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Abstract: The hyperbolic problem has a unique entropy solution, which maintains the entropy
inequality. As such, people hope that the numerical results should maintain the discrete entropy
inequalities accordingly. In view of this, people tend to construct entropy stable (ES) schemes.
However, traditional numerical schemes cannot directly maintain discrete entropy inequalities. To
address this, we here construct an ES finite difference scheme for the nonlinear hyperbolic systems of
conservation laws. The proposed scheme can not only maintain the discrete entropy inequality, but
also enjoy high-order accuracy. Firstly, we construct the second-order accurate semi-discrete entropy
conservative (EC) schemes and ensure that the schemes meet the entropy identity when an entropy
pair is given. Then, the second-order EC schemes are used as a building block to achieve the high-
order accurate semi-discrete EC schemes. Thirdly, we add a dissipation term to the above schemes to
obtain the high-order ES schemes. The term is based on the Weighted Essentially Non-Oscillatory
(WENO) reconstruction. Finally, we integrate the scheme using the third-order Runge–Kutta (RK)
approach in time. In the end, plentiful one- and two-dimensional examples are implemented to
validate the capability of the scheme. In summary, the current scheme has sharp discontinuity
transitions and keeps the genuine high-order accuracy for smooth solutions. Compared to the
standard WENO schemes, the current scheme can achieve higher resolution.

Keywords: hyperbolic conservation laws; finite difference scheme; entropy stable scheme; high-
order accuracy

MSC: 35L50; 65L12

1. Introduction

In this article, we concentrate on constructing high-order numerical schemes. Be-
cause of the high nonlinearity of the governing equations, theoretical analysis is very
difficult. Numerical solving by high-order schemes is an effective approach and has at-
tracted extensive attention in the field of scientific computing [1–3]. The nonlinear systems
in one-dimensional (1D) space read as

Ut + F(U)x = 0. (1)

Representative research of high-order schemes for the nonlinear systems (1) mainly
include: the kinetic scheme [4], gas-kinetic scheme [5], central-upwind scheme [6], weighted
essentially non-oscillatory (WENO) schemes [7–16], Hermite WENO scheme [17], central
schemes [18,19], the Runge–Kutta discontinuous Galerkin (RKDG) methods [20–22], ADER
(Arbitrary DERivatives in space and time) schemes [23,24], spectral element method [25],
Godunov-type method [26], element-free Galerkin method [27], and ADER-DG method [28].
For other high-order schemes, we refer to [29–33].
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However, there may not be exact solutions when calculating the nonlinear systems
of hyperbolic conservation laws (1). Therefore, we need to define the weak solutions
in a distributional sense. However, these weak solutions may lack uniqueness. In fact,
the entropy condition is significant in screening entropy solutions (physically relevant
solutions) [34].

Definition 1 (Entropy function [35]). A strictly convex function η(U) can be an entropy function
of the system (1), if there exists associated entropy fluxes q(U) such that

q′(U) = V>F′(U), (2)

where V = η′(U)> is an entropy variable and (η, q) is known as an entropy pair.

With respect to the given entropy pair (η, q), multiplying both sides of (1) by V>, the
solutions which are smooth of (1) meet the following identity

∂η(U)

∂t
+

∂q(U)

∂x
= 0. (3)

However, the above identity (3) no longer holds in the case of the emergence of
discontinuous solutions. In particular, the entropy solution U meets the following inequality

∂η(U)

∂t
+

∂q(U)

∂x
≤ 0. (4)

Generally, both the entropy identity (3) and the entropy inequality (4) are called as
the entropy conditions. Theoretically, entropy conditions play a crucial role with respect
to the well-posedness of the systems such as (1). Numerically, high-order schemes which
meet the above inequality according to (4) can improve its own robustness. Therefore, it is
significant to construct schemes meeting entropy inequality with regard to a given entropy
pair. The schemes satisfying discrete entropy inequality are also called entropy stable (ES)
schemes. In recent years, the research on ES schemes has attracted wide attention, such as
in: the discontinuous Galerkin (DG) spectral element method [36] nodal DG method [37],
DG methods [38,39], and finite difference schemes [40].

The main aim of this article is to present a high-order ES scheme for the systems.
Firstly, we establish a two-point EC flux to construct a second-order EC scheme, which
satisfies the entropy identity. Next, we achieve a high-order EC scheme based on the above
scheme. However, there might be numerical oscillations around discontinuity. To overcome
this shortcoming, some suitable dissipation terms using the WENO reconstruction are
performed to realize a high-order ES scheme, which satisfies the entropy inequality. Finally,
the ES scheme is integrated with high-order RK approach and achieves the fully discrete
high-order accurate scheme.

