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Abstract: Deep transfer learning (DTL), which incorporates new ideas from deep neural networks
into transfer learning (TL), has achieved excellent success in computer vision, text classification,
behavior recognition, and natural language processing. As a branch of machine learning, DTL
applies end-to-end learning to overcome the drawback of traditional machine learning that regards
each dataset individually. Although some valuable and impressive general surveys exist on TL,
special attention and recent advances in DTL are lacking. In this survey, we first review more than
50 representative approaches of DTL in the last decade and systematically summarize them into four
categories. In particular, we further divide each category into subcategories according to models,
functions, and operation objects. In addition, we discuss recent advances in TL in other fields and
unsupervised TL. Finally, we provide some possible and exciting future research directions.
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1. Introduction

Machine learning has been successfully applied in many fields such as face recog-
nition [1,2], autonomous driving [3], and smart healthcare [4]. Machine learning often
emphasizes that training and testing data come from the same dataset and share consistent
feature distributions. However, the consistency cannot be guaranteed in practical appli-
cations. In addition, as the acquired data become larger and more complicated, several
problems arise, such as few annotations in datasets, poor computational capability of
devices, and model generalization with limited data. For instance, millions of images in
image processing may be contained in a dataset [5]. Labeling these images is an expensive
and time-consuming task. A large amount of image data and a relatively small number of
labels have triggered the contradiction between the large amount of data and the few labels
and the contradiction between the large amount of data and the weak computing capability.
Transfer learning (TL) has been proven to be efficient in solving the above problems. In
addition, many researchers have demonstrated the theoretical viability of TL; see [6–13].
For example, Wang et al. [6] investigated model complexity and learning algorithm stability
to derive TL theoretical bounds, Phung et al. [10] developed efficient algorithms of domain-
invariant learning, and Wu et al. [12] described these from the perspective of information
theory. A large number of TL-related approaches have been proposed, as can be seen in
Figure 1.

TL reapplies the learned knowledge on source domains to achieve good performance
on different but related target domains [14,15]. Next, we give some definitions of TL.
A domain can be represented formally asD = {X , P(X)}, where X denotes a feature space
and P(X) denotes a marginal distribution for X = [x1, x2, . . . , xn] ∈ Rm×n. For a specific
domain D = {X , P(X)}, a task can be represented formally as T = {Y , f (·)}, where Y
denotes a label space and f (·) denotes a decision function. Pan et al. [14] provided a
definition of TL: given a source domain DS and learning task TS, a target domain DT and
learning task TT, TL aims to help improve the learning of the decision function f (·) in DT
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using knowledge in DS and TS, where DS 6= DT or TS 6= TT. As shown in Figure 2, we
assume that Amazon and DSLR (digital single-lens reflex) are the source domain DS and
the target domain DT. We train a classification model to complete the category-level object
detection TS in the Amazon dataset. Transferring the trained parameters (knowledge) in
the model to a new model will reduce the training cost and improve TT in the DSLR dataset.

Figure 1. The development trend of TL from 2010 to 2021.

Figure 2. Intuitive explanation of TL.

According to [14–17], TL approaches can be categorized into four types: instance-based
TL, model-based TL, feature-based TL, and relational-based TL. We provide a brief review
of the four types as follows. (i) Instance-based TL completes the transfer by assigning
different weights to different instances. A meaningful approach is using the ratio of source-
domain and target-domain instances as sample weights [18–20]. Another method is the
kernel mean matching approach [21], which matches the means between the source-domain
and the target-domain instances in a reproducing kernel Hilbert space. (ii) Feature-based
TL completes the transfer by transforming the features of different domains. One repre-
sentative is the statistical feature transformation approach [22–24], which minimizes the
distribution difference between source domains and target domains by statistical tech-
niques. Another notable method is the geometric feature transformation approach [25–27],
which implicitly aligns feature spaces between source domains and target domains by
transforming features. (iii) Model-based TL completes the transfer by building models with
shared parameters. These studies are broadly divided into two categories: the knowledge
transfer based on shared model components and the regularization knowledge transfer
based on a support vector machine (SVM). The former learns target-domain models by
sharing source-domain models or hyperparameters [28,29]. The latter prevents overfitting
by constraining hyperparameters with regularization terms [30,31]. (iv) Relational-based
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TL completes the transfer by constructing a logical mapping relationship of source domains
and target domains. It is assumed that the logical relationship between source and target
domains has a common pattern. Thus, the logical relationship or rules learned in source
domains can be transferred to target domains. One popular approach is the first-order
Markov logic network [32].

With the development of deep neural networks (DNN) [33–36], many researchers
have suggested integrating deep learning techniques with TL, thereby sharing both the
advantages of deep learning and TL. Thus, a huge amount of deep transfer learning (DTL)
frameworks have been constructed and have been shown to be promising. It should
be noted that there exists a transition from TL to DTL, i.e., incomplete DTL. Specifically,
this incompleteness lies in the fact that DNN simply act as feature extractors which are
combined with shallow approaches [37–43]. For example, Donahue et al. [39] proposed the
deep convolutional activation feature (DeCAF) for generic visual recognition. This work
was to acquire generic features in the source domain by DNN in a fully supervised manner.
After learning enough generalization-competent features, a simple linear classifier is used
to handle this task in the target domain with no or few labels. Csurka et al. [37] used the
maximum mean difference (MMD) to compensate for the differences between domains to
improve the extraction performance of DNN. Then, they adopted shallow approaches to
complete the classification. Li et al. [38] studied a low-rank parameterized convolutional
neural network that extracts common features in source and target domains to accomplish
TL. Although these works have achieved relatively good performance due to the fact that
DNN can learn excellent transferable representations, the two-step learning process causes
the accumulation of errors to affect the final accuracy. As suggested in [44], end-to-end
learning approaches can overcome this shortcoming. Therefore, increasing numbers of
researchers have explored DNN architectures to construct DTL models. Figure 3 provides
an overview of these approaches in chronological order.

Figure 3. Timeline diagram of TL development.

This survey provides a comprehensive review of the recent development of DTL.
The main contributions of this survey are summarized as follows.

• We introduce over 50 representative approaches of DTL and systematically summarize
them into four categories and further subcategories; see Figure 4.

• We present frontier advances in the application of DTL and recent advances in unsu-
pervised TL.

• We provide some potential research directions that can give a good reference for
promoting future work in this field.

This paper is structured as follows. Sections 2–5 summarize each of the four ap-
proaches: DTL, including model-based DTL, discrepancy-based DTL, GAN-based DTL,
and relational-based DTL; see Table 1. Section 6 gives extensions and additions of DTL.
Section 7 concludes this paper with suggestions for future research. In addition, open-
source codes and datasets of DTL approaches are presented in Appendix A.

