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Abstract: In this work, we study a flexible compensation scheme for last-mile delivery where a
company outsources part of the activity of delivering products to its customers to occasional drivers
(ODs), under a scheme named crowdshipping. All deliveries are completed at the minimum total
cost incurred with their vehicles and drivers plus the compensation paid to the ODs. The company
decides on the best compensation scheme to offer to the ODs at the planning stage. We model our
problem based on a stochastic and dynamic environment where delivery orders and ODs volunteering
to make deliveries present themselves randomly within fixed time windows. The uncertainty is
endogenous in the sense that the compensation paid to ODs influences their availability. We develop
a deep reinforcement learning (DRL) algorithm that can deal with large instances while focusing
on the quality of the solution: we combine the combinatorial structure of the action space with the
neural network of the approximated value function, involving techniques from machine learning
and integer optimization. The results show the effectiveness of the DRL approach by examining
out-of-sample performance and that it is suitable to process large samples of uncertain data, which
induces better solutions.

Keywords: last-mile delivery; crowd shipping; deep reinforcement learning; data-driven optimiza-
tion; endogenous uncertainty
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1. Introduction

Last-mile delivery is a term used to define the transportation of items from a depot to
a final customer destination. Last-mile delivery is evolving at a rapid rate and has become
a topic of great interest due to the increase in e-commerce in recent years, making it a key
differentiator among large competitors in this sector.

We study a business model where the company outsources part of the activity of
delivering products to its customers to occasional drivers, also known as crowdshipping,
complementing its own fleet. All deliveries are completed at the minimum total cost
incurred with the company vehicles and drivers plus the compensation paid to the ODs. The
company decides on the best compensation scheme to offer to the ODs at the planning stage.

Crowd-shipped delivery has been adopted as a shortcut to last-mile growth. It has
been implemented under different business models depending on how the occasional
drivers are engaged and managed. A survey in [1] indicates that while only 9% of retailers
are using crowd-sourced providers now, one in four retailers plans to start using them in
the next 12 months. It has been implemented as an enabler to same-day delivery for the
last mile as can be seen in recent implementations of large companies as in [2–4].

This setting also potentiates greater efficiency by making better use of existing urban
traffic flows. For example, the case of crowdshipping with in-store customers taking up
delivery tasks on their way home to serve online customers. As a result of fewer freight
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vehicles being used, the company’s costs are reduced while also benefiting society from the
reduced traffic congestion.

Our setup is suitable for a same-day delivery scheme where time windows are fixed,
predefined periods during the day and customers with online orders and available occa-
sional drivers can enlist themselves in these time windows.

Crowdshipping last-mile delivery has been modeled as a variation of the vehicle rout-
ing problem (VRP) or the traveling salesman problem (TSP), under different deterministic,
stochastic, and/or dynamic optimization approaches (e.g., [5–9]).

A general topic presented in these works relates to the compensation offered to
occasional drivers. Choosing an appropriate compensation scheme is challenging. Different
compensation schemes presented in the literature have both advantages and disadvantages
associated with them. It can affect the number of available occasional drivers and also
which customer locations will be assigned to occasional drivers and not to the company’s
drivers, affecting overall cost savings.

In general, all the compensation schemes proposed in the literature so far are static
schemes (see Section 2), in the sense that the decision-maker cannot decide on different
compensation rates levels paid to the occasional drivers.

In this work, a flexible compensation scheme is proposed taking into account the
occasional driver’s willingness to engage in a delivery task. Flexible pricing systems are
still a recent subject under study in the crowdshipping literature and with only a few
implementations (e.g., [10]).

We are interested in analyzing the effect of the compensation level decision not only on
the solution provided to our problem but also on the complexity associated with its resolution.

We adopt a data-driven dynamic and stochastic approach where the existence of online
customers’ orders to be delivered, as well as the availability of occasional drivers to deliver
them, are random and define scenarios on which decisions have to be made.

This problem is complex because decisions, regarding the dispatch of vehicles or
occasional drivers, have to be made fast and the space to search for decisions is potentially
too large. Here, we extend the work initiated in [11] and propose a deep reinforcement
learning (DRL) method where we model the problem as a sequence of states connected
by actions, driven by decisions, and transitions. The DRL method uses a neural network
(NN) as an approximation architecture for the problem value function. Our approach is
data-driven: we make use of a generative method, exploiting available scenario historical
data, to generate additional scenarios, that in turn are used to train the DRL neural network.

Another key feature of our DRL approach is how we search the action (decision) space.
Most reinforcement learning (RL) studies on stochastic VRPs face the challenge imposed
by the combinatorial nature of state and action spaces by restricting the action space and
aggregating the state space based on expert knowledge. Here, we formulate the action
selection problem for each state using a recourse in a two-stage decision model where
the first-stage decision is formulated as a mixed-integer optimization program. In the
first stage, not only the order in which all customers will be delivered is established, as
in [11], but also the best compensation to be paid for the outsourcing of each customer. The
second-stage decision is made every time a scenario is revealed, and before any dispatch of
fleet vehicles or ODs. The second-stage decision comprises routes defined by the recourse,
where the routes follow the first-stage decision ordering but skip customers that have no
online orders or customers outsourced for available ODs. Each time the vehicle capacity or
the time window limit is reached, a return path to the depot is created and another route
restarts from the depot if needed.

The main contributions of the approach above and the results of this work are:

• We propose a novel data-driven stochastic and dynamic approach for crowdshipping
last-mile delivery, where we introduce a flexible compensation scheme, advancing the
state-of-the-art in this topic.

• We experiment with generative methods to create new scenarios to train our neural
network. Historical data are typically in small amounts and inadequate to evaluate
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the policies of our DRL approach. We exploit the fact that there is time correlation
information hidden between scenarios included in the historical data. We learn this
time correlation using conditional generative adversarial networks and use them as a
tool to generate scenarios to evaluate our policies.

• We present computational results on the capability of the proposed model, assuming
a realistic point-of-view of correlated scenarios.

In the sequence of this work, in Section 2, we present relevant approaches to solve
problem variants. In Section 3, we present our problem description and the defined model.
In Section 4 we introduce the DRL method developed. Next, in Section 5, we discuss the
computational results. Finally, in Section 6, we present this work’s conclusions.

2. Literature Review

In the following sections, we survey relevant literature for the proposed approach. It
includes not only the publications related to models for the crowdshipping of last-mile
delivery, in particular in the different approaches developed to deal with the compensation
of occasional drivers, but also covers the approaches for the problems where the customers
are uncertain and applications of RL methods to VRPs.

2.1. Crowdshipping Routing and Compensation Schemes

In [5], the authors developed the first work on crowdshipping last-mile delivery.
The authors study a deterministic approach where data such as the customers’ locations,
parameters used to define occasional drivers’ compensation fees, and which customers an
occasional driver can outsource, are used as input. The model proposed is a combination
of an assignment problem for occasional drivers, with a capacitated VRP where vehicle
routes are defined for customers not assigned to occasional drivers. A customer is assigned
to an occasional driver only if it is overall optimal. The compensation scheme is then
an important part of the proposed algorithm. In a basic variant of their problem, the
compensation fee paid to an occasional driver is proportional to the distance between the
depot and the customer location and does not consider the destination of the occasional
driver. They argue the practical advantages of this method since the company only deals
with the location of its customers, but it is non-ideal for occasional drivers because it does
not consider the extra costs incurred. A variant is proposed where the occasional driver
is paid proportionally to the detour from their original route between the depot and their
final destination. The authors argue that this is more challenging to implement because
it demands registering the occasional driver’s destination. They suggest that new and
innovative compensation schemes are essential to further developments on this subject.

Using the models above, the authors can exercise the potential benefits of employing
occasional drivers to make deliveries. They analyze results based on: (1) the number of
occasional drivers available regarding the number of customers; (2) how much flexibility
exists in terms of an allowed detour from an occasional driver’s original route and; (3) what
compensation scheme is used and the amount an occasional driver is paid. They conclude
that designing an adequate compensation scheme is one of the most important challenges
for a company to define.

The authors in [8] study a dynamic and stochastic approach in which the demand, as
online orders, arrives over time, as do in-store customers available to make deliveries. They
present rolling horizon dispatching algorithms: one that exploits only the present state of
the systems, and one that also exploits probabilistic data concerning future delivery orders
and customers available to make deliveries arrivals. The compensation includes two terms.
One term reflects a fixed compensation paid to in-store customers who deliver orders.
The second term is proportional to the online order delivery time. Through numerical
experiments, they verify that the quality of service may increase and the operational
costs may decrease if the delivery capacity is augmented by the application of higher
compensation fees to in-store customers. They study the sensitivity of these customers to



Mathematics 2022, 10, 3902 4 of 23

price. Higher compensation can incur more participation but also become a less attractive
alternative. As a consequence, crowdshipping may become simply the backup plan.