The structure of this paper is as follows: Firstly, we propose high-order EC and ES
schemes for 1D nonlinear hyperbolic systems in Section 2. In Section 3, we expand the
schemes to two dimensions (2D). In Section 4, we implement plentiful numerical examples
to illustrate the performance of the proposed scheme. Finally, the conclusions are presented
in Section 5.

2. Construction of One-Dimensional High-Order ES Scheme
2.1. The EC Schemes

Firstly, we divide the spatial domain by a uniform mesh with x0 < x1 < x2 < · · · < xN
as the nodes together with the spatial step size ∆x = xi − xi−1. The semi-discrete finite
difference scheme for (1) has the following form

d
dt

Ui = −
1

∆x

(
F̂i+ 1

2
− F̂i− 1

2

)
. (5)
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Here , F̂i+ 1
2

is called the numerical flux approximating F at xi+ 1
2
= xi + ∆x/2. For

example, F̂i+ 1
2
= F̂i+ 1

2
(ui, ui+1) is a two-point flux.

In particular, scheme (5) is known as ES if the solution of (5) satisfies the following
semi-discrete entropy identity

d
dt

η(Ui) +
1

∆x

(
q̃i+ 1

2
− q̃i− 1

2

)
= 0, (6)

for the numerical entropy flux q̃i+ 1
2
, which is consistent with the entropy flux q. Thus, the

numerical flux F̂i+ 1
2

is called the EC flux correspondingly.
The following lemma presents a sufficient condition for the semi-discrete scheme (5)

to be EC.

Lemma 1. The semi-discrete scheme (5) is EC and second-order accurate, provided that a symmetric
consistent two-point numerical flux F̂i+ 1

2
:= F(Ui, Ui+1) used in (5) satisfies

[[V]]>F̂ = [[Ψ]], (7)

where [[a]] = ai+1 − ai. The numerical entropy flux in (6) enjoys the form

q̃i+ 1
2
= {{V}}>i+ 1

2
F̂i+ 1

2
− {{Ψ}}i+ 1

2
, (8)

with the following notation {{a}}i+ 1
2
= 1

2 (ai + ai+1).

Proof. Multiplying both sides of (5) by V>i gives

dηi
dt

= − 1
∆x

[
V>i
(

F̃i+ 1
2
− F̃i− 1

2

)]
.

We can rearrange the items on the right side:

V>i
(

F̂i+ 1
2
− F̂i− 1

2

)
=

(
{{V}}i+ 1

2
− 1

2
[[V]]i+ 1

2

)>
F̂i+ 1

2
−
(
{{V}}i− 1

2
+

1
2
[[V]]i− 1

2

)>
F̂i− 1

2

={{V}}>i+ 1
2
F̂i+ 1

2
− 1

2
[[Ψ]]i+ 1

2
− {{V}}>i− 1

2
F̂i− 1

2
− 1

2
[[Ψ]]i− 1

2

=
(
{{V}}>i+ 1

2
F̂i+ 1

2
− {{Ψ}}i+ 1

2

)
−
(
{{V}}>i− 1

2
F̂i− 1

2
− {{Ψ}}i− 1

2

)
=q̃i+ 1

2
− q̃i− 1

2
.

In the above derivation process, we use the notations ai = {{a}}i+ 1
2
− 1

2 [[a]]i+ 1
2

and

ai = {{a}}i− 1
2
+ 1

2 [[a]]i− 1
2

in the first equality; we employ condition (7) in the second one.

In addition, we apply the equality 1
2 [[a]]i+ 1

2
+ 1

2 [[a]]i− 1
2
= {{a}}i+ 1

2
−{{a}}i− 1

2
in the third

one. Therefore, scheme (5) is EC with the form

dηi
dt

+
1

∆x

(
q̃i+ 1

2
− q̃i− 1

2

)
= 0,

together with the numerical flux F̂i+ 1
2
= F̂i+ 1

2
(Ui, Ui+1). Moreover, the results in [34] illus-

trate that the discretization of the flux gradient is also second-order accurate. Consequently,
scheme (5) along with F̂i+ 1

2
= F̂i+ 1

2
(Ui, Ui+1) is second-order accurate.
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Then, we construct EC schemes for shallow water equations and Euler equations,
respectively.

