutions of Equation (1) meet the requirements of
Definition 1, then the boundaries of the monotonic stability region of these solutions y = y(t)
form a rectangle in the first quadrant of the coordinate system (t,y), with two sides lying along the
coordinate axes.

Proof of Theorem 4. The first derivative of any non-negative particular solution of
Equation (1) that satisfies both Definition 1 and Theorem 1 equals dy

dt =
dy
dg

dg
dt < 0. There-

fore, two distinct cases, in which the condition of the negativity of the first derivative dy
dt is

satisfied but the signs of the second derivative d2y
dt2 differ and need to be considered.

Case 1. Assume that for all t ∈ [t0, t1], the following initial and final conditions are
satisfied simultaneously: dy

dg < 0 and dg
dt > 0. Additionally, suppose the following initial

and final conditions are t0 = 0, y0 > 0 and t1 > 0, y1 = 0, respectively. Now, let us

transition from Cartesian coordinates (t,y) to polar coordinates (ρ,ϕ), where ρ =
√

t2 + y2,
tgϕ = y/t. Consequently, at the initial point t = 0, we get: ρ0 = y0. As we approach the
limit (at t→ 0 + 0) and we find maxϕ = ϕ0 = arctg(+∞) = π/2. At the endpoint, we get:
ρ1 = t1, minϕ = ϕ1 = arctg(0) = 0. Hence, as the angle φ decreases from π/2 to zero, it
successively assumes all values in the first quadrant. The monotonic stability region of the
solution y = y(t) is constrained to the initial value t0 = 0, the final value t1 > 0, the initial
value y0 > 0, and the final value y1 = 0. Note that the final value t1 > 0 and the initial
value y0 > 0 limit the coordinate values (t,y) from above. Additionally, the initial value
t0 = 0 and the final value y1 = 0 limit the coordinate values (t,y) from below. Therefore,
the boundaries of the monotonic stability region of the particular solutions y = y(t) of
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Equation (1) form a rectangle on the plane (t,y), with vertices at the following points: (0,0),
(t1,0), (0,y0), and (t1,y0).

Case 2. Assume that for all t ∈ [t0, t1], the following initial and final conditions are
simultaneously met: dy

dg < 0 and dg
dt < 0. The proof of Case 2 follows the same procedure

as Case 1.
Therefore, under both possible scenarios, the boundaries of the monotonic stability

region of the solution y = y(t) form a rectangle contained in the first quadrant of the
coordinate system (t,y), with two sides along the coordinate axes.

This concludes the proof of the theorem. �

Let us say that the particular solution y = y(t) of Equation (1) satisfies Definition 1
and Theorem 1, and also has n (n 6= 0) inflection points in the interval [t0, t1]. With this
premise, the following theorem about the decomposition of the monotonic stability interval
[t0, t1] of the function y = y(t) stands:

Theorem 5. Suppose that the twice smooth function y = y(t) strictly decreases in the interval
[t0, t1] from point (t0, y0), where t0 = 0, y0 > 0, all the way to point (t1, y1), where t1 > 0, y1 = 0,
and this function has n (n 6= 0) inflection points within this interval. In this case, the inflection
points divide the interval of decreasing [t0, t1] into n + 1 segments, each with a constant type of
convexity for the function y = y(t).

Proof of Theorem 5. According to the necessary condition for the existence of an inflection

point, if the function y = y(t) has a continuous second derivative d2y
dt2 at inflection points,

then this second derivative is zero, d2y
dt2 = 0 at these points. As the function d2y

dt2 is continuous
in the segment [t0, t1], it retains its sign in segments between every pair of inflection
points, or in segments between the boundary point (t0 or t1) and the nearest inflection
point. Consider one of these intervals [ta, tb], which is part of the segment [t0, t1]. Based
on the sufficient condition for convexity, if the function y = y(t) is twice continuously

differentiable at all points in the interval [ta, tb] and has a constant second derivative d2y
dt2

with an unchanging sign throughout the segment, and also if the second derivative d2y
dt2 is

positive (negative) ∀t ∈ [ta, tb], then the function y = y(t) is convex downwards (upwards)
at all points of the segment. If there are n inflection points in the interval [t0, t1], then n + 1
segments are created, each with an unchanging type of convexity for the function y = y(t).

The theorem is thus proven. �

Next, let us examine the theorem regarding the decomposition of a plane region under
the curve y = y(t), which meets the requirements of Definition 1 and Theorem 1 and 2.

Theorem 6. If a non-negative and twice continuously differentiable function y = y(t) strictly
decreases in the interval [t0, t1] from point (t0, y0), where t0 = 0, y0 > 0, to point (t1, y1), where
t1 > 0, y1 = 0, and the function has n (n 6= 0) inflection points within this interval, then
these inflection points divide the planar region between the curve y = y(t) and the x-axis into
n curvilinear trapezoids (over the first n segments) and one curvilinear triangle (over the last
n + 1 segment).