In [12], the authors assume occasional drivers that arrive randomly. Routes are devel-
oped for professional vehicles and the occasional drivers considering their final destination.
Occasional drivers appear in defined time windows. They develop a two-stage model in
which professional vehicle routes are defined in the first stage and, as occasional drivers
appear, they adjust deliveries in the second stage. There is a paid penalty for customers
that are not served. We note that here the uncertain event is related to the presence of a
given occasional driver. Their stochastic solution is based on a scenario approach with a
uniform distribution. They conduct computational experiments where they limit the size
of the instances to 20 customers and 3 occasional drivers. Three alternative compensation
schemes are analyzed: (1) a fixed and equal compensation fee is paid for each served request;
(2) the compensation fee is proportional to the traveling distance from a pickup to the delivery
location; and (3) the compensation fee is proportional to the detour distance made by the
occasional driver. The computational results show that using occasional drivers can produce
savings even when a suboptimal compensation scheme is used.

In an attempt to capture some randomness in the process of acceptance by occasional
drivers, the authors in [6] investigate a stochastic approach to the problem. There, customers
are either offered or not to potential occasional drivers and the acceptance probability is
known. A heuristic is used to identify customers’ orders to be offered to occasional drivers.
They emphasize the relationship between the compensation offered to occasional drivers, the
probability of their acceptance, and the resolution of the customer set offered to outsource. We
note that here that the uncertain event is related to the customer being outsourced.

In [9], the authors assume a dynamic environment, where the solution is adjusted
each time information becomes available. A service platform matches parcel delivery
tasks to ad hoc drivers. An exact solution approach using a rolling horizon framework
is developed. Compensations are defined as being proportional to the cost of serving all
customers without occasional drivers. The authors present examples of crowdsourcing
delivery platforms that offer same-day delivery and compare their respective compensation
schemes that vary between hourly rates and per-package remuneration.

The section’s references above provide interesting results regarding the importance of
the definition of the correct compensation scheme, but they all offer post-optimal sensitivity
analysis. This limitation has inspired this work to study alternatives for more flexible
compensation schemes where the compensation paid to ODs can be part of the decision
made by decision-makers.

A survey by [13] analyzes the status of crowdshipping and provides a classification of
available platforms. The authors also review the operations research literature explicitly
addressing this topic.

2.2. Routing with Customer Uncertainty

Stochastic optimization approaches to routing problems based on customer uncertainty
have been studied by many authors.

A seminal work addressing routing with customer uncertainty was studied in [14]. The
authors define a routing problem where only a random subset of customers are served. The
problem is defined as the Probabilistic Traveling Salesman Problem. They develop closed-
form expressions for the expected length of any route, given that customers’ probability
distributions are independent.

The study above is extended in [15], where the authors define a stochastic variant of
the VRP. There, customer demands and/or customer presence are stochastic. The authors
define a recourse strategy where absent or no-demand customers are skipped in pre-defined
routes. Additionally, routes are split and a detour back to the depot occurs when the vehicle
capacity is reached. The authors elaborate on the need to define strategic planning solutions,
where an a priori service customer sequence of minimal expected length is calculated, rather
than solving the problem only when the demand or presence is known. They develop
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closed-form expressions and algorithms to compute the expected length of an a priori
sequence, given that customers’ probability distributions are independent.

Branch-and-cut integer L-Shaped algorithms were developed in [16] and in [17] to
solve the two models above. The authors could solve instances with up to nine uncertain
customers. In [18], improvements were introduced to the branch-and-cut integer L-Shaped
algorithm developing, among others, stronger lower-bounds formulations. Instances with
25 to 100 vertices and 2 to 4 vehicles were optimally solved for Poisson and normal demand
distributions.

In [19], assuming stochastic demands, the authors developed a branch-cut-and-price
algorithm for the VRP. They formulated it as a set partitioning model with additional con-
straints and improved the algorithm performance significantly. They developed the ng-routes
that are used for the pricing sub-problems together with routines for 2-cycle elimination.

A branch-and-bound algorithm is developed in [20] for the probabilistic TSP, using the
same concept of a priori strategy defined in [15]. They extend previous deterministic TSP
algorithms, leveraging the closed expected value evaluation expression of [14]. The authors
additionally present in [21] another branch-and-bound algorithm exploiting parallelization
techniques and solving instances for up to 30 customers.

An approximation scheme is developed in [22] for the VRP with stochastic customers.
A two-stage stochastic optimization set-partitioning formulation is presented where a set of
vehicle routes serving all customer locations is defined a priori before any service request
is known. The uncertain events are assumed to be independent. A column generation
framework that allows for solving the problem to a given optimality tolerance is proposed.
They solve instances for up to 40 customers within the time limit of six hours.

A heuristic approach for solving the VRP with stochastic demand, using a set-partitioning
formulation, is presented in [23]. First, it presents a heuristic to define a good finite set
of feasible routes that are used as columns to solve the problem. Furthermore, a recourse
approach is developed, where vehicles can serve additional customers from failed routes
before going back to the depot or they can serve customers from failed routes on a new
route after going back to the depot. Instances of 75 customers are solved.

The stochastic studies in this section assume that the uncertain events are independent.
In many real-life problems, although, event correlation can contain important informa-
tion to be considered in the solution. These correlations are often difficult to deal with,
which makes the planning problem complicated. An alternative is a modeling approach
that considers the worst-case joint distribution, under the theory of Distributionally Ro-
bust Optimization (DRO—see, [24–26]). After identifying a set P of allowable probability
distributions that include the true distribution P, and called the ambiguity set, the objec-
tive function is reformulated concerning the worst-case expected cost over all possible
distributions in the ambiguity set.

The authors in [27] present a VRP with stochastic demands with no recourse where an
important feature of the methodologies presented allows random events correlation. Another
characteristic is that chance constraints are used to limit the infeasibility of the routes due
to capacity limits. The authors propose the use of a branch-price-and-cut algorithm. They
identify that the pricing subproblem is strongly NP-hard, even if the priced routes have cycles.
They identify further route relaxation alternatives and develop pricing algorithms through
the use of dynamic programming. They solve instances for up to 55 customers.

In [28], the authors study a variant of the capacitated VRP with no recourse where
an ambiguity set is known for the demand random vector. They also present a chance-
constrained formulation and show that it can be solved with standard branch-and-cut
algorithms when the ambiguity set satisfies a certain subadditivity condition.

2.3. Reinforcement Learning for Routing

Most works with an RL approach to solving the VRP interpret it as a Markov Decision
Process, in which the optimal solution is viewed as a sequence of actions deciding which
customer to visit according to the state revealed. They draw on the concept of policy-
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gradient or value-function approximation (VFA). Policy-gradient methods search directly
for an optimal policy and do not have to be concerned with the value function. In general,
the policy is parametrized. VFAs approximate the value of post-decision states using
simulations. The values are stored usually in functions or tables. The challenge is related to
the fact that the VRP, as combinatorial optimization problems in general, can have large
combinatorial action spaces. The VRP high-dimensional action space turns methods that
approximate state-action pair values inviable because they enumerate all possible actions.
Typically, as an alternative, the action space is restricted instead.

The authors in [29] present one of the first studies involving RL methods to solve
routing problems. They train a recurrent neural network for the TSP, called a pointer
network. Given a set of city coordinates, it predicts a distribution over different city
permutations. They developed a policy gradient algorithm to optimize the parameters of
the recurrent neural network.

Motivated by the work in [29], the authors in [30] generalize to include other combi-
natorial optimization problems such as the VRP. They propose an alternate approach in
which the policy model consists of a recurrent neural network decoder together with an
attention mechanism and apply a policy-gradient approach.

An alternative to the approach of reducing the action space with VFA is presented in
the work of [31]. They present a value-function-based DRL algorithm. The action selection
problem is formulated as a mixed-integer optimization problem and is able to exploit
the whole combinatorial action space. They focus on the Capacitated Vehicle Routing
Problem. There, a capacity-constrained vehicle must be assigned one or more routes to
serve customers with demands and minimize traveled distance. ReLU activations are
used, exploiting the work developed in [32] for strong MILP reformulations of neural
network-related problems.

With business models shifting to same-day delivery, routing problems have become
increasingly stochastic and dynamic. A problem class called the stochastic dynamic vehicle
routing problem (SDVRP) arises and poses new challenges as they require anticipatory real-time
routing actions and static solutions are no longer adequate. Recent works have shown that RL
appears to be a good solution method for dynamic combinatorial optimization as the SDVRP.

In [33], the authors present an actor-critic framework and apply a policy-based RL
algorithm for the problem of pick-ups at customers with dynamic service requests. They
consider dynamic requests and customer locations that are unknown in advance. They
extend a policy learned for a single vehicle to all vehicles.

In [34], the authors present the first study to implement deep Q-learning methods for
same-day delivery problems with a heterogeneous fleet of vehicles and drones. Their method
learns the value of assigning a new customer to either drones or vehicles as well as the option
to not offer service at all. They reduce the state space to a set of selected features and define it
in a way to make it possible to enumerate alternative actions at the decision points.