Notation: In this paper, all spaces are indicated by calligraphic uppercase letters, i.e.,X ;
all matrices are denoted by bold uppercase italic letters, i.e., X; all vectors are represented by
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bold lowercase italic letters, i.e., x; and all scalars are defined as lowercase italic letters, i.e., λ.
Moreover, all variable indices, such as i, j, are denoted by italic superscripts, while specific
names, such as source domain S, target domain T, label predictor y, domain classifier d,
feature extractor f, are upright and denoted in subscripts. Let Rm×n characterize the set of
all m× n matrices. Denote X = [x1, x2, . . . , xn] ∈ Rm×n be the input samples matrix, where
m is the number of feature dimension and n is the number of samples.

Figure 4. Categorizations of DTL.

Table 1. A brief summary of DTL approaches.

DTL Approaches Subcategories Brief Description

Model-Based DTL
Fine-Tuning [43,45–50]
Self-Training [51–53]
Transformer Mechanism [54–58]

Share and fine-tune the parameters of
deep learning models

Discrepancy-Based DTL Dual-Stream Architecture [59–72]
Operate on Image Features [73–75]

Reduce feature discrepancies between
source and target domains by DNN

GAN-Based DTL Feature Extraction [76–81]
Feature Transformation [82–90]

Extract domain invariant features by
generative adversarial networks

Relational-Based DTL Cross-Domain Relationship [91,92]
Logical Networks [93,94]

Construct relationship using
cross-domain relationship or

logical networks

2. Model-Based DTL

In this section, model-based DTL approaches are summarized into three categories.
One is the fine-tuning model. which fine-tunes the parameters of source-domain networks
to achieve good performance in target domains [43,45–50]. The second is the self-training
approach, which is adopted to overcome the limitations of the fine-tuning model in the
case of data enhancement and annotation increases [51–53]. The third is the transformer-
based architecture, which introduces the attention mechanism in the image recognition
field [54–58]. We give a brief summary of model-based DTL approaches in Table 2.
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Table 2. A brief summary of model-based DTL approaches.

Model-Based DTL Approaches Representatives Brief Description

Fine-Tuning Yosinski et al. [45], DLID [43],
Rozantsev et al. [47]

Reuse the different layer parameters of
DNN trained in source domains

Self-Training He et al. [51], Xie et al. [52],
Zoph et al. [53]

Enhance model performance by using
predicted pseudo-labels and noise

Transformer Mechanism BEiT [55], TVT [57], Xu et al. [58] Share and fine-tune parameters of
transformer in target domains

2.1. Fine-Tuning

Fine-tuning is one of the earliest attempts at model-based DTL, which can be traced
back to the interpolation path approach proposed by DLID: deep learning for domain
adaptation by interpolating between domains [43]. Yosinski et al. [45] investigated the
transferability of AlexNet in 2014. The researchers divided 1000 classification datasets into
two equal parts: A and B. They trained two networks for the two datasets and fine-tuned
the first seven layers of the network one by one to investigate the role of different layers in
the model transfer process. The experimental results show that “transfer plus fine-tuning”
leads to the best performance. The following conclusions are drawn from this experiment:
the first three layers of AlexNet are general features that facilitate a transfer, and adding
fine-tuning to the neural network can overcome the variability of the data to improve
the network performance. Chu et al. [46] reached the same conclusion based on this
experiment by considering the effect of dataset bias and the number of target-domain data
markers in this experiment. These studies illustrate that the choice of the fine-tuning layer
affects the model performance, which provides the basis for subsequent improvements in
fine-tuning approaches.

Although the approach of fine-tuning parameters of the first few layers has sub-
sequently been widely used, there was no clear basis for determining sharing layers.
Until 2018, Rozantsev et al. [47] proposed a deep domain adaptation approach, which
selectively shared and restricted parameters of different layers. The approach introduces a
maximum mean difference (MMD) loss function in a dual-stream structure to measure the
same layers of neural networks trained simultaneously in the target and source domains.
Then, the weights for the restricted layers with large MMD losses are regularized so that
the parameters satisfy a certain linear relationship. The objective function optimized in this
approach by minimizing the loss function is [47]

L(ΘS, ΘT|XS, YS, XT, YT ) = LS + LT + LW + LDD, (1)

where loss functions are

LS =
1

nS

nS

∑
i=1

c
(

ΘS

∣∣∣xi
S, yi

S

)
,

LT =
1

nT

nT

∑
j=1

c
(

ΘT

∣∣∣xj
T, yj

T

)
,

Lw = λw ∑
k∈Ω

rw

(
θk

S, θk
T

)
,

LDD = λuru(ΘS, ΘT|XS, XT ).

(2)

where ΘS = {θi
S} and ΘT = {θ j

T} denote the parameters of all layers in the source and target

domains. XS =
{

xi
S
}nS

i=1 and XT = {xj
T}

nT
j=1 are the sets of samples from the source and

target domain, respectively. yi
S ∈ YS and yj

T ∈ YT are the label set corresponding to xi
S and

xj
T. nS and nT denote the number of samples in the source and target domains, respectively.



Mathematics 2022, 10, 3619 6 of 27

c(·) is a standard classification loss. Furthermore, rw(·) and ru(·) are the weight and
unsupervised regularizers. The regularizer LW acts on the set Ω of indices of the layers
whose parameters are not shared and represents the loss of the corresponding layer of the
two streams. LDD encodes the domain differences to produce a similar distribution between
the source and target domains’ data representations. It is assumed that the target samples
are ordered such that only the first nT has valid labels where nT = 0 in an unsupervised
scenario. Since no target-domain labels are available, the optimization function LT = 0 for
the standard classification loss in the target domain. These regularizers are weighted by
coefficients λw and λu, respectively. More illustrations can be found in Figure 5.

After that, Rozantsev et al. [48] and Guo et al. [49] proposed auxiliary residual net-
works with adaptive fine-tuning techniques to selectively freeze and adjust the parameters,
respectively. The former used two-stream network structures similar to [47] with residual
transformations and performed on each neural network layer to fit the target-domain
data. The latter used different parameter-tuning strategies for different instances of the
target-domain data. Note that the decision to freeze or fine-tune the parameters of the
pre-trained network was generated based on the Gumbel SoftMax distribution. The latest
fine-tuning research addresses the overfitting problem when the number of target datasets
is small. Li et al. [50] proposed to interpolate between regularization and self-labeling,
including layer-wise regularization, self label-correction, and label re-weighting.