2.1.1. The EC Schemes for Shallow Water Equations

Next, we construct the EC schemes for the shallow water equations (SWEs), which
describe a wave that affects the movement of water quality points when the ratio of water
depth to wavelength is small. In one-dimensional space, the SWEs read as(

h
hu

)
t
+

(
hu

hu2 + 1
2 gh2

)
x
= 0,

where h denotes the fluid height, u denotes the fluid velocity, and g is the gravitational constant.
For the one-dimensional SWEs, we find an entropy pair as

η = η(U) =
1
2
(hu2 + gh2), q = q(U) =

1
2

hu3 + gh2u.

In fact, according to the general form of entropy condition,

∇q(U)> = Oη(U)>
∂ f (U)

∂U

=

(
gh− 1

2
u2, u

)(
0 1

gh− u2 2u

)
=

(
ghu− u3, gh +

3
2

u2
)

.

Then, we can obtain q(U) by the integral computation of ∇q(U). Furthermore, the
entropy variables and potential can be calculated as follows:

V =
∂η(U)

∂U
=

(
gh− 1

2
u2, u

)>
, Ψ = V>F(U)− q(U) =

1
2

gh2u.

Accordingly, the second order EC numerical flux is

F̂ = F̂(Ui, Ui+1) =

(
{{h}}i+ 1

2
{{u}}i+ 1

2
{{h}}i+ 1

2
({{u}}i+ 1

2
)2 + g

2{{h2}}i+ 1
2

)
. (9)

In particular, it is easy to demonstrate that the EC flux (9) is consistent with the physical
flux F(U). Actually, letting (hL, uL) = (hR, uR) = (h, u) in (9) leads to

F̂1 = hu and F̂2 = hu2 +
1
2

gh2.

2.1.2. Entropy Conservative Schemes for Euler Equations

The Euler equations are the most important fundamental equations in non-viscous
fluid dynamics and these refer to the differential equation of motion obtained by applying
Newton’s second law to non-viscous fluid micromasses. For an ideal gas in one-dimensional
space, the governing equations are as follows ρ

ρu
E


t

+

 ρu
ρu2 + P

u(E + P)


x

= 0, (10)

where ρ, u, and P denote the density, velocity, and pressure, respectively. The total energy is
defined as E = P

γ−1 +
1
2 ρu2, where γ is the gas constant. Moreover, let s = log(p)− γlog(ρ)
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be the thermodynamic entropy. In this article, we take η(U) = −ρs
γ−1 as the entropy function.

According to the general form of entropy condition, we have

∇q> = Oη(U)>
∂F(U)

∂U
=

(
u

γ

γ− 1
− 1

2
ρu3

P
,

s
1− γ

+
ρu2

P
,−ρu

P

)
,

where

∇η(U)> =

(
∂η

∂ρ
,

∂η

∂(ρu)
,

∂η

∂E

)
=

(
γ− s
γ− 1

− ρu2

2P
,

ρu
P

,
−ρ

P

)
,

∂F(U)

∂U
=


∂ρu
∂ρ

∂ρu
∂ρu

∂ρu
E

∂(ρu2+ρ)
∂ρ

∂(ρu2+ρ)
∂ρu

∂(ρu2+ρ)
∂E

∂(u(E+ρ))
∂ρ

∂(u(E+ρ))
∂ρu

∂(u(E+ρ))
∂E



=

 0 1 0
γ−3

2 u2 (3− γ)u (γ− 1)
−u( E+P

ρ −
γ−1

2 u2) E+P
ρ + (1− γ)u2 γu

.

Obviously, we can obtain the entropy flux q(U) = −ρus
γ−1 , the entropy variable

V = ∇η =
(

γ−s
γ−1 −

ρu2

2P , ρu
P , −ρ

P

)>
, the entropy potential φ = VU − η(U) = ρ, and the

entropy flux potential ψ = V>F(U)− q(U) = ρu.
In a recent paper, Roe and Ismail [41] structured an EC flux to calculate the Euler

equations. They defined a parameter vectors Z as

Z = (z1, z2, z3) =

(√
ρ

P
,
√

ρ

P
u,
√

ρP
)

,

with which we then know that entropy conservation numerical flux

FEC
i+ 1

2
=
(

ρ̂û, ρ̂û2 + P̂1, ρ̂ûĤ
)>.