A survey by [35] highlights the potential of RL methods applied to VRPs from the
point of view of operations research and computer science communities and guide to joint
approaches to overcome current obstacles. Overall, they suggest: (1) methods combining
piece-wise linear neural network VFAs and solvers searching the action space; (2) policy-
based methods that overcome the combinatorial action space; and (3) multi-agent RL
approaches together with searching the joint action space with a global MIP.

2.4. Stochastic Optimization with Endogenous Uncertainty

The works presented in Section 2.2 are based on the assumption that the stochastic
process is independent of the optimization decisions. Here, we consider the case of decision-
making for an application that is not only subject to uncertainty but where decisions affect
future uncertainties as well. In these cases, the uncertainty is endogenous or ‘decision-
dependent’.

Even though such uncertainties prevail in real-life settings, these problems have not
received the deserved attention in the past, mainly because of computational burdens.



Mathematics 2022, 10, 3902 7 of 23

Nevertheless, considering this dependency can be an important step in improving system
performance. Since the work in [36], dealing with a Markovian process, which first ad-
dresses the case with endogenous uncertainty, other approaches to this type of problem
have been studied.

The authors in [37] first addressed problems with endogenous uncertainty where
project decisions, instead of affecting the probability distribution themselves, give more
information that is used to resolve the uncertainty instead. They assume that the cost of an
item is uncertain until the moment it is produced. The probability distribution depends on
which item is produced and when.

In [38], the authors address the offshore oil and gas planning problem to maximize
revenues and investments over some time. The oil fields’ size is not known in advance. The
authors present a disjunctive formulation with non-anticipativity constraints to capture the
interaction between the decisions and the resolution of uncertainty.

In [39], the authors extend the previous approach to a multistage stochastic problem
for optimal production scheduling, that minimizes cost while satisfying the demand for
different goods. Here, they consider endogenous uncertainty where the project decisions
lead to the resolution of uncertainty.

Endogenous uncertainty has also been studied under distributionally robust optimiza-
tion assumptions. Here, the set P of feasible probability distributions can depend on the
first-stage decision variables. This leads to solving a Decision-Dependent Distributionally
Robust Problem.

The authors in [40] developed a framework that includes two-stage decision-dependent
distributionally robust stochastic programming as a special case and considers five types of
ambiguity sets for which they offer reformulations designed for specific resolutions.

Another interesting application of endogenous uncertainty is within dynamic pricing,
being a field of revenue management. Here, a company adjusts prices according to invento-
ries left and the demand response observed. The decision to set prices at different levels
influences the future demand for the products being priced. Among others, this applica-
tion has been addressed under different approaches of reinforcement learning techniques
(e.g., [41,42] ). In fact, reinforcement learning has grown to represent a broad problem class
of sequential stochastic optimal decision problems.

3. Stochastic Crowd Shipping Last-Mile Delivery with Endogenous Uncertainty

We follow [11] and define a typical setting for our problem in which a store is the
location for in-store customers and also the depot from where online customer orders are
dispatched. In-store customers who are available to deliver online customers’ orders on
their way back home are potentially offered the service. For their service, they are offered a
small compensation and are referred to as ODs.

The store provides delivery services throughout fixed time windows during the day.
Before each time window, and respecting a process defined by the store, a scenario is
revealed with the available online customer orders, and the customers with available
ODs. Based on the scenario revealed, the store decides the routes for its fleet of vehicles
and which customer orders will be outsourced to ODs. This decision, in turn, defines the
cost associated with that time window. The objective is to minimize the total costs in the
long run.

The decision is taken in a two-stage approach, using a recourse model based on the
work presented in [15] under the framework of stochastic optimization. An a priori first-
stage decision is made during the store planning process, meaning that we define a solution
to our problem offline, and before any delivery is initiated. Not only is the order in which all
customers will be delivered established, but also the best compensation to be paid to ODs
by each customer order being outsourced. This compensation is a continuous variable and
may be restricted to a feasible region defined by the company. The second-stage decision is
made every time a scenario is revealed, and before any dispatch of fleet vehicles or ODs.
The second-stage decision defines routes that follow the first-stage decision ordering but
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skips customers that have no online orders and customers outsourced for available ODs.
In our recourse model, the store only offers the service to the OD if it is optimal for the
scenario being revealed. Additionally, each time the vehicle capacity or the time window
limit is reached, a return path to the depot is created and another route restarts from the
depot if needed.

The recourse model adopted brings two main advantages to our DRL method pre-
sented later in Section 4. First, it extremely reduces the action space since, in fact, only
one decision, defined by the recourse, is possible at each decision point of our model. We
recall that RL algorithms in general will require a small action space allowing enumeration
or that is continuous. We also note that a very large action space remains to be searched
during the first-stage decision, representing possible permutations of customers’ delivery
ordering. Second, it presents a solution that is potentially very close to the decision adopted
in a reoptimization strategy, where an optimal solution is calculated each time a scenario is
revealed. The authors in [15] show that, for their setup where random events associated
with customers are assumed independent, both solutions are close, on average.

An important modeling feature of our implementation is that uncertainty is customer-
related. We can model not only uncertainty for customers with no orders but also uncer-
tainty related to the availability of ODs. This is an alternative to current crowdshipping
last-mile delivery models, where uncertainty is related to the OD (e.g., [8,12]). This way we
can reduce the complexity of the problem to beg solved since we do not deal with explicit
ODs constraints, such as their quantity, capacity, and routes.

Our approach is data-driven. We assume a set of historical data is available with a
sequence of scenarios expressing customer orders and ODs availability conditioned by the
compensation offered.

In what follows, we detail our problem and introduce the notation used. Let G = (V, A)
be a directed graph, where V = {0, . . . , N} is the set of vertices and A = {(i, j)|i, j ∈ V} is the
set of arcs. Set V consists of a depot (vertex 0) and a subset C = {1, . . . , N} of customers’
represented by their locations. We assume |C| ≥ 3 to facilitate our formulations.

A non-negative cost cij and a duration in time dij are associated with each arc (i, j) ∈ A.
We assume that the graph is symmetric, i.e., cij = cji; dij = dji, and they both satisfy
triangular inequalities. We also assume that the company fleet vehicles are identical and
can serve up to Q customers per time window and that all time window customers must
be delivered within a time limit of D. There is a fixed number of K time windows during
a day.

The binary vector (ξ1, . . . , ξ2N) defines a scenario. The vector component ξi = 1, i ∈
{1, . . . , N} iff customer i has an online delivery order available and ξi = 1, i ∈ {N+1, . . . , 2N}
iff customer (i-N) has ODs available. If ξi = 0, i ∈ {1, . . . , N}, customer i will be skipped by
the routes defined by the recourse. If ξi = 1 and ξi+N = 1, i ∈ {1, . . . , N}, customer i delivery
order will be considered to be delivered by an OD. If ξi = 1 and ξi+N = 0, i ∈ {1, . . . , N},
customer i delivery order will be served by the fleet of vehicles under routes defined by the
recourse.

A compensation fee fi is defined for customer i outsourcing. We assume the compen-
sation vector, f ∈ F ⊆ RN

+ , influences the joint distribution of scenarios ξ ∈ Ξ. The feasible
region F includes restrictions fmin

i ≤ fi ≤ fmax
i , ∀i ∈ C.

We define set Ξ as the support of the joint distribution and index scenarios using
indicator w ∈W = {1, . . . , |Ξ|}.

We model our problem as a Markov decision process (MDP) where there is a sequence
of states connected by actions, defined by policies, rewards, and transitions, and running
through episodes. A decision point k ∈ {1, . . . , K} is defined at the beginning of each time
window of a day. A decision point is when a recourse action is made. In the following we
consider:

States ξk: A state comprises all information needed to select an action and for our
problem that is represented by the scenario ξk that presents itself right before decision
point k.
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Actions ak: Action ak implements the recourse model at each decision point k, and
defines routes and ODs allocation. The actions, together with the first-stage decision
vectors z ∈ ZN and f, define a policy π ∈ Π. Element zi ∈ {1, . . . , N} of the first-stage
decision z gives the order of delivery of customer i.

Reward function Rk(ξk, z, f): The reward function Rk() expresses the immediate im-
pact of an action ak on the objective value of our problem. Since action ak is a recourse
under the defined policy, the reward function is dependent on z, f, and ξk. The reward
function is defined by the cost of routes and the OD payment is defined by the recourse.

Transitions: Transitions between states are given by exogenous information and
related to the time correlation between scenarios. For our model, we assume scenario ξk is
conditioned not only by the compensation vector, f, but also by the precedent scenario ξk–1.

Episodes: An episode for our setup problem is a day at the store, composed of K time
windows and K decision points. A total return TR = ∑K

k=1 Rk(ξk, z, f) is defined for each
episode.