Figure 5. Two-stream optimized architecture of fine-tuning [47]. Here, Conv1–Conv5 denote convo-
lutional layers and Fc6–Fc8 denote fully connected layers.

2.2. Self-Training

Although fine-tuning has achieved great success in some applications, the flaws
of fine-tuning have also been identified by researchers. He et al. [51] first discovered
limitations of the fine-tuning model when performing cross-dataset implementations of
target detection and semantic segmentation tasks. It is found that the pre-trained model on
the ImageNet dataset performed worse for the COCO dataset than the random initialization
parameters approach, and ImageNet pre-training can accelerate convergence in the early
stages but cannot provide regularization or improve accuracy in the final task. To overcome
the disadvantage of fine-tuning, Xie et al. [52] proposed a self-training model for the
weakly supervised domain adaptation problem, which uses a small number of labels
from the source domain to TL across datasets. The training process is given as follows,
with labeled images

{(
x1, y1),

(
x2, y2), . . . , (xn, yn)

}
and unlabeled images

{
x̃1, x̃2, . . . , x̃m}.

θ is parameters in networks and denotes the networks.
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• Train a teacher network θ which minimizes the cross entropy loss L(·) on partially
labeled images, defined as

1
n

n

∑
i=1

L
(

yi, f
(

xi, θ
))

, (3)

where f (·) is a prediction function which predicts labels using network parameter θ.
• The teacher network θ is used to predict the unlabeled images, and the predictions ỹi

are used as pseudo-labels. The mathematical model is given by

ỹi = f
(

x̃i, θ
)

, ∀i = 1, 2, . . . , m. (4)

• Train a student network η which minimizes the cross entropy loss L(·) on labeled and
pseudo-labeled samples as follows:

1
n

n

∑
i=1

L
(

yi, fnoised

(
xi, η

))
+

1
m

m

∑
i=1

L
(

ỹi, fnoised

(
x̃i, η

))
, (5)

where fnoised(·) is a prediction function. Noises such as dropout, random depth,
and data augmentation are added to enhance the representational power of the stu-
dent network.

• The student network η is used as a new teacher network θ∗; then, return to step 2.

The self-training approach is trained on unlabeled datasets to obtain generalized data
representations. The key to self-training is adding noise in the training process of the
student network, which enhances the smoothness of the decision function in both labeled
and unlabeled data to obtain higher performance than the teacher network. Network
performance is continuously enhanced during multiple iterations.

Recently, Zoph et al. [53] compared the self-training with fine-tuning and set up three
control experiments through data augmentation and data-annotation addition. It can be
concluded from Figure 6 that (i) stronger data augmentation and more labeled data further
reduce the value of fine-tuning. (ii) Unlike fine-tuning, self-training always contributes to
the training accuracy at any data augmentation strength. (iii) Even when fine-tuning works,
a strategy incorporating self-training can improve performance. Therefore, combining
self-training with fine-tuning approaches can greatly improve the cross-domain learning
performance, which has good prospects for future development.

Figure 6. Experimental results of data augmentation (left) and data-label addition (right) [53].

2.3. Transformer Attention Mechanism

The transformer attention mechanism has been demonstrated to be promising in
natural language processing (NLP) [95–98]. Dosovitskiy et al. [56] successfully introduced a
transformer into computer vision by chunking and spreading images into one-dimensional
vectors. This mechanism provides a new framework for fine-tuning, which is different
from convolutional neural networks (CNN). Chen et al. [54] first implemented a fine-
tuning architecture with a transformer. They proposed the image processing converter
(IPT), which applies transformers to underlying computer vision tasks. For different
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settings, transformer modules are shared, and only new head and tail structures need to
be replaced according to the task requirements. Figure 7 shows the structure of the fine-
tuning transformer. The IPT achieved state-of-the-art performance on several underlying
visual tasks such as super-resolution, denoising, and rain sound removal. Bao et al. [55]
proposed a self-supervised visual representation model, called Bert pre-training of image
transformers (BEiT), which borrows from Bert in the field of NLP. At first, the data are
pre-processed to two views: the original image and the image after randomly masking part
of the image block. The goal of pre-training is to recover the original image based on the
corrupted image by using a transformer. After pre-training BEiT, the model parameters
on downstream tasks are fine-tuned directly by appending task layers to the pre-trained
encoder. This approach allows the transformer to automatically acquire semantic region
knowledge without markers so that the fine-tuning performance is greatly improved.

There are some researchers that are directly optimizing the model architecture. For ex-
ample, Yang et al. [57] proposed the transferable visual transducer (TVT), which exploits
the attention mechanism of the vision transformer (ViT) and the advantages of sequential
images for knowledge transfer. They completed the TL by injecting the learned trans-
ferability into the attention block through a designed transferability adaptation module
(TAM). Xu et al. [58] used cross-attention in transformers for feature alignment. They
proposed a weight-sharing three-branch converter framework to apply self-attention and
cross-attention for source-target feature learning and source-target domain alignment, re-
spectively. However, the robustness and interpretability of model-based DTL need to be
further investigated.

Figure 7. Fine -tuning transformer of IPT [57].

3. Discrepancy-Based DTL

The fine-tuning model often requires the network to contain a large amount of labeled
sample data and a similar distribution of data features in the source and target domains,
which cannot solve unsupervised and cross-domain problems well. Discrepancy-based
DTL further explores the architecture of DNN and features of the source and target domains,
which provides good solutions to the drawbacks of fine-tuning approaches. Dual-stream
architectures [59–72] and approaches that operate directly on image features [73–75] are
representative ways to perform discrepancy-based DTL. In addition, optimizing the net-
work architecture [99] and improving the feature alignment [100–103] have also received
attention from researchers in recent years. The essence of the above approaches is to mini-
mize the feature differences between the source and target domain datasets. We give a brief
summary of discrepancy-based DTL approaches in Table 3.
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Table 3. A brief summary of discrepancy-based DTL approaches.