Here, .̂ represents the average values of the following relations at the unit interface

ρ̂ = z1zln
3 , û =

z2

z1
, P̂1 =

ẑ3

ẑ1
, P̂2 =

γ + 1
2γ

zln
3

zln
1

+
γ− 1

2γ

zln
3

zln
1

, Ĥ =
1
2

û2 +
γ

γ− 1
P̂2

ρ̂
,

where aln
i+ 1

2
=

ai+1−ai
ln(ai+1)−ln(ai)

.

2.2. The High-Order EC Scheme

Based on the existing second-order EC scheme, our next task is to construct high-order
EC schemes.

Following the means from [42], we construct the EC flux of the 2pth-order accurate
scheme by means of the linear convex combinations of the existing second-order accurate
EC flux (9), namely,

F̃2pth
i+ 1

2
=

p

∑
r=1

α
p
r

p

∑
s=0

F̃(Ui−s, Ui−s+r), (11)

which satisfies
1

∆x

(
F̃2pth

i+ 1
2
− F̃2pth

i− 1
2

)
=

∂F
∂x

∣∣∣∣
xi

+O(∆x2p),

for more details, we refer to [42].
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In summary, we acquire the following 2pth-order semi-discrete EC scheme

d
dt

Ui = −
1

∆x

(
F̃2pth

i+ 1
2
− F̃2pth

i− 1
2

)
(12)

to approximate (5). Accordingly, the high-order numerical entropy flux reads as follows

q̃2pth
i+ 1

2
=

p

∑
r=1

α
p
r

p

∑
s=0

q̃(Ui−s, Ui−s+r),

which is actually a linear combination of the two-point numerical entropy flux in (8).
In this study, we take p = 3 and obtain the following 6th-order accurate EC flux

F̃6th
i+ 1

2
=

3
2

F̃(Ui, Ui+1)−
3
10

(
F̃(Ui−1, Ui+1) + F̃(Ui, Ui+2)

)
+

1
30

(
F̃(Ui−2, Ui+1) + F̃(Ui−1, Ui+2) + F̃(Ui, Ui+3)

)
.

(13)

2.3. High-Order ES Scheme

It is well known that, for the nonlinear hyperbolic system of conservation laws,
the entropy identity is only available when the solutions are smooth. In other words,
the entropy is not conserved due to the presence of discontinuities such as the shock
waves. Moreover, the EC scheme may produce non-physical oscillations near the strong
discontinuities. These phenomena motivate us to develop the ES scheme by adding
a suitable dissipation term to the EC scheme. The main purpose is to make the resulting ES
scheme meet the inequality according to (4) for the given entropy pair. Furthermore, the ES
scheme can avoid the non-physical oscillations. Following the idea from [34], we append
a dissipation term to the EC flux F̃i+ 1

2
and obtain the ES flux with the form

F̂i+ 1
2
= F̃i+ 1

2
− 1

2
Di+ 1

2
[[V]]i+ 1

2
, (14)

which satisfies
[[V]]>F̂i+ 1

2
− [[Ψ]] ≤ 0, (15)

where D is a positive semidefinite matrix. Herein, we adopt

D = R|Λ|R>, (16)

where R denotes the matrix of right eigenvectors of the Jocabian matrix ∂F
∂U , and

|Λ| = diag
(
|λ1|, |λ2|, · · · , |λm|

)
with λ1 < λ2 < · · · < λm as the eigenvalues of ∂F

∂U .
In addition, we also need to improve the dissipation term in (14) to obtain the high-

order ES scheme ultimately. For instance, Fjordholm et al. [43] have constructed high-order
ES scheme using the Essentially Non-Oscillatory (ENO) reconstruction with respect to
the scaled entropy variables w = R>V. More specifically, Fjordholm et al. [43] apply the
kth-order accurate ENO reconstruction of w to obtain w−

i+ 1
2

and w+
i+ 1

2
, then define

〈〈w〉〉i+ 1
2
= w+

i+ 1
2
−w−

i+ 1
2
,

and construct the numerical flux as follows,

F̂kth
i+ 1

2
= F̃2pth

i+ 1
2
− 1

2
αi+ 1

2
Ri+ 1

2
〈〈w〉〉i+ 1

2
, (17)

where p = (k + 1)/2 for odd k and p = k/2 for even k .
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Combining the ES flux with the reconstructed jump in F̃2pth (17) leads to the following
kth-order ES scheme

d
dt

Ui = −
1

∆x

(
F̂kth

i+ 1
2
− F̂kth

i− 1
2

)
. (18)