Value function Va: A key concept of RL is the use of value functions to drive the
search for good policies. In our problem, each policy π has an expected or mean total
return once z and f are given. The value function Va, as a function of z and f, expresses the
expected total return by applying z and f.

Objective: A solution to our problem is a policy π that assigns an ordering of customers
z and a compensation vector f. The optimal solution is a policy π∗ that assigns a tuple z∗

and f∗ and minimizes the expected total return and can be expressed by

(z∗, f∗) = arg min
z∈ZN,f∈F

(Va(z, f) = E[
K

∑
k=1

Rk(ξk, z, f)]) (1)

The difficulty in dealing with scenarios is to identify the sensitivity of customers to
different prices. Indeed, potentially there is not enough available data to evaluate a certain
compensation scheme. Additionally, exploring odd prices can lead to unreasonable ODs
reactions. On the other hand, exploiting only low prices can have undesirable consequences
on the business side. For all that we apply a data augmentation technique to add newly
created synthetic data from existing data (see [43]). We exploit the information contained
in the historical data available by using conditional generative adversarial networks [44]
to learn the time correlation between scenarios and to artificially generate the additional
scenarios needed, conditioned to the compensation paid to ODs.

Our goal is to forecast new sequences of scenarios. We want to learn the predictive
probability distribution over future quantities. For this purpose, we apply a probabilistic
forecasting method to quantify the variance in a prediction [45].

One method for probabilistic forecasting which implies the implementation of neural
networks, is the generative adversarial network (GAN). GANs are an approach to genera-
tive modeling. Generative modeling is an unsupervised learning task in machine learning
that involves automatically learning the patterns in input data and which can generate
outputs that could have been drawn from the original dataset. GANs train a generative
model by framing the problem as a supervised learning problem with two neural network
sub-models: the generator model that is trained to learn the distribution of data, and the
discriminator model that tries to classify examples as either real (from the domain) or fake
(generated). The two models are trained together in a zero-sum game, adversarial, until
the discriminator model is fooled, meaning the generator model is generating plausible
examples [46].

In [47], the authors introduce the concept of conditional GAN (cGAN) which is a
GAN whose generator and discriminator are conditioned during training by using some
additional information, named labels. During cGAN training, the generator learns to
produce realistic examples for each label in the training dataset, and the discriminator
learns to distinguish fake example-label pairs from real example-label pairs. cGAN can be
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used, for instance, as a method for time series forecasting if the labels are the previous time
steps used to define possible realizations of the next time step of the referenced time series.

In [48], the authors also exploit the capacity of cGANs to learn the distribution of time
series data, allowing the generation of synthetic scenarios from the distribution. They argue
that modeling synthetic data using a GAN has been a viable response to the challenge in
machine learning which is to gain access to a considerable amount of quality data.

We then opt for a probabilistic model for multivariate time-series forecasting with
the use of a cGAN. With cGAN, we learn the probability distribution of one step ahead
scenario ξk+1 conditioned (labeled) not only to past scenario information, {ξ1, . . . , ξk}, but
also to compensation fee values, fi, defined as first-stage decisions.

4. Deep Reinforcement Learning for Stochastic Last-Mile Delivery with
Crowdshipping

We implement an on-policy and ε-greedy policy iteration algorithm for value-based
reinforcement learning with combinatorial actions. We leverage the strategy developed
in [31] where the authors model the value function as a small NN with a fully-connected
hidden layer and rectified linear unit (ReLU) activations. The NN is reformulated as a
mixed-integer program, as in [32], and combined with the structure of the action space,
the customers’ delivery ordering, and OD compensation, for policy improvement. This,
together with the recourse model defined, greatly simplifies the complexity of the policy
iteration algorithm while maintaining the possibility of searching the entire first-stage
decision action space.

Given a randomly chosen starter ε-soft policy π0, where the first-stage decision can
vary with probability ε, we repeatedly improve it. In the τ-th policy evaluation step, using
the Monte Carlo method, we repeatedly apply the current ε-soft policy πτ–1 for episodes
and average sample total returns after each episode. The episodes are defined using the
sequence of scenarios provided by newly dynamically cGAN generated data, conditioned
to the compensation fees defined by the policy. We use the average sample total returns
provided using the Monte Carlo method to train the NN and incrementally approximate
the value function Va. The NN learns by minimizing the mean-squared error (MSE) on the
cumulative cost among all iterations of our algorithm.

Figure 1 defines the architecture we implement for our DRL NN. The DRL NN has
as input the vectors z and f, representing the customers’ delivery ordering and the ODs
compensation vector; only one P hidden nodes layer with ReLU activation, and one linear
output. Let wp ∈ R2N represent the weights vector and bp ∈ R the bias term for the p-th
hidden node. We define woutput ∈ RP and boutput ∈ R analogously for the output layer.

For the DRL policy evaluation step, we now detail how cGAN data is dynamically
generated and used within the Monte Carlo method. We note that the cGAN itself is
trained as a previous step, using historical data, as part of the DRL algorithm. The cGAN
is trained only once. By doing this, we train the cGAN’s generator model to generate a
new sequence of scenarios based on previous scenarios and the compensation fee defined.
The cGAN’s generator model is then used as part of the DRL policy evaluation step to
dynamically generate a new sequence of scenarios for the execution of the Monte Carlo
method at each iteration.

Figure 2 presents an overview of the cGAN. The cGAN englobes two neural networks,
the generator and the discriminator. These NNs learn simultaneously in an adversarial
process, with a two-player minimax game. First, we perform the conditioning by feeding
the label representing the previous scenarios and compensation fees defined, into both the
discriminator and generator as an additional input layer. The generator has the noise vector
as input, which is sampled from a mean 0 and standard deviation 1 Gaussian distribution
and forecasts ξk+1 with regard to the conditioning label. The discriminator has ξk+1 as
input and verifies whether it is a valid value to follow the label or not. The discriminator is
optimized to distinguish between generated data and real data.
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Figure 1. Fully connected neural network with one hidden layer and linear output.

Figure 2. Conditional GAN.

The optimal generator NN models the probability distribution of ξk+1, conditioned to a
label. In the end, information regarding any possible outcome can be extracted by sampling.

There are different ways to include conditional information in the neural network.
Different approaches can be developed for how this information should be combined, or
where in the network it should be included. Here, we include the label only in the input
layer for the two networks and the representation data of the label is learned first by passing
scenarios through a Long Short-Term Memory (LSTM) layer. LSTM neural networks, as
introduced in [49], are distinguished by their “memory” as they take information from
prior inputs to influence the current input and output.

The LSTM output is then concatenated with the compensation fee vector to finally
compound the representation data.

Then, the noise vector, concatenated with the label is passed through two dense layers,
leading to the predicted ξk+1 value. The discriminator inputs ξk+1 from the generator
output or from the historical dataset concatenated with the label. This data passes a dense
layer that outputs a single value specifying the output validity.
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Our approach has to deal with a multivariate setting. In the multivariate setting, more
complex NN architectures are needed to figure out dependencies between features. cGANs
also require precise hyperparameter tuning to have a stable training process. It can be
cumbersome to find adequate generator and discriminator architecture concurrently to
perform adequately. To address this challenge we further adopt the cGAN training strategy
of [44]. They build a probabilistic forecaster based on a deterministic forecaster using the
GAN architecture. Namely, the generator model is based on the architecture and hyper-
parameters of the deterministic forecaster. They search a generator and discriminator
architecture separately, which results in the simplification of the architecture’s overall
definition.

We now proceed with the policy improvement step of our DRL method. The τ-th
policy improvement step involves solving the optimization problem related to (1), meaning
that we find the first-stage decision to our problem that minimizes the expected total return
expressed by the current approximation of the value function. Problem (1) is formulated as
(see [32]):

min
P

∑
p=1

woutput
p yp + boutput (2)

s.t. yp ≥ ∑
i∈{1,...,N}

wp
i zi + ∑

i∈{N+1,...,2N}
wp

i fi + bp ∀ 1 ≤ p ≤ P (3)

yp ≤ ∑
i∈{1,...,N}

wp
i zi + ∑

i∈{N+1,...,2N}
wp

i fi + bp + Mp
– (1 – sp) ∀ 1 ≤ p ≤ P (4)

yp ≤ Mp
+sp ∀ 1 ≤ p ≤ P (5)

yp ≤ ∑
i∈I,i≤N

wp
i zi + ∑

i∈I,i>N
wp

i fi – ∑
i∈I

wp
i Lp

i (1 – sp) + (bp + ∑
i/∈I

wp
i Up

i )sp ∀ 1 ≤ p ≤ P, I ⊆ supp(wp) (6)

xij + xji = 1 ∀ i, j ∈ C, i 6= j (7)

xij + xjk – xik ≤ 1 ∀ i, k, j ∈ C, i 6= j 6= k (8)

zi = 1 + ∑
j∈V, j 6=i

xji ∀ i ∈ C (9)

fmin
i ≤ fi ≤ fmax

i ∀ i ∈ C (10)