Proof of Theorem 6. Consider the twice continuously differentiable function that decreases
monotonically in the interval [t0, t1], which we discussed in Theorem 2, that has n inflection
points within this interval. Therefore, the function has n + 1 segments with an unchanging
type of convexity in the interval [t0, t1]. It is evident that the first n intervals divide the
planar region between the curve y = y(t) and the x-axis into n curvilinear trapezoids. In
fact, each of these intervals forms a curvilinear trapezoid that has an upper curvilinear
side, a lower side formed by a segment of the x-axis, and two vertical parallel sides formed
by linear intervals of nonzero lengths, equivalent to the values of the function y = y(t) at
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points t that define the boundaries of this segment of the x-axis. At the last n + 1 interval,
at the endpoint (t1, y1), the equation y1 = 0 is fulfilled, and the penultimate point of the
interval [t0, t1] has y 6= 0. Hence, in the last n + 1 interval between the curve y = y(t)
and the x-axis, we get a curvilinear triangle. Therefore, if the function y = y(t) strictly
decreases in the interval [t0, t1] from point (t0, y0), where t0 = 0, y0 > 0, to point (t1, y1),
where t1 > 0, y1 = 0, and has n (n 6= 0) inflection points within this interval, then these
inflection points divide the planar region between the curve y = y(t) and the x-axis into n
curvilinear trapezoids (over the first n intervals) and one curvilinear triangle-shaped region
(over the last n + 1 interval).

This concludes the proof of the theorem. �

Note. Let us consider the twice smooth monotonically decreasing function y = y(t),
defined in the interval [t0, t1] and having [t0, t1] n (n 6= 0) inflection points within this
interval, similar to our consideration in Theorem 6, as the majorant for several twice
smooth monotonically decreasing non-negative functions yi = yi(t) also defined within
this interval (i.e., the conditions y(t) > yi(t), i = 1, m, m < ∞ are met). Then, the general
boundary of the stability region of the decreasing functions y(t), yi(t) contains n curvilinear
trapezoids (over the first n intervals) and one curvilinear triangle-shaped region (over the
last n + 1 interval).

4. Comparison of the Monotonic Stability Analysis Method and the Second
Lyapunov Method

Let us analyze the stability of a particular solution y = y(t) of system (1)–(2) using the
second Lyapunov method. For this purpose, we introduce the function W = f2(g(t))/2,
which serves as the Lyapunov function. Indeed, the function f(g(t)) is definitely negative
on the interval t ∈ [t0, t1]. Therefore, the function W = f2(g(t))/2 is a definitely positive
function and can be considered as the Lyapunov function on this interval t ∈ [t0, t1].
According to the second Lyapunov method, the stability condition for the solution y = y(t)
of system (1)–(2) on the interval t ∈ [t0, t1] is written as: dW

dt = f(t)df(t)
dt ≤ 0. In the system

(1)–(2) under consideration, the following condition is satisfied: dy
dt = f(t) ≤ 0. Therefore,

in order to fulfill the stability condition dW
dt = f(t)df(t)

dt ≤ 0, it is required that the condition
d2y
dt2 = df(t)

dt > 0 be satisfied across the entire interval t ∈ [t0, t1]. The only exception is

the point g = 0, where d2y
dt2 = 0. Indeed, a negative definite function dy

dt = f(g(t)) has a
maximum at the point g = 0.

Thus, the stability condition of a particular solution y = y(t) of system (1)–(2) on the
interval t ∈ [t0, t1] according to the Lyapunov method can be written in the following form:
dy
dt = f(g(t)) < 0, d2y

dt2 =
df(g(t))

dt > 0 (for g(t) 6= 0), or dy
dt = f(g(t)) = 0, d2y

dt2 =
df(g(t))

dt = 0
(for g = 0).

Considering these conditions in comparison with the conditions in Definition 1 and
Theorems 1–6, we can draw the following conclusions: The method of studying monotonic
stability described in this paper, such as the second Lyapunov method, allows us to analyze
the stability of solutions to nonlinear equations. Unlike the second Lyapunov method,
this method does allow for the analysis of the stability of solutions with various convexity
types. The primary condition for the existence of solutions in this method is that the first
derivative of the desired solution is nonpositive. Unlike the second Lyapunov method,
this method facilitates a qualitative analysis of the nonlinear behavior of solutions. An
additional distinctive feature of this method is the construction of a region of monotonic
stability. Moreover, the monotonic stability analysis method offers the possibility of decom-
position and analysis of the stability region. However, the method described in the work is
developed solely for dynamical systems comprising two first-order ordinary differential
equations. In this case, the right-hand sides of these equations must retain their signs over
the considered intervals of the independent variable change. It should be highlighted that
the second Lyapunov method is applicable to a dynamical system comprising numerous
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differential equations. In this sense, the Lyapunov method represents a more general
method of stability analysis.