Actually, the above scheme (18) is ES provided that the reconstruction satisfies the
following “sign property” from [43]

sign
(
〈〈w〉〉i+ 1

2

)
= sign

(
[[w]]i+ 1

2

)
. (19)

Especially, the ENO reconstruction holds the property (19); see [44] for more details.
Moreover, one can also obtain a higher-order accurate ES scheme with the WENO

reconstruction instead of the ENO reconstruction if the same number of candidate points
values are used. For example, it is possible to perform the fifth-order WENO reconstruction
based on

wj = R>i+ 1
2
Vj, j = i− 2, i− 1, i, i + 1, i + 2,

wj = R>i+ 1
2
Vj, j = i− 1, i, i + 1, i + 2, i + 3,

to obtain w−,WENO
i+ 1

2
and w+,WENO

i+ 1
2

respectively, so that the high-order WENO dissipation

term is given by − 1
2 αi+ 1

2
Ri+ 1

2
〈〈w〉〉i+ 1

2
with 〈〈w〉〉i+ 1

2
:= w+,WENO

i+ 1
2

− w−,WENO
i+ 1

2
. Here,

we take αi+ 1
2
= max

i
{|u|+ c}, with c =

√
gh for the SWEs and c =

√
γp
ρ for the Euler

equations, respectively. However, the standard WENO reconstruction may not satisfy the
“sign property” (19). To meet the “sign property”, following the procedure from [45], the
dissipation term may be altered

F̂kth
i+ 1

2
= F̃2pth

i+ 1
2
− 1

2
αi+ 1

2
Si+ 1

2
Ri+ 1

2
〈〈w〉〉i+ 1

2
, (20)

where Sl
i+ 1

2
is a switch function defined by

Sl
i+ 1

2
=

 1, if sign
(
〈〈w〉〉li+ 1

2

)
= sign

(
[[w]]l

i+ 1
2

)
,

0, otherwise,
(21)

as in [45] for the sign preserving property. Here, the superscript l denotes the lth component
of the jump of w or the lth entry of the diagonal matrix Si+ 1

2
. Then, the final ES flux is

given as

F̂kth
i+ 1

2
= F̃2pth

i+ 1
2
− 1

2
αi+ 1

2
Si+ 1

2
Ri+ 1

2
〈〈w〉〉i+ 1

2
, (22)

following [35].
The new scheme (18) is ES and the demonstration is as follows. This treatment has

been used in [35] to construct the high-order ES scheme for the shallow water Magneto-
hydrodynamics.

2.4. The Temporal Discretization

Scheme (18) reads as the following ordinary differential equations (ODE)

d
dt

Ui = F (Ui) := − 1
∆x

(
F̂kth

i+ 1
2
− F̂kth

i− 1
2

)
. (23)
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Then, we use the third-order RK approach

U(1) = Un + ∆tF (Un),

U(2) =
3
4

Un +
1
4
(U(1) + ∆tF (U(1))),

Un+1 =
1
3

Un +
2
3
(U(2) + ∆tF (U(2))),

(24)

for the temporal discretization to the above ODE (23).

2.5. Summary of the Proposed Scheme

The concrete procedures of scheme (18) for the 1D system (1) are summarized as follows:

(1) First, obtain point values {Ui}N
i=1.

(2) Construct the high-order EC flux as in (11).
(3) Calculate the dissipation term, add it to the original EC flux (11), and build the

high-order ES flux (20).
(4) Obtain the semi-discrete scheme (23).
(5) Apply the RK approach (24).
(6) Repeat steps (2)–(5).

3. Extension to a Two-Dimensional System

We extend the one-dimensional scheme to the following two-dimensional problems

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= 0. (25)

Firstly, we deal with a rectangle computational domain Ω = [a, b]× [c, d] discretized
uniformly by Nx and Ny cells in the x- and y-direction, respectively. The cells are labeled

by Ii,j =
[

xi− 1
2
, xi+ 1

2

]
,
[
yj− 1

2
, yj+ 1

2

]
with ∆x = xi+ 1

2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
as the

cell sizes.
A semi-discrete finite difference scheme for (25) enjoys the following form

d
dt

Ui,j +
1

∆x

(
F̂i+ 1

2 ,j − F̂i− 1
2 ,j

)
+

1
∆y

(
Ĝi,j+ 1

2
− Ĝi,j− 1

2

)
= 0. (26)

Here, F̂i+ 1
2 ,j and Ĝi,j+ 1

2
denote numerical fluxes at inter-cells in the x- and y-direction,

respectively.