Discrepancy-Based DTL
Approaches Representatives Brief Description

Dual-Stream Architecture DDC [60], DAN [62], JAN [64]
Reduce domain differences by
introducing adaptation layers

in DNN

Operate Directly on Image
Features

SagNets [73], Yoon et al. [74],
Yu et al. [75]

Operate directly on features
extracted by DNN to

align differences

Other Approaches Das et al. [99], Li et al. [101],
Zhu et al. [103]

Optimize the network
architecture and improve the

feature alignment

3.1. Dual-Stream Architecture

The dual-stream structure [104] is currently an essential framework for discrepancy-
based DTL, whose core is the reduction of domain differences by introducing adaptation
layers in DNN. This end-to-end learning reduces the error accumulation of multi-step
learning in traditional TL. The deep architecture takes original data as input, in which
neural networks process data, extract features, and align the domain. Currently, neural
networks such as AlexNet [33], VGG [34], GoogleNet [35], and ResNet [36] are used as
stream models for dual-stream architectures in the field of image classification and detection.
The idea of dual-stream architectures is to use the same neural network to simultaneously
train the source and target domains. An adaptation layer is added into the network to
minimize the differences between the two domains. In addition to the different networks,
the main difference lies in the design of the adaptation layer and the use of loss functions.
Maximum mean difference (MMD) loss is the most common alignment in dual-stream
architecture, which is formulated as [105]

MMD(XS, XT) =

∥∥∥∥∥ 1
nS

nS

∑
i=1

Φ
(

xi
S

)
− 1

nT

nT

∑
j=1

Φ
(

xj
T

)∥∥∥∥∥
2

H

, (6)

where xi
S ∈ XS and xj

T ∈ XT are the source and target domain samples, respectively. nS
and nT denote the number of samples in the source and target domains, respectively. Φ(·)
defines a mapping from raw data to the reproducing kernel Hilbert space (RKHS). H
indicates that the distance is metricized in RKHS.

Ghifary et al. [59] introduced MMD loss in neural networks to improve the domain
adaptation performance of the network, which is the first use of MMD in DNN. In the
research of the adaptation layer, MMD loss is broadly used to align different domains.
Tzeng et al. [60] started the study of dual-stream architecture in TL and proposed the
deep domain confusion (DDC) approach. The design of this architecture is shown in the
gray part of Figure 8. They optimized a CNN architecture for classification loss LC(·)
and domain loss LMMD(·). An adaptation layer is introduced in the previous layer of the
classifier, and a domain confusion loss is computed from the output of the adaptation layer.
The MMD distance between the source and target domains features is used as the domain
loss, which is minimized to reduce the difference between the source and target domains.
The loss function LDDC(·) of this approach can be expressed as

LDDC = LC + λLMMD, (7)

where LC(·) and LMMD(·) denote the classification loss in the source domain and domain
loss, respectively. The hyperparameter λ is used to determine the influence of domain
confusion on the optimization. They jointly optimized this loss function by minimizing the
classification loss and the MMD loss to maximize the domain confusion loss.
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After that, Tzeng et al. [61] improved the DDC approach and designed a new CNN
structure. The difference with DDC is that the last layer of the target domain network
can output soft label loss. The three losses are optimized simultaneously to achieve cross-
domain and cross-task recognition. Thus, the loss function can be further improved by

L = LDDC + vLsoft, (8)

where Lsoft(·) is the soft label loss in the target domain and v determines the soft label
weights. This loss trains the network parameters to produce a “soft label” activation
that matches the average output distribution of source examples on a network trained to
classify source data. For details, please refer to Figure 8. Furthermore, Long et al. [62]
proposed a deep adaptation network (DAN) architecture by adding three adaptive layers
simultaneously to the first three layers of the classifier for feature constraint, which can
match both low-order moments and high-order moments.

Figure 8. Schematic diagram of the improved DDC (gray) architecture [60,61]. Here, Fc_Adapt is an
adaptation layer.

The adaptation layer introduced above can be considered a marginal domain adap-
tation approach. The following presents the conditional distribution adaptation, joint
distribution adaptation, and dynamic distribution adaptation approaches. Zhu et al. [63]
proposed the depth subdomain adaptation network (DSAN), which is a conditional dis-
tribution adaptation approach. DSAN focuses on subdomain adaptation and learns a
transfer network by aligning the relevant subdomain distribution of domain-specific layer
activations across domains by the local maximum mean difference (LMMD). Long et al. [64]
proposed the joint adaptation network (JAN), which is a representative approach to joint
distribution adaptation; see Figure 9. JAN learns a transfer network by aligning the joint
distribution of multiple domain-specific layers across domains based on the joint maxi-
mum mean difference (JMMD). They adopted an adversarial training strategy to maximize
JMMD, which leads to more distinguishable distributions in the source and target domains.
Wang et al. [65] proposed a dynamic distribution adaptation method (DDAN) by improving
the above approach. The same network structure as the JAN and DAN is used. In this
work, dynamic adaptation units are embedded in the feature layer to introduce dynamic
factors that dynamically adjust the weight of the marginal and conditional distributions.

The dual-stream architecture has been widely used in the field of multi-representation
learning. Zhu et al. [67] proposed the multi-representation adaptive network (MRAN) ap-
proach. MRAN obtains multiple representations of the original image, and then the feature
alignment is performed in different feature spaces separately to improve the accuracy of
cross-domain image recognition tasks.
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Figure 9. The architecture of JAN [64]. Here, Fc n is an output layer (the last layer) of the neural
network. The joint distributions of the deep network activations Pn−i

S , . . . , Pn−1
S and Pn−i

T , . . . , Pn−1
T

in these layers are adapted by JMMD minimization.

The DTL with dual-stream architecture presented above uses MMD loss as a rule,
and the following are other forms of rules in dual-stream architecture. Correlation Align-
ment (CORAL) loss [68] is a well-known approach for feature alignment in dual-stream
architecture, which proposes a simple and effective unsupervised adaptation that ex-
tends the linear transformation of the traditional CORAL to a nonlinear transformation.
The approach accomplishes the image classification problem when the target domain is
unlabeled by optimizing the source domain classification loss and CORAL loss to align the
second-order statistics of domain distributions. The central moment discrepancy (CMD)
approach [66] is different from the standard matching distribution approach of MMD. CMD
matches the higher-order central moments of the probability distribution by sequential
moment differences, which provides a new distance function for domain-invariant repre-
sentation learning. The adaptive batch normalization (AdaBN) approach [69] modulates
the statistical information from the source domain to the target domain in all batch normal-
ization layers of DNN and normalizes the data to achieve the DTL. In addition, Wasserstein
distance [70] is used to minimize the feature distribution differences and the transportation
cost in the optimal transportation-based DTL [71,72].

3.2. Operation with Image Features

The dual-stream architecture requires various loss functions to align the discrepancies
that occur when two domains are trained for the network. However, various loss functions
suffer from low robustness and do not adapt well to differences in the distribution of the
source and target domains. The approaches described below operate directly on image
features to compensate for differences between features.