5. Example of Monotonic Stability in One Variable in Some Dynamic System

Let us consider an example of the application of the method of analysis of monotone
stability in one variable for an integrable dynamical system. In this case, we will construct
regions of monotonic stability with respect to the variable under study. In this example, we
consider a system of two differential equations of the following form:

dy
dt

= −arctan(x), (4)

dx
dt

= 2
√

x. (5)

Here, y(t) ≥ 0 is the non-negative particular solution, defined in the interval t ∈ [t0, t1];
x(t) > 0 is the strictly positive particular solution, defined in the interval t ∈ [t0, t1]. Note
that the solution y(t) satisfies Definition 1 and Theorem 1.

Equation (5) is a differential equation with separable variables. It has the following
particular solution:

x(t) = (t− 3)2. (6)

Substituting solution (6) into Equation (4), we obtain a differential equation with
separated variables:

dy = −arctan((t− 3)2)dt. (7)

As a result of finding indefinite intervals from the right and left sides of Equation (7),
we obtain the general solution of this equation:

y(t) =
ln((t−3)(t−

√
2−3)+1)−ln((t−3)(t+

√
2−3)+1)

2
3
2

−arctan
(
(t− 3)2

)
(t− 3) +

arctan(
√

2(t−3)+1)+arctan(
√

2(t−3)−1)√
2

+ C.
(8)

Let us analyze differential Equation (7) and its particular solution (8) together. The
right-hand side of Equation (7) is negative over the entire interval t ∈ [t0, t1] and takes on a
zero value at t = 3. Therefore, the function y(t) does not increase on the interval t ∈ [t0, t1].
This regularity of change in function (8) is shown in Figure 1. This dependence describes
a particular solution obtained from function (8) at C = 3. The initial value of y(0) is equal
to 5.82. The final zero value y(t) = 0 is obtained at t = 6.12. Therefore, we have t0 = 0 and
t1 = 6.12.

Let us calculate the first derivative of the particular solution (8) with respect to the
variable t. We obtain the derivative dy

dt in the following form:

dy
dt

= −arctan((t− 3)2). (9)

From the right-hand side of Equation (9), we can deduce that the derivative of the
particular solution is dy

dt < 0 for all t ∈ [t0, t1] except the point t = 3, where dy
dt = 0.

Suppose that a non-negative and twice continuously differentiable solution (8) of
Equation (7) exists and is unique (for given initial conditions). Moreover, let solution (6) be
a continuously differentiable function, defined in the interval t ∈ [t0, t1], which also exists
and is unique (for given initial conditions).

Now, let us show that a particular solution (8) of Equation (7) can satisfy Definition 1
of monotonic stability for this solution and Theorem 1. Let the particular solution (8) be
defined ∀t ∈ [t0, t1]. The right-hand side of Equation (4) is the 2-function. Moreover, the
first derivative of this particular solution dy

dt takes negative values at ∀t ∈ [t0, t1] (except the
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point t = 3). Additionally, the second continuous derivative of this function d2y
dt2 keeps its

positive (or negative) sign or changes it to the opposite one only at the inflection point t = 3
of function (8) in the interval. Thus, Definition 1 and Theorem 1 are satisfied.

Figure 1 shows one of the characteristic cases of changing the function (8) in the
implementation of monotonic stability. It can be seen from Figure 1 that in this case there is
only one inflection point on the monotonic decrease curve y(t).

For particular solutions y(t) of Equation (7), Theorem 2 on the number of qualitatively
different cases of monotonic stability of particular solution holds. Indeed, if all particular
solutions y(t) of Equation (7) satisfy Definition 1 and the number of inflection points of
functions y = y(t) is 0 or 1, then the number of all qualitatively different cases of monotonic
stability of solutions y = y(t) equals (5C1) = 5. Note that the case of monotone linear
stability is not realized in this solution. Therefore, the number of qualitatively different
cases of monotonic stability is 4.

Next, let us find the boundaries of the monotonic stability of particular solutions y(t)
on the coordinate plane (t,y). In this case, Theorem 3 is applicable. Indeed, if all particular
solutions y(t) of Equation (7) satisfy the conditions of Definition 1 and Theorem 1, then
the boundaries of the monotonic stability region of the solutions y = y(t) form a rectangle
contained in the first quadrant of the coordinate system (t,y) and having two sides lying on
the coordinate axes. Figure 1 plots this rectangle, which must include all 5 qualitatively
different cases of monotonic stability of solutions y = y(t). In this case, the number of
inflection points of functions y = y(t) equals 0 or 1.