z ∈ ZN, f ∈ RN, yp ∈ R, sp ∈ {0, 1}, ∀ 1 ≤ p ≤ P, xij ∈ {0, 1} ∀ i, j ∈ C, i 6= j (11)

where supp(w) indicates the set of indices i such that wi 6= 0 and components Lp
i and Up

i
are defined as

Lp
i :=

{
0, wp

i ≥ 0,
N+1, wp

i < 0,
and Up

i :=
{

N+1, wp
i ≥ 0,

0, wp
i < 0,

for i ≤ N and

Lp
i :=

{
0, wp

i ≥ 0,
fmax
i +1, wp

i < 0,
and Up

i :=
{

fmax
i +1, wp

i ≥ 0,
0, wp

i < 0,

for i > N.
Formulation’s Big-Ms are set as Mp

+ = max
z∈ZN, f∈F

wpz||f + bp = wpUp + bp and Mp
– =

min
z∈ZN, f∈F

wpz||f + bp = wpLp + bp, where z||f is the vector resulting from the concate-

nation of vectors z and f and wpz||f is the inner product of vectors wp and z||f. We
define the N decision variables zi, 1 ≤ zi ≤ N, giving the sequence in which customers will
be delivered, a continuous variable fi defining the compensation paid for each customer
outsourced, a continuous variable yp that models the output of the hidden node p and a
binary variable sp that indicates whether the pre-activation function is positive or negative
(i.e., whether the ReLU is active or not). We also introduce variables xij to define the
delivery order: xij = 1 if customer i precedes customer j and 0 otherwise.
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This pre-activation function is enforced by the “big-M ” constraints (4) and (5). The
formulation is not polynomial in size, as there are exponentially many constraints of type
(6), but these constraints simply strengthen the formulation.

Constraints (7) to (9) define the feasible region of all possible ordering of customers.
To be able to solve large instances and still have good solutions, we define a time limit

of 1800 s to solve problem (1) at each policy improvement step and use the best solution
provided until then. We apply warm start, callbacks to introduce lazy constraints and
heuristics, and use only the needed half of xij variables, where i < j.

We warm start not only in an attempt to accelerate resolution but also to guarantee
one incumbent solution. We adapt the Almost Nearest Neighbor Heuristic defined in the
study of heuristic algorithms for the probabilistic TSP in [50], which considers independent
marginals. We set a solution in an attempt to have a good feasible initial incumbent
solution. The ordering of customers is defined by appending the customer with the lowest
change in expected length from the last inserted customer to the tour. For a given set
T of customers already inserted in a tour, inserting customer j with minimum cost is
computed as

min
j∈C\T

|T|

∑
i=1

(1 – mi)(1 – mj)cij

|T|

∏
k=i+1

mk,

where mi, i ∈ C is the marginal Bernoulli probability of the component ξi, i ∈ C of the
uncertain scenario vector given by the historical data. We also set fi = fmin

i , ∀i ∈ C.
Constraints (6) are introduced as cutting planes by lazy constraints callbacks using a

linear-time separation routine as described in [32]. Heuristics callbacks introduce simple
heuristics by setting variables xij as binaries and following the same customer order given
by the z relaxed solution.

Algorithm 1 summarizes the steps undertaken in our policy iteration algorithm.

Algorithm 1: Policy iteration algorithm
Initialize:
ε ≥ 0
π← an arbitrary ε-soft policy π0 with z0, f0

Train cGAN using scenarios historical data
VD← ∅ Initialize empty dataset
Repeat for each policy iteration

Repeat for each episode:
Generate scenarios for episode using cGAN generator model
Generate an episode following π: ξ1, a1, R1, . . . , ξK, aK, RK

TR← 0
Loop for each step of episode, k = K, K – 1, . . . , 1:

TR← TR + Rk

Append TR to Returns(z, f)
VD(z, f)← average(Returns(z, f))

Use VD to incrementally train the NN and approximate value function Va
z∗, f∗ ← argmin Va(z, f) using Va function MIP formulation
Define ε-soft policy πwith z∗, f∗

We define two forms for the reward calculation. Here, we want an optimal assignment
of ODs. To perform this exactly we first formulate it as an optimization problem. The
formulation for this problem is given as
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min ∑
i,j∈V, i 6=j

cijxij + ∑
i∈C

fiwi

s.t. ∑
j∈V, i 6=j

xji = ∑
j∈V, i 6=j

xij = vi ∀i ∈ C (12)

∑
i∈C

xi0 – ∑
i∈C

x0i = 0 (13)

vi + wi ≤ 1 ∀i ∈ C (14)

vi + wi ≥ ξi ∀i ∈ C (15)

wi ≤ ξi ∀i ∈ C (16)

vi ≤ ξi ∀i ∈ C (17)

wi ≤ ξi+N ∀i ∈ C (18)

∑
j∈V, i 6=j

yji – ∑
j∈V, i 6=j

yij = vi ∀i ∈ C (19)

∑
j∈C

y0j = ∑
j∈C

vj (20)

yi0 = 0 ∀i ∈ C (21)

yij ≤ Qxij ∀i, j ∈ V, i 6= j (22)

∑
j∈V, i 6=j

tij – ∑
j∈V, i 6=j

tji = ∑
j∈V, i 6=j

dijxij ∀i ∈ C (23)

t0i ≥ d0ix0i ∀i ∈ C (24)

tij ≤ (D – dj0)xij ∀i, j ∈ V, i 6= j (25)

∑
j∈S

xij = 0 ∀i ∈ C, S = {j| zj < zi} (26)

∑
j∈S

xji ≤ vi ∀i ∈ C; S = {j| zj < zi]} (27)

xij ∈ {0, 1} ∀i, j ∈ V, i 6= j, yij, tij ≥ 0 ∀i, j ∈ V, i 6= j (28)

wi ∈ {0, 1} vi ∈ {0, 1} ∀i ∈ C (29)

where we define variables xij = 1 if customer i is served by a vehicle right before j, 0
otherwise, wi = 1 if customer i is served by an OD, 0 otherwise, vi = 1 if customer i is
served by a vehicle, 0 otherwise, yij as the accumulated capacity loaded between customer
i and j and tij as the accumulated time spent between customer i and j. The objective is to
minimize the total cost of routes plus OD payments. Constraints (12) and (13) are route
flow conservation and should be considered every time a customer is included in a route,
vi = 1. Constraints (14) define that customer i is served by a vehicle, or an OD or none.
Constraints (15) define that customer i is served by a vehicle or an OD if ξi = 1. Constraints
(16) and (17) define that customer i is not served by an OD or a vehicle if ξi = 0. Constraints
(18) define that customer i is served by an OD only if an OD is available. Constraints (19)
to (22) define the capacity restrictions. Constraints (23) to (25) define the time duration
restrictions. Constraints (26) and (27) guarantee that the order of first-stage decision z is
respected. Here, z, f and ξ are data input to the problem. For our algorithms, we define a
time limit of 600 s to solve the problem relative to this formulation and use the best solution
provided until then.

As an alternative, we provide a heuristic for reward calculation where the condition
to reduce cost by OD assignment is verified only locally. By Algorithm 2, customers are
allocated to ODs only if the corresponding OD compensation fee is less than the vehicle
cost to route from the previous to the next available customer (customers with delivery
orders in the scenario being referenced).
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Algorithm 2: Reward function for variant 2 of recourse model
Initialize:

laststop = 0; depot
cost = 0; cost of vehicles route
cap = 0; accumulated capacity of a vehicle
time = 0; accumulated time duration of a vehicle route
continue = true; define when to stop algorithm
bypass = false; should bypass OD available

i = 0
while continue

i+ = 1
if ξ[z–1[i]] == 1 and (ξ[N + z–1[i]] == 0 or bypass)

bypass = false
if time + d[laststop, z–1[i]] + d[z–1[i], depot] ≤ timelimit

cost+ = c[laststop, z–1[i]]; time+ = d[laststop, z–1[i]]
laststop = z–1[i]; cap+ = 1
if i == N

cost+ = c[z–1[i], depot]; continue = false
elseif cap == Q

cost+ = c[laststop, depot]; laststop = depot; cap = 0; time = 0
else

if i == N# assume 2*time from depot to i ≤ timelimit always
cost+ = c[laststop, depot] + c[depot, z–1[i]] + c[z–1[i], depot]
continue = false

else
cost+ = c[laststop, depot] + c[depot, z–1[i]]
time = d[depot, z–1[i]]; laststop = z–1[i]]; cap = 1

elseif ξ[z–1[i]] == 1 and ξ[z–1[i] + N] == 1
# find next customer available
j = i + 1
while j ≤ N and ξ[z–1[j]] == 0)

j+ = 1
if j ≤ N and f[z–1[i]] ≤ c[laststop, z–1[i]] + c[z–1[i], z–1[j]]

cost+ = f[z–1[i]]
i = j – 1

elseif j > N and f[z–1[i]] ≤ c[laststop, z–1[i]] + c[z–1[i], depot]
continue = false
cost+ = f[z–1[i]]
if cap 6= 0

cost+ = c[laststop, depot]
elseif j ≤ N and f[z–1[i]] > c[laststop, z–1[i]] + c[z–1[i], z–1[j]]

bypass = true; i– = 1
elseif j > N and f[z–1[i]] ≤ c[laststop, z–1[i]] + c[z–1[i], depot]

bypass = true; i– = 1
else

if i == N and cap 6= 0
cost+ = c[laststop, depot]

if i == N
continue = false

5. Experiments and Computational Results

The experiments have a three-fold objective: (1) analyze the effect of considering a
flexible compensation scheme from a solution improvement perspective; (2) analyze the
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sensitivity of the algorithm’s solution to key parameters; and (3) analyze the performance
of the algorithms we have implemented.