A recent study found that the main reason for the inability of deep learning to transfer
across datasets in image classification tasks effectively is that CNN is more sensitive to
image texture features. Therefore, the significant differences of image texture features in
different datasets are one of the main reasons that prevent TL from performing effectively.
Nam et al. [73] proposed style-agnostic networks (SagNets) to achieve separation of style
encoding from image content for reducing domain bias. The feature extractor of SagNets
(see Figure 10) extracts not only the content of the image but also the image style. In the
content-biased network, the styles are randomly initialized by adaptive instance normaliza-
tion (AdaIN) to make this network focus on the image content. In the style-biased network,
the opposite is true. Yoon et al. [74] proposed the knowledge distillation approach, which is
the latest research on style features. They generated an assistant feature by transferring an
intermediate style between labeled and unlabeled samples. They then trained a TL model
by minimizing the output discrepancy between the unlabeled samples and the assistant.
In addition, Yu et al. [75] combined meta-learning for learning distribution matching in a
data-driven manner to reduce inductive bias and proposed an approach called learning to



Mathematics 2022, 10, 3619 12 of 27

match (L2M). L2M is a versatile framework that has shown excellent performance in the
application of transfer of pneumonia to COVID-19 chest X-ray images.

Figure 10. Framework of the SagNets [74].

3.3. Other Approaches of Feature Transfer

Apart from the above two types, some other approaches to feature transfer are de-
scribed below. Das et al. [99] adapted existing domain adaptation methods to two new
methods for the single rare class setting: DeerDANN, based on the Domain-Adversarial
Neural Network (DANN), and DeerCORAL, based on deep correlation alignment (Deep
CORAL) architectures. The two architectures augment the under-represented classes with
synthetic samples, alleviating the lower classification performance for rare classes in both
datasets. Li et al. [101] realized TL by using out-of-distribution detection (OOD) approaches
in DNN. They trained the model to transfer domain perturbations and achieved better
robustness against potential domain shifts by modeling the uncertainty of domain shifts
with synthesized feature statistics during training. Although aligning local domains as
closely as possible can make the connection between each neighboring domain stronger,
it is worse for the alignment of distant domains. Xu et al. [100] proposed to use topology
to accomplish domain adaptation. This approach reduces the effect of uniform align-
ment by using domain maps to encode neighboring domains. For multi-source domains
learning, Ghifary et al. [102] proposed an encoder corresponding to multiple decoders.
The main idea is to extract features shared across domains by a training autoencoder that
reconstructs the data from different domains. The input is image data, and the output
is a reconstruction of all domain analogs to that image. Zhu et al. [103] proposed a new
framework with two alignment phases, which extracts domain-invariant representations
of all domains by aligning the distributions of the source and target domain pairs in the
common feature space.

4. GAN-Based DTL

With the great success of the generative adversarial network (GAN) [99] in image
processing, researchers have attempted to incorporate the idea of GAN with TL to improve
cross-domain learning. GAN is composed of two sub-networks (multilayer perception),
including a generator G(·) and a discriminator D(·). The objective function is given by

min
G

max
D

Ex∼Px(log(D(x)) + Ex∼Pz log(1− D(G(z)))), (9)

where x, z ∈ Rd denote samples from Px and Pz, respectively, G(·) learns the mapping from
a priori distributions Pz to true data distributions Ptrue, and D(·) denotes probability that
the input comes from the true data. G(·) and D(·) compete with each other to complete
adversarial training. E(·) is the expected probability of different distributions. When the
game reaches equilibrium, the generator can generate true-looking samples.
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Adversarial transfer learning (ATL) can “translate” between source-domain samples
and target-domain samples while preserving the original label information for TL. ATL re-
duces domain discrepancies by solving the max-min game problem, which differs from the
above approaches. Below, we review feature extraction approaches, feature transformation
approaches, and other impressive approaches; see Table 4.

Table 4. A brief summary of GAN-based DTL approaches.

GAN-Based DTL
Approaches Representatives Brief Description

Feature Extraction Approach DANN [76], DAAN [79],
Long et al. [77]

Extract invariant features from
the source and target domains

in adversarial training

Feature Transformation
Approach

ADDA [84], SimGAN [85],
Zhu et al. [81]

Transform the features for
reducing the domain bias by

adversarial training

Other Approaches ALI [106], Ma et al. [107],
Kang et al. [108] —

4.1. Feature Extraction Approach

The feature extraction approach of ATL extracts invariant features from the source
domain and the target domain in adversarial training for TL. Ganin et al. [76] proposed
the domain-adversarial neural network (DANN), which is the first approach to add an
adversarial mechanism to the training of neural networks. The approach learns domain-
invariant features using a feature extractor and domain discriminator competing with each
other. At this time, the features extracted from the source and target domains become
increasingly similar so that classification tasks can be completed in the target domain by a
classifier from the source domain. Figure 11 shows the architecture of DANN. The network
requires the presence of labels on the source domain data to obtain the classification
loss and the source and target domain data to be separable for obtaining the domain
classification loss. It passes the two losses through the gradient reversal layer (GRL)
to the feature extractor for back-propagation optimization. The final goal is to make it
impossible for Gd(θd) to discriminate between the features passed by the feature extractor.
The parameters θf and θy are optimized in this process by minimizing the classification loss
for the feature extractor (

θ̂f, θ̂y
)
= arg min

θf,θy

E
(
θf, θy, θd

)
. (10)

Then, the loss of Gd(·) is maximized to optimize the parameters θd.(
θ̂d
)
= arg max

θd

E
(
θf, θy, θd

)
. (11)

The DANN objective function can be obtained by adding a gradient inversion layer and
merging the two training processes:

E
(
θf, θy, θ̂d

)
= ∑

x∈DS

Ly
(
Gy(Gf(x)), y

)
− λ ∑

x∈DS∪DT

Ld(Gd(Gf(x)), d), (12)

where Ly(·) and Ld(·) denote classification loss and discriminator loss, respectively. Note
that d is the label of domains: when the data come from the source domain, d = 0; otherwise
d = 1. x ∈ Rd and y are the input images and corresponding labels.
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Figure 11. Architecture of DANN [76]. Here, DANN consists of three sub-networks: a feature
extractor shared between domains Gf(θf), a label predictor for source domain category classification
Gy

(
θy
)
, and a domain discriminator to determine the origin of features Gd(θd). FS and FT are

features from the source and target domains, which can be understood as mappings of the original
input. Ly and Ld denote the classification loss function in the source domain and the domain
classification loss function. Note that, f, d and y are labels of feature extractor, domain classifier,
and label predictor, respectively.