3.1. The Two-Dimensional SWEs

With respect to the two-dimensional space, the SWEs from (25) are accompanied by

U =

 h
hu
hv

, F(U) =

 hu
hu2 + 1

2 gh2

huv

, G(U) =

 hv
huv

hv2 + 1
2 gh2

.

In analogy to the 1D space, we take the following entropy function

η(U) =
1
2
(hu2 + hv2 + gh2),

along with the entropy variables

V = η′(U)> =

(
gh− 1

2
u2 − 1

2
v2, u, v

)>
.
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The entropy fluxes in the x- and y-directions are defined by

qx =
1
2

hu3 + gh2u +
1
2
(hu)v2,

qy =
1
2

hv3 + gh2v +
1
2
(hv)u2.

The EC fluxes are defined by

F̃i+ 1
2 ,j = F̃(Ui,j, Ui+1,j) =


{{h}}i+ 1

2 ,j{{u}}i+ 1
2 ,j

{{h}}i+ 1
2 ,j{{u}}

2
i+ 1

2 ,j
+ g

2{{h2}}i+ 1
2 ,j

{{h}}i+ 1
2 ,j{{u}}i+ 1

2 ,j{{v}}i+ 1
2 ,j

,

G̃i,j+ 1
2
= G̃(Ui,j, Ui,j+1) =


{{h}}i,j+ 1

2
{{v}}i,j+ 1

2
{{h}}i,j+ 1

2
{{u}}i,j+ 1

2
{{v}}i,j+ 1

2
{{h}}i,j+ 1

2
{{v}}2

i,j+ 1
2
+ g

2{{h2}}i,j+ 1
2

.

3.2. The Two-Dimensional Euler Equations

In addition, the 2D Euler equations from (25) have

U =


ρ

ρu
ρv
E

, F(U) =


ρu

ρu2 + P
ρuv

(E + P)u

, G(U) =


ρv

ρuv
ρv2 + P
(E + P)v

.

Here, the density ρ, the velocity field (u, v), the pressure P, and the total energy P are
related by the equation of state

E =
P

γ− 1
+

1
2

ρ(u2 + v2).

The entropy function, fluxes, variables, and potentials are given by

η(U) = −ρs
γ−1 , qx(U) = −ρus

γ−1 , qy(U) = −ρvs
γ−1 , V = ∇η =

(
γ−s
γ−1 −

ρ(u2+v2)
2P , ρu

P , ρv
P , −ρ

P

)>
,

ψx = ρu, ψy = ρv, with s being the thermodynamic entropy.
Defining the parameter vectors Z as

Z =

(√
ρ

P
,
√

ρ

P
u,
√

ρ

P
v,
√

ρP
)

.

Then, EC fluxes are given by F̃i+ 1
2
=

(
F̃1

i+ 1
2
, F̃2

i+ 1
2
, F̃3

i+ 1
2
, F̃4

i+ 1
2

)>
and G̃i+ 1

2
= (G̃1

i+ 1
2
,

G̃2
i+ 1

2
, G̃3

i+ 1
2
, G̃4

i+ 1
2
)> with

F̃1
i+ 1

2 ,j = z2zln
4 ,

F̃2
i+ 1

2 ,j =
z4

z1
+

z2

z1
F̃1

i+ 1
2 ,j,

F̃3
i+ 1

2 ,j
=

z3

z1
F̃1

i+ 1
2 ,j,

F̃4
i+ 1

2 ,j =
1

2z1

γ + 1
γ− 1

F̃1
i+ 1

2 ,j

zln
1

+ z2F̃2
i+ 1

2 ,j + z3F̃3
i+ 1

2 ,j

,
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and
G̃1

i,j+ 1
2
= z3zln

4 ,

G̃2
i,j+ 1

2
=

z2

z1
G̃1

i,j+ 1
2
,

G̃3
i,j+ 1

2
=

z4

z1
+

z3

z1
G̃1

i,j+ 1
2
,

G̃4
i,j+ 1

2
=

1
2z1

γ + 1
γ− 1

G̃1
i,j+ 1

2

zln
1

+ z2G̃2
i,j+ 1

2
+ z3G̃3

i,j+ 1
2

.