To pursue this objective, we present in the sections below, the instances setting and
the implemented benchmark algorithms.

Algorithms were developed in Python, with Keras, Tensorflow, and Docplex integrated
with Cplex 12.9, running with a machine with 16 GB of RAM and Intel I7 CPU at 2.30 GHz.
We present key parameters and additional architectural features defined for the DRL
algorithm and used in the experiment:

• We define key parameters with default values: number of nodes of the hidden layer
of the NN as 16, number of policy iterations as 15, number of historical scenarios in
sequence for cGAN as 1500 and number of scenarios generated by cGAN for DRL
Monte Carlo Simulation as 800,000. For some of the experiments, when specified, we
change default values to analyze the sensitivity of the DRL method to these changes.

• Exploration and exploitation during training are performed by setting ε-soft policies.
We set the probability of exploring ε = 0.6 and exploiting 1 – ε and decay ε over the
policy iterations.

• We apply a learning rate with an exponential decay from 0.01 with the base 0.96 and
the decay rate 1/6000 for updating weights.

• We pass through the entire episodes dataset 100 times (epochs) with a batch size of 100.

5.1. Instances

We generate random test instances having |C| + 1 vertices (depot and |C| customers)
for different values of |C| ∈ {10, 30, 70, 150, 300}. Five instances for each number of
customers are generated. Results indicated by the number of customers are an average of
the results of all their associated instances.

Customers’ locations for each instance are assigned randomly from a grid of 100 × 100
possible locations. We assume that travel times and costs are deterministic and proportional
to the euclidean distances between customers.

The compensation fee limits fmin
i and fmax

i for each customer i are set to the minimal
and maximal detour considering all pairs of customers r, j ∈ C, i 6= j 6= r plus a small
value ffixed, to avoid zero compensations, and given by fmin

i = ffixed + min
j,r∈C

cji + cir – cjr and

fmax
i = ffixed + max

j,r∈C
cji + cir – cjr.

Customers’ orders and OD availability occur randomly around the day and present
themselves for each time window as scenarios. We assume there is a sequence of scenarios,
conditioned by compensation fee, available as data and that is sufficient to train the cGAN.

We artificially generate these scenarios for our test instances based on two probability
vectors that define for each customer i ∈ C, a marginal probability mi for his/her order,
and a marginal probability oi for the availability of an OD to attend him/her. The marginal
probability oi is dependent on the compensation fee fi, defined as a pair (oi, fi).

To assure scenario consistency, the OD availability is only assigned when the respective
customer is also assigned to a delivery order. To introduce a correlation between scenarios
we force customers to have a maximum of one delivery order per day. We generate 1500
scenarios that are used to train the cGAN, plus 1500 scenarios that are used to simulate
the solutions provided by the algorithms (out-of-sample performance). Note that the
cGAN 1500 scenarios generated to simulate the solutions are, as always with the cGAN,
conditioned for the compensation fees defined as first-stage solutions.

We assume that the pairs (oi, fi) generated are coherent, in the sense that the compen-
sation fee influences the probability of an OD accepting to outsource.

The values mi are assigned randomly for each instance in a range smaller than 0.3.
We set three values for fi, fi = fmin

i , fi = fmax
i , fi = (fmax

i – fmin
i )/2 + fmin

i . The values of
oi are assigned randomly for each instance, according to the values of fi. If fi = fmin

i , then oi
is assigned in a range smaller than 0.1. If fi = fmax

i , then oi is assigned in a range greater
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than 0.3. If fi = fmax
i , fi = (fmax

i – fmin
i )/2 + fmin

i , then oi is assigned in a range between 0.1
and 0.3.

Each episode is composed of a delivery day with four time windows of 2 h each, and
therefore, four scenarios.

The professional fleet vehicle capacity is set to Q =
⌊

|C|
3

⌋
and the time limit of a route

is given by the time windows of 2 h.

5.2. Benchmark Algorithms

We present in Table 1 a general description of the different algorithms we run our
instances with.

Table 1. Algorithms.

Algorithm Code Description

DRLV1 The DRL method presented in Section 4 with exact recourse
DRLV2 The DRL method presented in Section 4 with heuristic recourse
DRLF The DRL method with Compensation fee fixed and set to minimum

Besides implementing algorithms DRLV1 and DRLV2 for the methods presented in
Section 4, we implement algorithm DRLF to run the same instances. DRLF is the algorithm
developed in [11] for the heuristic recourse. The difference is that the compensation fees are
not a decision to be made. They are fixed and set to fmin

i , ∀i ∈ C. DRLF was implemented
to allow us to verify the power of flexible compensation for our instances, running with the
other algorithms.

5.3. Initial Insights

We start by gaining qualitative insights into the potential benefits of different com-
pensation levels for crowdshipping the last-mile delivery. We want to understand the
sensitivity to problem characteristics and for this, we analyze some specific toy instances.

Figure 3 presents four instances indicating six customers’ positions in a graph, the
best-constructed routes defined for a scenario where all customers have online orders
and no ODs available, and what level of compensation was paid for each customer being
outsourced, as in the solution of our DRLV1 algorithm.

For these toy examples, we assume there exist only two levels of compensation, f0,
for the lower level, and f1 for the higher level. For compensation fees f0 and f1, we
assume the scenarios follow a distribution probability where the Bernoulli marginals of
elements ξi = 1, i ∈ C, i ≤ N are equal to 100 %, and the Bernoulli marginals of elements
ξi = 1, i ∈ C, i > N are equal to o0 and o1, respectively.

The level of compensation paid for each instance is indicated by the color given to
the customer location in the graph, referenced by axes, being red for the higher level of
compensation and green for the lower level. The depot is located at the origin of the axes.
Each route is indicated also by arrows in different colors.

Below each graph, we indicate the assumptions made for vectors o0, o1, and capac-
ity Q.

Our exercise here is to verify how the solution (routes and level of compensation)
changes with the assumptions of o0, o1, f0, f1, and Q.

In Figure 3a customers 3 and 6 are fixed to be delivered by the professional fleet
(o0

3 = o1
3 = o0

6 = o1
6 = 0). Since in this case Q = 4, the solution creates only two routes

and leaves the two fixed customers to be delivered in sequence. We note that, since in
this instance, a straight path between the depot and customer 3 can always be performed
including customers 1 and 2 with no extra cost, then it was not worth offering customers 1
and 2 a higher compensation fee.

The instance in Figure 3b has the same assumptions as in Figure 3a, except that now,
for the same f1 we increase the probability o1

1 and decrease o1
5. A naive expectation would
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be that, in this case, it would continue not to be worth paying extra for customer 1 since we
have a straight path to customer 3 still. Different from that, the algorithm is now able to
change the route solution and will pay extra for another set of two customers only.

Now in Figure 3c, we also replicate assumptions of Figure 3a, except the capacity
Q = 2. We see that, in this case, three customers are selected to pay extra instead of two,
and the route including in sequence customers 1, 2, and 3 is not worth it anymore due to
restrictions in vehicle capacity.

For Figure 3d, we just change the assumption of instance in Figure 3c and make
customer 6 not fixed in this case. By doing this, the solution changes and now it is worth
paying extra for all customers except the fixed customer 3.

We verify by analyzing these different examples that many things can happen and
are not always intuitive. Figure 3 shows the sensitivity of the solution not only to the
compensation employed but also to the many parameters used and highlights the challenge
of defining an adequate compensation scheme.

(a)
o0 = [0.3 0.3 0 0.3 0.3 0]
o1 = [0.5 0.5 0 0.5 0.5 0]
Q = 4

(b)
o0 = [0.3 0.3 0 0.3 0.3 0]
o1 = [0.8 0.5 0 0.5 0.4 0]
Q = 4

(c)
o0 = [0.3 0.3 0 0.3 0.3 0]
o1 = [0.5 0.5 0 0.5 0.5 0]
Q = 2

(d)
o0 = [0.3 0.3 0 0.3 0.3 0.3]
o1 = [0.5 0.5 0 0.5 0.5 0.5]
Q = 2

Figure 3. Initial Insights: (a) Instance a and optimal 2 routes; (b) Instance b and optimal 2 routes;
(c) Instance c and optimal 3 routes; (d) Instance a and optimal 3 routes.
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5.4. Solution Quality

To assess the performance of the solutions provided by the different algorithms, we
simulate these solutions through various episodes using the scenarios created for this
purpose, providing an out-of-sample estimate. We compare the algorithms’ total cost
output of this simulation.