Now let us consider the application of Theorem 5 to the decomposition of the mono-
tonic stability interval [t0, t1] of the considered function y = y(t). Theorem 4 is also valid
for solutions y = y(t). Figure 1 shows the case of one inflection point on the curve y(t) and
two intervals with constant convexity. On the interval [0, 3), the curve y(t) has a downward
convexity, and in the interval (3, 6.12], the curve y(t) has an upward convexity.
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Note that the conditions of Theorem 6 are also satisfied for the solution (8). In Figure 1,
the curvilinear trapezoid and curvilinear triangle-shaped regions are denoted by Roman
numerals I and II, respectively.
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Finally, let us consider the stability analysis of the solution y(t) using the second
Lyapunov method. In this example, we consider the system (4)–(5). However, we choose
a particular solution of Equation (5) in the form x(t) = t2. Substituting the solution into
Equation (4), we obtain a differential equation dy

dt = −arctan(t2). The right-hand side of
this differential equation is a negative definite function. After separation of variables and
integration, we obtain the following particular solution (for constant C = 3):

y(t) = −
(
arctan

(
t2))(t) + (√2

)−3
ln
(

t2 −
√

2 t + 1
)
−
(√

2
)−3

ln
(

t2 +
√

2 t + 1
)

+(
√

2)−1arctan
(√

2t + 1
)
+
(√

2
)−1

arctan
(√

2t− 1
)
+ 3.

(10)

The regularity of change in function (10) is shown in Figure 2. The initial value of y(0)
is equal to 3. The final zero value y(t) = 0 is obtained at t = 3.12. In Figure 2, the curvilinear
triangle region is denoted by Roman numeral II.
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Let us denote the right side of the Equation (4) as follows: F(t) = −arctan(t2). Since
the function F(t) is negative definite, the positive definite function W = F2(t)/2 can be
considered as a Lyapunov function. When we differentiate the function, keeping in mind
the equations of system (4)–(5), we derive the Lyapunov method’s stability condition:
dW
dt =

dy
dt

d2y
dt2 ≤ 0. Considering the solution (8), it can be seen that this stability condition is

satisfied in the interval [t0, t1].
Indeed, this stability condition can be represented in the following form: dy

dt = F(t) < 0,
d2y
dt2 = F(t)dF(t)

dt > 0 (for t 6= 0) or dy
dt = F(t) = 0,d2y

dt2 = F(t)dF(t)
dt = 0 (for t = 0).

Therefore, employing the second Lyapunov method helps us ascertain the stability
condition for the solution y(t) of the Equation (4) of the dynamic system (4)–(5). Conversely,
utilizing the monotone stability analysis method not only allows us to determine the stabil-
ity conditions for the investigated solution y(t), but also facilitates a comprehensive analysis
of all kinds of monotonically stable solutions. Additionally, it aids in the construction and
decomposition of their stability region.

6. Discussion

This study presents a method for the qualitative investigation of the monotonic nonlin-
ear stability region of a dynamical system. The system in question comprises two first-order
ordinary differential equations. The right side of the first equation is defined as a known
nonpositive 2-function that is both defined and continuously differentiable across the entire
interval of the independent variable. For a finite number of stationary points, the right
side of the first equation equals to zero. The right side of the second equation is a known
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continuous 2-function that maintains its sign consistently throughout the entire interval
of the independent variable change. This study explores the conditions for monotonic
stability of specific solutions of the first differential equation within the dynamic system.
The classical method of mathematical investigation of a function of a single independent
variable is employed, along with elements of combinatorics. As a result, a formula is
determined that accurately defines the total number of qualitatively different solutions,
assuming their monotonic decrease from an initial positive value to a final zero value. The
study discerns a rectangular region of monotonic stability for qualitatively different and
monotonically decreasing particular solutions of the first differential equation. Within
this rectangular stability region, there’s a pairwise symmetry of characteristic cases of
monotonic stability with the same number of inflection points. However, these cases differ
only in their type of convexity within the same independent variable variation intervals.
The area beneath the curve of the particular solution of the first equation is segmented
into various areas shaped as curvilinear trapezoids and one area shaped as a curvilinear
triangle. In this case, the number of areas shaped as curvilinear trapezoids matches the
number of inflection points of the given particular solution’s curve. It is noteworthy that if
a particular solution that monotonically decreases to zero serves as the upper bound for
several monotonically decreasing particular solutions of the first differential equation, then
the area beneath the upper bound represents the common region of monotonic stability.
This paper utilizes the theoretical results under examination for a qualitative analysis of
the monotonic stability region of a particular solution of a differential equation within one
nonlinear dynamical system.
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