Similarly, we can construct high-order ES schemes for the 2D SWEs and Euler equations.

4. Numerical Results

In this section, extensive examples are presented to show that the scheme performs
well. First, we take the time step meeting the following condition ∆t = CFL ∆x

α for the
numerical stability. Here, α denotes the estimation of the maximum wave propagation
velocity. In addition, the CFL (Courant, Friedrichs, Lewy) number is taken as 0.18 in all
the computations. In addition, we present the numerical results by the fifth-order finite
difference WENO schemes to make a comparison.

4.1. The SWEs
4.1.1. Example 1

The initial data of the first example is as follows

(h, u)(x, 0) =
{

(1, 2.5), if 0 ≤ x ≤ 10,
(0.1, 0), otherwise,

on a domain [0, 50]. Figure 1 shows the solutions at t = 7 on a mesh with 200 cells.

x

d
e

p
th

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1
exact

nx=200

WENO

x

v
e

lo
c
it
y

0 10 20 30 40 50

0

1

2

3

4

exact

nx=200
WENO

Figure 1. The depth h (left) and the velocity u (right) of the water in Example 1.

The numerical solutions are all well resolved and fit well with the exact results. In
addition, the results fit well with the results by the WENO schemes.

4.1.2. Example 2

For the second example, we apply the following data

(h, u)(x, 0) =
{

(1, 0), if 0 ≤ x ≤ 1000 ,
(0.5, 0), otherwise,

on a domain [0, 2000]. Figure 2 presents the numerical solutions at t = 240.
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Clearly, the current scheme produces well resolved solutions, which fit well with the
exact solutions.

x

d
e

p
th

0 500 1000 1500 2000

0.5

0.6

0.7

0.8

0.9

1

exact

nx=200

WENO

x

v
e

lo
c
it
y

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

exact
nx=200
WENO

Figure 2. The depth h (left) and the velocity u (right) of the water in Example 2.

4.1.3. Example 3

Further, we adopt the following data

(h, u)(x, 0) =
{

(1,−5), if 0 ≤ x ≤ 25 ,
(1, 5), otherwise,

on a domain [0, 50]. We implement it on a grid with 200 cells and compute this example
until t = 2.5. Figure 3 presents the numerical solutions and indicates that the results fit
well with the exact ones.

x

d
e

p
th

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2 exact

nx=200

WENO

x

v
e

lo
c
it
y

0 10 20 30 40 50
­6

­4

­2

0

2

4

6

exact
nx=200

WENO

Figure 3. The depth h (left) and the velocity u (right) of the water in Example 3.

4.1.4. Example 4

Subsequently, we deal with a dam break example using the following data

(h, u)(x, 0) =
{

(1, 0), if − 1000 ≤ x ≤ 0 ,
(0.5, 0), otherwise,

on a domain [−1000, 2000]. Then, we solve it up to t = 240 on a grid with 200 cells.
Figure 4 shows the numerical solutions and indicates that the results are clearly consis-

tent with the exact ones.
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x
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n
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it
y

­1000 ­500 0 500 1000
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0.9
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nx=200

WENO

x

v
e
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c
it
y

­1000 ­500 0 500 1000

0

0.2

0.4

0.6

0.8

1

exact
nx=200

WENO

Figure 4. The depth h (left) and the velocity u (right) of the water in Example 4.

4.1.5. Example 5: Circular Dam Break Problem

Here, we simulate a circular dam break problem [46] for the 2D SWEs. We use this
problem to testify the ability of the current scheme to maintain cylindrical symmetry. The
following data are used for calculation.

h =

{
10, if

√
(x− 25)2 + (y− 25)2 ≤ 11,

1, otherwise.

u = v = 0.

The domain is [0, 50]× [0, 50] with the outflow boundary conditions.
Figure 5 presents the results t = 0, 0.2, 0.4, 0.6, 0.8, 1.0 obtained on a mesh with

200× 200 cells, which shows that our ES scheme can well capture the wave structures.
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Figure 5. Cont.
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Figure 5. The contours of the height h on a mesh with 200× 200 cells.

4.2. The Euler Equations of Gas Dynamics
4.2.1. Testing the Order of Accuracy

In order to demonstrate the order of accuracy, we take an example from [47].

ρ(x, t) = 1 + 0.2 sin(π(x− t)), u(x, t) = 1, p(x, t) = 1, x ∈ [0, 2].