The discriminator in DANN receives overall features of the source and target domains,
equivalent to directly optimizing the difference between the distribution of PS(X) and
PT(X), which considers the overall distribution of data features and ignores the correlation
between categories. Long et al. [77] proposed conditional adversarial domain adaptation
for the improvement of the DANN, which adapts both features and categories to obtain the
relationship between deep features. The approach uses multilinear mapping to optimize
the GAN, which somewhat improves the negative migration. Pei et al. [78] proposed
the multiple adversarial domain adaptation (MADA) based on DANN, which captures
multi-modal structures to achieve fine-grained alignment of different data distributions
based on multiple domain discriminators.

Inspired by the above work, Yu et al. [79] further optimized the DANN and proposed
the dynamic adversarial adaptation network (DAAN) for TL. They introduced adaptive
factors in the design of domain loss to dynamically and quantitatively evaluate the contri-
bution of both marginal distribution and conditional distribution decisions to adversarial
learning. Figure 12 shows the overview of DAAN. Feature extraction is performed by the
depth feature extractor (blue). The features are input in the calculation of domain loss,
and the dynamic measurement factor ω is updated by dynamically measuring the weights
of the overall feature domain classifier (purple) and multiple local feature classifiers (green).
The classifier (orange) uses a stable DNN to solve the classification in the source domain. In
addition, data augmentation is also a way to learn domain invariant features. Xu et al. [80]
proposed incorporating domain confusion into TL to learn the common features of source
and target domain data.

4.2. Feature Transformation Approach

Feature transformation is an important approach of ATL, which transforms or aligns
the features as well as reducing the domain bias by adversarial training. Domain mapping
is a representative approach for feature transformation in ATL. Adversarial discriminative
domain adaptation (ADDA) [84] is an approach that combines discriminative modeling,
non-shared weights, and GAN losses. ADDA first learns discriminator representation by
using labels in the source domain to produce domain adversarial loss, which is used to
learn asymmetric mapping for mapping target-domain data to separate encoding in the
same space as the source domain. Distinct from mapping target-domain data in ADDA,
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simulated GAN (SimGAN) [85] translates the source domain samples to the target do-
main for learning recognition classifiers available on two domains. Similar to SimGAN,
Volpi et al. [83] used adversarial learning to translate labeled source domain data into
target-domain samples while retaining the source-domain labels in the process. Domain
mapping can also be used to learn domain invariant features. Zhu et al. [81] proposed
cycle-consistent adversarial networks, which are trained by measuring the differences
between the data after the source–target–source mapping and the original data. Feature
alignment by adversarial training has also attracted the attention of researchers in recent
years. Kurmi et al. [87] applied the dropout regularization in adversarial training for
feature alignment. The approach replaces the point estimates with distribution estimates,
which increases the variance of the sample-based distribution and uses the corresponding
inverse gradients to align the source and target domain features. The point estimates
are obtained by a single discriminator, and the distribution estimates are obtained by a
Monte Carlo dropout discriminator. Saito et al. [82] aligned the source and target domain
distribution by reducing the decision boundary. In terms of feature space transforma-
tion, Hoffman et al. [86] proposed the cycle-consistent adversarial domain adaptation
(CyCADA), which combines the ideas of adversarial training and feature space transforma-
tion. They trained the model on multiple loss functions while performing feature space
and pixel space alignment. Finally, the TL is completed by combining the cyclic consistency
loss with the adversarial loss.

Figure 12. Architecture of DAAN [79]. Local domain discriminators G1
d(·), . . . , Gn

d(·) are added to
DANN. Note that ω is a dynamic measurement factor which measures the weights of Gd(·) and
G1

d(·), . . . , Gn
d(·).

The feature transformation approach of ATL that integrates the gradient inversion
layer and domain classifier into a deep network has also achieved great results in the field
of target detection. Regions with CNN features (R-CNN) [109] is the first model to apply
deep learning to target detection successfully. Chen et al. [88] proposed the Faster R-CNN
model based on R-CNN to solve the domain offset by training two domain adaptation
components through adversarial learning. He et al. [89] was inspired by Faster R-CNN to
propose the multi-adversarial Faster-RCNN (MAF) for accurate object detection. MAF uses
a multi adversarial domain classifier to design a feature obfuscation layer by layer domain
and proposes an information invariant scale reduction module (SRM) for hierarchical
feature map resizing. The approach improves the training efficiency of adversarial domain
adaptation. Recently, Xu et al. [90] proposed a classification regularization framework to
solve the domain discrepancy problem in target detection by matching key image regions
and important instances. The ideas of GRL and adversarial training were used to construct
the regularization framework.
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4.3. Other Approaches of ATL

In this subsection, other approaches of ATL are introduced. Dumoulin et al. [106] pro-
posed adversarially learned inference (ALI), which simultaneously learns the bidirectional
mapping between the feature space and data space; see Figure 13. The generator completes
the feature space to data space mapping, the encoder learns the reverse mapping, and the
discriminator discriminates the data from the bi-directional mapping to complete the adver-
sarial training. Furthermore, using bi-directional generative networks is the bidirectional
generative domain adaptive model proposed by Yang et al. [110] for the unsupervised
TL, which completes cross-domain training by interpolating two intermediate domains to
bridge the source and target domain. In addition to the simultaneous mapping of data and
features, Ma et al. [107] proposed the graph convolutional adversarial network (GCAN)
for unsupervised domain adaptation, which jointly models data structures, domain labels,
and class labels in a deep framework. GCAN is designed with three effective alignment
mechanisms, including structure-aware alignment, domain alignment, and center-of-mass
alignment, to effectively learn domain invariance and semantic representation to reduce
domain differences.

Kang et al. [108] explicitly modeled intra-class and inter-class domain differences for
adversarial training, minimizing intra-class domain differences to avoid misalignment
and maximizing inter-class domain differences to enhance the generalization ability of
the model. Robbiano et al. [111] proposed the adversarial branching architecture search
(ABAS) for unsupervised domain adaptation, which was the first time that a neural ar-
chitecture search was introduced in unsupervised domain adaptation. Wang et al. [112]
measured the confidence of the optimized model by the entropy of the model prediction,
in which the adversarial training of domain adaptation was accomplished by minimizing
the entropy. Mitsuzumi et al. [113] proposed a general representation of the unsupervised
domain adaptation, generalized domain adaptation (GDA) [113], which can learn class
invariant representations and domain adversarial classifiers without using any domain
labels. In addition, Sun et al. [114] proposed a robust integrated network (REN) containing
a teacher network and a student network for unsupervised TL.

Figure 13. BiGAN simultaneously learns data space and feature space [106]. Here, x represents sam-
ples of the true data distribution in the data space, a represents samples of the true data distribution
in the feature space, x̃ represents samples of the generator (green) output, and ã represents samples
of the encoder (blue) output.