Table 2 reports, for all instances and by the number of customers, the average per-
centage gap between total cost values when compared to the DRLF algorithm total cost.
Overall, we observe that all algorithms provide total costs within a range of 10% of the
DRLF total cost for the simulation proposed. This puts in evidence the potential of the
flexible compensation scheme to improve savings. As would be expected, we also verify
that the DRLV1 exact solution provided larger cost savings when compared to DRLV2.

Table 2. Solution Quality. * Results presented as percentage gap when compared to DRLF. Result =
100 ∗AVG((Algorithm – DRLF)/DRLF).

|C| DRLV1 * DRLV2 *

10 –5.1 –5.1
30 –5.4 –5.1
70 –9.6 –7.2
150 –7.6 –7.3
300 –7.1 –6.8

We also present in Table 3 the average percentage of ODs not accepted to outsource a
customer, among those available. We present these numbers for algorithms DRLV1 and
DRLF. We want to analyze if possibly increasing the compensation fee, as in the case of
DRLV1, leads to an increase in the percentage of ODs not being accepted for outsourcing.
An increase in the percentage of ODs not accepted could affect the success of the proposed
business model. We verify by Table 3 that there is not a direct relationship between flexible
compensation and the percentage of ODs accepted to outsource. Results depend on the
configuration setup of each instance.

Table 3. Percentage of not accepted ODs.

|C| DRLV1 DRLF

10 3.8 3.8
30 2.5 3.1
70 4.6 5.3
150 7.6 5.7
300 7.1 8.5

To verify the quality of the solution, we also estimate an upper bound total cost by
running the out-of-sample simulation with a randomly generated first-stage solution as
input. Table 4 presents the results as a percentage gap between the upper bound cost
(UPPERBOUND) and DRLV1 cost. There is an average improvement of 14.48% by running
DRLV1 solutions when compared to UPPERBOUND.

Table 4. DRLV1 Solution Quality. * Results presented as percentage gap when compared to
UPPERBOUND. Result = 100 ∗AVG((DRLV1 – UPPERBOUND)/DRLV1).

|C| Gap (%) *

10 –3.2
30 –11.8
70 –19.8

150 –17.5
300 –20.1
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5.5. Sensitivity to Parameters Configuration

In this section, we analyze the effect of changing the number of policy iterations,
the number of training scenarios, and the number of the NN hidden layer nodes on the
solution quality presented as the percentage average gap between the total cost output of
the simulation running the DRLV1 first-stage solution provided with new parameters, as
compared to DRLV1 first-stage solution run with default parameters. We change each of
the parameters independently while maintaining the other parameters as default. This is
reported in Figure 4a–c, respectively.

(a)

(b)

(c)
Figure 4. Sensitivity to key parameters: (a) Effect of number of policy iterations; (b) Effect of number
of training scenarios; (c) Effect of number of NN hidden layer nodes.

In Figure 4a,b, we note that decreasing the number of training scenarios can be
compensated by increasing the number of policy iterations to maintain solution quality and
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vice versa. It would be a matter of identifying which combination of both provides the best
time performance. Since the policy evaluation phase of our algorithm is very fast, due to
the simple recourse, we have opted to increase the number of training scenarios as default.

In Figure 4c, we analyze the effects of increasing NN size on the solution quality. We
experience the same effect as with the other experiments. Overall, the number of nodes is a
determinant of the solution quality.

5.6. Algorithms Performance

In Table 5, we present the time performance of algorithms DRLV1 and DRLV2. It
reports the average total time to find offline the first-stage solution, by the number of
customers |C|. We note that the time spent by both algorithms can be further altered by
adjusting the solution quality through parameters number of policy iterations, number of
training episodes, and number of NN nodes.

Table 5. Time performance in seconds.

|C| DRLV1 DRlV2

10 1969.44 2064.23
30 8630.00 8047.11
70 25,114.83 23,515.00
150 64,470.00 62,458.00
300 144,233.00 141,087.00

Both DRLV1 and DRLV2 scale well for the number of customers and can be used to
solve large instances. Since both algorithms run offline, they can be used for dynamic
routing decisions when the scenarios are revealed. If time performance is not a critical
issue, DRLV1 should be preferred since it provides better quality solutions.

6. Conclusions

In this work, we study an alternative solution approach for a stochastic and dynamic
crowdshipping last-mile delivery problem with endogenous uncertainty and solve it ap-
proximately using a DRL method. In our approach, it is possible to capture uncertainty
related to customers’ online orders and occasional drivers’ availability. The integration
of machine learning and operations research optimization techniques have worked as an
appropriate alternative to handle the large state and action space.

Computational results demonstrate that the method is capable of making appropriate
decisions throughout the day resulting in optimized solutions that reduce total costs when
compared to benchmark algorithms implemented. Most importantly, we were able to show
the advantages of implementing an alternative to flexible compensation fees, leveraging
the power of generative methods to create scenarios and contributing to the advance of
knowledge in this topic of the literature.

We foresee directions for future research. The challenge of solving larger instances
can motivate the future development of algorithmic methods using a more sophisticated
DRL approach, for instance. Many steps of the algorithms can be performed in parallel
mode. Action-value learning algorithms, instead of a value-based function approximation
approach as we have implemented can be studied. Moreover, different neural network
architectures that better capture the sequence dependence nature of the problem can be used
to better approximate the DRL method value function. Additionally, in this work we study
a flexible compensation scheme, but that is not dynamic. A dynamic compensation scheme
would define compensation schemes as a new decision at each stage (decision point).
From a business point of view, it would be useful to integrate dynamic decisions with the
possibility of online learning, where the data is also offered dynamically. Reinforcement
learning methods are natural candidates for online learning, and the challenges associated
with this new approach could be studied as an extension of this work.
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the Computational Logistics; Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 49–63.

8. Dayarian, I.; Savelsbergh, M. Crowdshipping and Same-day Delivery: Employing In-store Customers to Deliver Online Orders.
Prod. Oper. Manag. 2020, 29, 2153–2174. [CrossRef]

9. Arslan, A.M.; Agatz, N.; Kroon, L.; Zuidwijk, R. Crowdsourced Delivery—A Dynamic Pickup and Delivery Problem with Ad
Hoc Drivers. Transp. Sci. 2019, 53, 222–235. [CrossRef]

10. Barbosa, M. A Data-Driven Compensation Scheme for Last-Mile Delivery with Crowdsourcing. Master’s Thesis, Universidade
do Porto, Porto, Portugal, 2019. Available online: https://repositorio-aberto.up.pt/bitstream/10216/124212/2/367287.pdf
(accessed on 20 September 2022).

11. Silva, M.; Pedroso, J.P.; Viana, A. Deep Reinforcement Learning for Stochastic Last-Mile Delivery with Crowd Shipping. Available
online: https://hal.archives-ouvertes.fr/view/index/docid/3821656 (accessed on 20 September 2022).

12. Dahle, L.; Andersson, H.; Christiansen, M.; Speranza, M.G. The pickup and delivery problem with time windows and occasional
drivers. Comput. Oper. Res. 2019, 109, 122–133. [CrossRef]

13. Alnaggar, A.; Gzara, F.; Bookbinder, J.H. Crowdsourced delivery: A review of platforms and academic literature. Omega 2019, 98,
102139. [CrossRef]

14. Jaillet, P. A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited. Oper. Res.
1988, 36, 929–936. [CrossRef]

15. Bertsimas, D.J. A Vehicle Routing Problem with Stochastic Demand. Oper. Res. 1992, 40, 574–585. [CrossRef]
16. Laporte, G.; Louveaux, F.V.; Mercure, H. A Priori Optimization of the Probabilistic Traveling Salesman Problem. Oper. Res. 1994,

42, 543–549. [CrossRef]
17. Gendreau, M.; Laporte, G.; Séguin, R. An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and

Customers. Transp. Sci. 1995, 29, 143–155. [CrossRef]
18. Laporte, G.; Louveaux, F.V.; van Hamme, L. An Integer L-Shaped Algorithm for the Capacitated Vehicle Routing Problem with

Stochastic Demands. Oper. Res. 2002, 50, 415–423. [CrossRef]
19. Gauvin, C.; Desaulniers, G.; Gendreau, M. A branch-cut-and-price algorithm for the vehicle routing problem with stochastic

demands. Comput. Oper. Res. 2014, 50, 141–153. [CrossRef]
20. Amar, M.A.; Khaznaji, W.; Bellalouna, M. An Exact Resolution for the Probabilistic Traveling Salesman Problem under the A