We apply periodic boundary conditions on both ends of the domain. Table 1 shows
the errors at time t = 2 and the orders of accuracy. It should be pointed out that we here

take the step size of time as ∆t = CFL
(∆x)

5
3

α
to keep the spatial errors dominant.

Table 1. The errors and orders of accuracy.

Cells L∞ Error Order L1 Error Order L2 Error Order

25 7.1557 × 10−9 5.4250 × 10−9 4.6434 × 10−9

50 1.4620 × 10−9 2.29 5.0198 × 10−10 3.43 5.4977 × 10−10 3.08

100 3.2688 × 10−11 5.48 1.1626 × 10−11 5.43 1.2667 × 10−11 5.44

200 1.2699 × 10−12 4.69 5.8475 × 10−13 4.31 5.2894 × 10−13 4.58
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4.2.2. Sod Problem

The initial data are as in [48]

(ρ, u, p)(x, 0) =
{

(1, 0, 1) if x ≤ 0,
(0.125, 0, 0.1) if x > 0,

on [−5, 5]. Figure 6 shows the density at time t = 2. Clearly, the contact discontinuities are
well decomposed and the results maintain a steep discontinuity transition.

x

d
e

n
s
it
y

­4 ­2 0 2 4

0.2

0.4

0.6

0.8

1 exact
nx=200

WENO

Figure 6. The density of the Sod problem at t = 2.

4.2.3. Lax Problem

We use the following data

(ρ, u, p)(x, 0) =
{

(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0,

on [−5, 5]. We can find a contact discontinuity that is hard to solve. Figure 7 shows the
density at t = 1.3 and makes a comparison with the exact one.

x

d
e

n
s
it
y

­4 ­2 0 2 4

0.4

0.6

0.8

1

1.2

1.4

exact
nx=200

WENO

Figure 7. The density of the Lax problem at t = 1.3.
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4.2.4. Shu–Osher Problem

We adopt the initial data from [49]

(ρ, u, p)(x, 0) =
{

(3.857143, 2.629369, 10.333333) if x < −4,
(1 + 0.2 sin(5x), 0, 1) if x ≥ −4,

on a domain [−5, 5]. A shock is produced and it interacts with the smooth regions. Figure 8
presents the density at time t = 1.8.

x

d
e

n
s
it
y

­4 ­2 0 2 4

1

2

3

4

5 exact
nx=200

WENO

Figure 8. The density of the Shu-Osher problem at t = 1.8.

4.2.5. 123 Problem

The data are given by [50]

(ρ, u, p)(x, 0) =
{

(1,−2, 0.4) if x < 0.5,
(1, 2, 0.4) if x > 0.5,

on [0, 1]. Figure 9 shows the density at time t = 0.15. It is clear that the new scheme can
adequately resolve the central expansion regions.

x
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n
s
it
y

0 0.2 0.4 0.6 0.8 1
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0.4
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0.8

1

1.2
exact

nx=200
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Figure 9. The density of the 123 problem at t = 0.15.
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4.2.6. Modified Shock/Turbulence Interaction

We conduct an example [51] that is actually a modification of the shock/turbulence
problem developed in [52,53]. The initial conditions are as follows

(ρ, u, p)(x, 0) =
{

(1.515695, 0.523346, 1.805) if x ≤ −4.5,
(1 + 0.1 sin(20πx), 0, 1) if x > −4.5,

on a domain [−5, 5]. Using a mesh with 1000 cells, Figure 10 shows the density at time
t = 5. Both schemes provide exceptional resolution for oscillations.

x

d
e

n
s
it
y

­4 ­2 0 2 4

1

1.2

1.4

1.6

1.8 exact

nx=1000
WENO

Figure 10. The density of the modified shock/turbulence interaction problem at t = 5.

5. Conclusions

This article proposes a high-order accurate ES finite difference scheme for nonlinear
hyperbolic systems of conservation laws. This article mainly contains two innovative
points: on one hand, a high-order accurate EC scheme is achieved by building the second-
order EC schemes; on the other hand, the WENO reconstruction is employed based on the
scaled entropy variables to obtain the high-order dissipation term. Furthermore, extensive
results illustrate that the proposed scheme enjoys steep discontinuous transitions and keeps
high-order accuracy. The current scheme can only be applied to uniform meshes or smooth
transformed curve meshes for two-dimensional cases. In future research, we aim to expand
the proposed scheme to uniform meshes.
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