5. Relational-Based DTL

Relational-based DTL explores the relationships between samples in the source and
target domains for cross-domain learning. It involves two mechanisms: reusing the source-
domain relationship in a target domain (intra-domain relationship) and constructing a



Mathematics 2022, 10, 3619 17 of 27

cross-dataset relationship (inter-domain relationship). The Markov logic network (MLN)
provides an ideal tool for reusing the source-domain relationship in a target domain, which
is a representative approach of the former type. Davis et al. [93] proposed second-order
MLN for DTL by extending the first-order MLN. The basic idea is to discover structural
laws in the source domain by the Markov logic formulas with relational variables, and the
relationship from the target domain is used to instantiate these formulas. After that,
Haaren et al. [94] optimized the second-order formulas by directly computing the posterior
distribution of second-order formulas, which is taken as the prior distribution of the
second-order formulas in the target domain.

Another effective approach of relational-based DTL is constructing a cross-dataset
samples relationship. This explores the relationship of different datasets in the source and
target domains. Recently, Isobe et al. [91] proposed a collaborative learning framework for
the single-source domain and multi-target domains. The teacher network is not a single
system but a source domain with all target domains corresponding to n networks. Teacher
networks learn different pixel-level classification capabilities by taking advantage of the
differences existing in each domain, and the knowledge learned by the different teacher
networks is integrated to obtain a network with more powerful generalization capabilities.
The implications of the student networks are to make the teacher networks more closely
connected by regularizing the weights of the teacher networks. Thereafter, He et al. [92]
applied the collaborative learning approach on semantic segmentation tasks to exploit the
essential semantic information across source domains.

In addition, open-set TL [115] considers the correspondence between the source and
target domain categories, so open-set TL has also been applied in relational-based DTL.

6. Extensions and Additions
6.1. TL in Other Fields

With the rise of various machine learning approaches and the increasing demand
for tasks, DTL is no longer satisfied with general classification and regression tasks. Ap-
proaches for combining with other machine learning have attracted attention and become
frontier research in DTL. These approaches provide solutions for breaking data barriers,
securing data, addressing sample shortages, increasing model arithmetic, and explaining
deep learning models. This section gives a brief introduction to frontier advances of DTL.
Table 5 summarizes various popular TL approaches in other fields.

Table 5. A brief summary of TL in other fields.

TL Approaches Objective

Federated TL [116,117] Protect the privacy of tasks data when multiple
tasks are working together

Safe TL [118] Reduce the aggressiveness inherited from the
pre-trained model

Few-Shot TL [119,120] Enhance the association of few labeled samples
with unlabeled samples

Open Set TL [121] Solve the problem of inconsistent source and
target domain categories

Lifelong TL [122] Use TL techniques to improve the effectiveness
of lifelong learning Adaptively

Reinforcement TL [123,124] Reduce the interference of environmental
changes on reinforcement learning

Although federated learning (FL) is an effective means to break data barriers, FL
requires each client to collect its local data independently and thus forms different source
domains, resulting in the weak generalization ability of the model. Zhang et al. [117]
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jointed the adversarial learning approach to solve the weak generalization, which mea-
sures and aligns the distributions between different source domains by matching each
distribution to a reference distribution. For data security issues, Zhang et al. [116] pro-
posed privacy-preserving TL for data security issues to avoid information leakage when
generalizing the domain, which provides security for FL under data isolation. For the
safe TL, Zhang et al. [118] applied a related model slicing technique. The approach dra-
matically improves the transfer accuracy by reducing the defect inheritance during TL
while retaining the useful knowledge of the original model. Huang et al. [119] improved
few-shot learning through TL. The spatial relationships of local descriptions, which were
ignored in previous few-shot learning approaches, are effectively considered to make the
learned image similarities better serve the desired domain alignment. In addition, few-shot
learning is also combined with meta-learning for domain adaption. Cheng et al. [120]
solved the problem of few-shot learning in which the base class and new class data come
from different domains by combining meta-learning strategies. In the field of open set
TL, Zhuang et al. [121] proposed a self-supervised discovery adapter to discover the
implicit classes in both domains and determine the correspondence between the other
categories using a part of the categories shared by both domains. In the field of lifelong
TL, Yao et al. [122] proposed an adversarial feature alignment approach to address the
catastrophic forgetting phenomenon, which focuses on incremental multitask image clas-
sification scenarios to provide a solution to the phenomenon in lifelong learning. In the
field of reinforcement learning, Driessel et al. [123] introduced TL to transfer parameters
of reinforcement learning. This work accomplishes parameter transfer for reinforcement
learning by freezing the internal dynamics of learning and the value function. The TL,
combined with other machine learning approaches, can utilize the characteristics of each
machine learning approach to transfer knowledge in a targeted way and solve problems
that cannot be solved in the original learning approach. The approach has a strong potential
as a frontier and hot research area in machine learning.

6.2. Recent Advances in UTL

Less labeling or no labeling in the dataset has been a complex problem in machine
learning and practical applications. Unsupervised transfer learning (UTL) has been an inter-
esting area of TL. Many effective UTL approaches have been described in previous articles,
such as self-training and ATL. This section adds to the recent progress of UTL approaches.

With the development of deep learning, the dimensionality reduction and clustering
approaches in unsupervised learning have been optimized by deep learning. For com-
pletely unsupervised learning, where both the source and target domains lack labeling,
Menapace et al. [125] proposed domain-independent deep clustering models by construct-
ing data collected from multiple source domains. Some scholars have proposed the idea
of joint learning by combining the approaches of clustering and dimensionality reduction
with other approaches. Tian et al. [126] introduced local manifold learning for TL by
combining clustering, center matching, and self-learning. The approach achieved good
performance on both unsupervised and semi-supervised learning. For semi-supervised TL,
Deng et al. [127], inspired by joint learning, proposed joint clustering and discriminative
feature alignment (JCDFA). JCDFA unifies the mining of discriminative features and align-
ment of class discriminative features into a single framework to solve the discriminative
clustering task for unlabeled target domains.

In addition, Luo et al. [128] explored the knowledge transfer mechanism and pro-
posed a conditional kernel Bures (CKB) metric for characterizing differences in condi-
tional distributions to learn the conditional invariant and discriminative features of UTL.
Huang et al. [129] proposed the effective label propagation (ELP) to solve the semi-
supervised TL, which enhances inter-domain semantic consistency through cyclic dis-
crepancy loss and enhances intra-domain semantic information propagation through a self-
training strategy to improve the feature discriminability in the target domain. Sun et al. [130]
trained a prediction model by choosing hierarchical generation and decoupling approaches
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within the framework of a variational auto-encoder, which can be generalized to new
domains. In addition, for semi-supervised TL, Sharma et al. [131] proposed instance-level
affinity-based domain adaption (ILA-DA) to extract similar and different samples across
domains by using a multi-sample comparison loss to drive the domain alignment pro-
cess. ILA-DA considers both intra-class clustering and inter-class separation to reduce the
boundary noise of the classifier. In addition, Wu et al. [132] improved the UTL entropy
minimization by introducing diversity maximization to regulate entropy. UTL is the most
common problem in practical applications, which deserves further attention by researchers.