Priori Strategy. Procedia Comput. Sci. 2017, 108, 1414–1423. [CrossRef]
21. Amar, M.A.; Khaznaji, W.; Bellalouna, M. A Parallel Branch and Bound Algorithm for the Probabilistic TSP. In Algorithms and

Architectures for Parallel Processing, Proceedings of the 18th International Conference, ICA3PP 2018, Guangzhou, China, 15–17 November
2018; Vaidya, J., Li, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 437–448.

https://www.arcweb.com/industry-best-practices/what-omni-channel-fulfillment-returns-management-all-about
https://drive4spark.walmart.com/
https://www.doordash.com/about/
https://www.imdada.cn/
http://doi.org/10.1016/j.ejor.2016.03.049
http://dx.doi.org/10.1016/j.trpro.2018.09.011
http://dx.doi.org/10.1111/poms.13219
http://dx.doi.org/10.1287/trsc.2017.0803
https://repositorio-aberto.up.pt/bitstream/10216/124212/2/367287.pdf
https://hal.archives-ouvertes.fr/view/index/docid/3821656
http://dx.doi.org/10.1016/j.cor.2019.04.023
http://dx.doi.org/10.1016/j.omega.2019.102139
http://dx.doi.org/10.1287/opre.36.6.929
http://dx.doi.org/10.1287/opre.40.3.574
http://dx.doi.org/10.1287/opre.42.3.543
http://dx.doi.org/10.1287/trsc.29.2.143
http://dx.doi.org/10.1287/opre.50.3.415.7751
http://dx.doi.org/10.1016/j.cor.2014.03.028
http://dx.doi.org/10.1016/j.procs.2017.05.068


Mathematics 2022, 10, 3902 23 of 23

22. Lagos, F.; Klapp, M.; Toriello, A. Branch-and-Price for Probabilistic Vehicle Routing. 2017. Available online: http://www.
optimization-online.org/DB_HTML/2017/12/6364.html (accessed on 20 September 2022).

23. Novoa, C.; Berger, R.; Linderoth, J.; Storer, R. A Set-Partitioning-Based Model for the Stochastic Vehicle Routing Problem. 2007.
Available online: http://www.optimization-online.org/DB_HTML/2006/12/1542.html (accessed on 20 September 2022).

24. Chen, X.; Sim, M.; Sun, P. A Robust Optimization Perspective on Stochastic Programming. Oper. Res. 2007, 55, 1058–1071.
[CrossRef]

25. Goh, J.; Sim, M. Distributionally Robust Optimization and Its Tractable Approximations. Oper. Res. 2010, 58, 902–917. [CrossRef]
26. Delage, E.; Ye, Y. Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems.

Oper. Res. 2010, 58, 595–612. [CrossRef]
27. Dinh, T.; Fukasawa, R.; Luedtke, J. Exact algorithms for the chance-constrained vehicle routing problem. Math. Program. 2018,

172, 105–138. [CrossRef]
28. Ghosal, S.K.; Wiesemann, W. The Distributionally Robust Chance Constrained Vehicle Routing Problem. 2018. Available online:

http://www.optimization-online.org/DB_FILE/2018/08/6759.pdf (accessed on 20 September 2022).
29. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural Combinatorial Optimization with Reinforcement Learning. arXiv

2016, arXiv:1611.09940.
30. Nazari, M.; Oroojlooy, A.; Snyder, L.V.; Takác, M. Reinforcement Learning for Solving the Vehicle Routing Problem. In

Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, Montréal, QC, Canada, 3–8 December 2018; Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates: New York, NY, USA, 2018; pp. 9861–9871.

31. Delarue, A.; Anderson, R.; Tjandraatmadja, C. Reinforcement Learning with Combinatorial Actions: An Application to Vehicle
Routing. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.,
Eds.; 2020.

32. Anderson, R.; Huchette, J.; Ma, W.; Tjandraatmadja, C.; Vielma, J.P. Strong mixed-integer programming formulations for trained
neural networks. Math. Program. 2020, 183, 3–39. [CrossRef]

33. Chen, Y.; Qian, Y.; Yao, Y.; Wu, Z.; Li, R.; Zhou, Y.; Hu, H.; Xu, Y. Can Sophisticated Dispatching Strategy Acquired by
Reinforcement Learning?—A Case Study in Dynamic Courier Dispatching System. arXiv 2019, arXiv:cs.AI/1903.02716.

34. Chen, X.; Ulmer, M.W.; Thomas, B.W. Deep Q-Learning for Same-Day Delivery with a Heterogeneous Fleet of Vehicles and
Drones. arXiv 2019, arXiv:1910.11901.

35. Hildebrandt, F.D.; Thomas, B.W.; Ulmer, M.W. Where the Action is: Let’s make Reinforcement Learning for Stochastic Dynamic
Vehicle Routing Problems work! arXiv 2021, arXiv:2103.00507.

36. Pflug, G.C. On-Line Optimization of Simulated Markovian Processes. Math. Oper. Res. 1990, 15, 381–395. [CrossRef]
37. Jonsbraten, T.W.; Wets, R.J.B.; Woodruff, D.L. A Class of Stochastic Programs with Decision Dependent Random Elements. Ann.

Oper. Res. 1998, 82, 83–106. [CrossRef]
38. Goel, V.; Grossmann, I.E. A stochastic programming approach to planning of offshore gas field developments under uncertainty

in reserves. Comput. Chem. Eng. 2004, 28, 1409–1429. [CrossRef]
39. Goel, V.; Grossmann, I. A Class of stochastic programs with decision dependent uncertainty. Math. Program. 2006, 108, 355–394.

[CrossRef]
40. Luo, F.; Mehrotra, S. Distributionally Robust Optimization with Decision Dependent Ambiguity Sets. arXiv 2018, arXiv:1806.09215.
41. Balashov, M.; Kiselev, A.; Kuryleva, A. Reinforcement Learning Approach for Dynamic Pricing. In The Economics of Digital

Transformation: Approaching Non-Stable and Uncertain Digitalized Production Systems; Devezas, T., Leitão, J., Sarygulov, A., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 123–141. [CrossRef]

42. Liu, J.; Zhang, Y.; Wang, X.; Deng, Y.; Wu, X. Dynamic Pricing on E-commerce Platform with Deep Reinforcement Learning: A
Field Experiment. arXiv 2019, arXiv:1912.02572.

43. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
44. Koochali, A.; Dengel, A.; Ahmed, S. If You Like It, GAN It—Probabilistic Multivariate Times Series Forecast with GAN. Eng. Proc.

2021, 5, 40.
45. Gneiting, T.; Katzfuss, M. Probabilistic Forecasting. Annu. Rev. Stat. Its Appl. 2014, 1, 125–151. [CrossRef]
46. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Networks. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680.
47. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
48. Smith, K.E.; Smith, A.O. Conditional GAN for timeseries generation. arXiv 2020, arXiv:2006.16477.
49. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–17380. [CrossRef]
50. Weiler, C.; Biesinger, B.; Hu, B.; Raidl, G.R. Heuristic Approaches for the Probabilistic Traveling Salesman Problem. In Computer

Aided Systems Theory—EUROCAST 2015, Proceedings of the 15th International Conference, Las Palmas de Gran Canaria, Spain, 8–13
February 2015; Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A., Eds.; Springer International Publishing: Cham, Switzerland,
2015; pp. 342–349.

http://www.optimization-online.org/DB_HTML/2017/12/6364.html
http://www.optimization-online.org/DB_HTML/2017/12/6364.html
http://www.optimization-online.org/DB_HTML/2006/12/1542.html
http://dx.doi.org/10.1287/opre.1070.0441
http://dx.doi.org/10.1287/opre.1090.0795
http://dx.doi.org/10.1287/opre.1090.0741
http://dx.doi.org/10.1007/s10107-017-1151-6
http://www.optimization-online.org/DB_FILE/2018/08/6759.pdf
http://dx.doi.org/10.1007/s10107-020-01474-5
http://dx.doi.org/10.1287/moor.15.3.381
http://dx.doi.org/10.1023/A:1018943626786
http://dx.doi.org/10.1016/j.compchemeng.2003.10.005
http://dx.doi.org/10.1007/s10107-006-0715-7
http://dx.doi.org/10.1007/978-3-030-59959-1_8
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1146/annurev-statistics-062713-085831
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Literature Review
	Crowdshipping Routing and Compensation Schemes
	Routing with Customer Uncertainty
	Reinforcement Learning for Routing
	Stochastic Optimization with Endogenous Uncertainty

	Stochastic Crowd Shipping Last-Mile Delivery with Endogenous Uncertainty
	Deep Reinforcement Learning for Stochastic Last-Mile Delivery with Crowdshipping
	Experiments and Computational Results
	Instances
	Benchmark Algorithms
	Initial Insights
	Solution Quality
	Sensitivity to Parameters Configuration
	Algorithms Performance

	Conclusions
	References