7. Summary and Future Prospects

In this paper, we have reviewed the development of deep transfer learning (DTL) in
the past decades and summarized the related mechanisms and strategies. According to
their models, functions, and operation objects, we have classified DTL into four categories
and further divided them into subcategories. In particular, we have demonstrated the
representative models and summarized their contributions and weaknesses. Last but
not least, we have given extensions and additions to DTL, which include the frontier
concerns of TL and the recent advance of unsupervised TL. It is indicated that DTL has
enormous advantages over traditional machine learning, and it has great potential for
many real-world applications.

Although DTL has achieved great success, some essential directions need to be fur-
ther investigated.

• Interpretability of DTL is a great challenge to be explored. In the field of deep learning,
there is a lack of interpretability of the learning process due to the existence of black
boxes. The problem continues in the DTL area, and the development of DTL requires
further investigation of the interpretability.

• How to reduce the effects of negative transfer while transferring knowledge from
source domains to target domains is also an important issue. Therefore, improving
TL algorithms and making theoretical innovations to avoid negative transfer should
be considered.

• The single DTL approach has weak ability in practical applications. Joint
learning [117,118,123] and multi-view learning [133,134] can provide a good way to solve
this problem. It is interesting to integrate these approaches with DTL.

• The current work summarizes existing approaches, and we will compare them on
datasets/tasks and hopefully give a ranking.
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Appendix A

The open-source codes and datasets for the four categories of DTL approaches men-
tioned in this paper are listed in Table A1.
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Table A1. A summary of approaches with open-source codes.

Categories Subcategories Solvers Dataset Open-Source

Model-Based

Fine-Tuning

Fine-Tune Layer-by-Layer
Yosinski et al. [45]

ImageNet http://yosinski.com/transfer

Improve Regularization and
Robustness
Li et al. [50]

ImageNet
https://github.com/
NEU-StatsML-Research/
Regularized-Self-Labeling

Self-Training

Discover the Limitations of
Pre-Training
He et al. [51]

ImageNet, COCO https://github.com/
facebookresearch/detectron

Self-train with Noisy
Xie et al. [52]

ImageNet https://github.com/google-
research/noisystudent

Transferring
Attention

Transformer

Image Processing
Transformer (IPT)

Chen et al. [54]

ImageNet https://github.com/huawei-
noah/Pretrained-IPT

Bert Pre-training of Image
Transformers (BEiT)

Bao et al. [55]

ImageNet https://github.com/microsoft/
unilm/tree/master/beit

Transferable Vision
Transformer (TVT)

Yang et al. [57]

Office-31 https://github.com/uta-smile/
TVT

Cross-domain Transformer
(CDTrans)

Xu et al. [58]

VisDA-2017,
Office-Home,

Office-31,
DomainNet

https://github.com/cdtrans/
cdtrans

Discrepancy-Based Dual-Stream
Architecture

Deep Correlation Alignment
Sun et al. [68]

Office https://github.com/
VisionLearningGroup/CORAL

Deep Domain Confusion
(DDC)

Tzeng et al. [60]

Office-31 https://github.com/erlendd/
ddan

Deep Adaptation Networks
(DAN)

Long et al. [62]

Office-31 http://github.com/thuml/
DAN

Joint adaptation networks
(JAN)

Long et al. [64]

Office-31,
ImageCLEF-DA

http://github.com/thuml/
JAN

Deep Subdomain Adaptation
Network (DSAN)

Zhu et al. [63]

Office-31,
ImageCLEF-DA,

Office-Home,
VisDA-2017

https://github.com/easezyc/
deep-transfer-learning

http://yosinski.com/transfer
https://github.com/NEU-StatsML-Research/Regularized-Self-Labeling
https://github.com/NEU-StatsML-Research/Regularized-Self-Labeling
https://github.com/NEU-StatsML-Research/Regularized-Self-Labeling
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/google-research/noisystudent
https://github.com/google-research/noisystudent
https://github.com/huawei-noah/Pretrained-IPT
https://github.com/huawei-noah/Pretrained-IPT
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/uta-smile/TVT
https://github.com/uta-smile/TVT
https://github.com/cdtrans/cdtrans
https://github.com/cdtrans/cdtrans
https://github.com/VisionLearningGroup/CORAL
https://github.com/VisionLearningGroup/CORAL
https://github.com/erlendd/ddan
https://github.com/erlendd/ddan
http://github.com/thuml/DAN
http://github.com/thuml/DAN
http://github.com/thuml/JAN
http://github.com/thuml/JAN
https://github.com/easezyc/deep-transfer-learning
https://github.com/easezyc/deep-transfer-learning
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Table A1. Cont.

Categories Subcategories Solvers Dataset Open-Source

Dynamic Distribution
Adaptation Network

(DDAN)
Wang et al. [65]

USPS+MNIST,
Amazon review,

Office-31,
ImageCLEF-DA,

Office-Home

http://transferlearning.xyz

Central Moment
Discrepancy (CMD)
Zellinger et al. [66]

Amazon review,
Office

https://github.com/wzell/
cmd

Operating on Image
Features

Sample-to-Sample
Self-Distillation
Yoon et al. [74]

Office-Home,
DomainNet

https://github.com/userb202
0/s3d

Learning to Match (L2M)
Yu et al. [75]

ImageCLEF-DA,
Office-Home,
VisDA2017,

Office-31

https://github.com/
jindongwang/transferlearning

Style-Agnostic Networks
(SagNets)

Nam et al. [73]

Office-Home,
PACS, DomainNet

https://github.com/
hyeonseobnam/sagnet

GAN-Based

Feature Extraction

Domain-Adversarial
Training of Neural
Networks (DANN)

Ganin et al. [76]

Office https://github.com/ddtm/
caffe/tree/grl

Conditional Adversarial
Domain Adaptation

(CADN)
Long et al. [77]

Office-31,
ImageCLEF-DA,

Office-Home,
Digits,

VisDA-2017

http://github.com/thuml/
CDAN

Multi-adversarial Domain
Adaptation (MADA)

Pei et al. [78]

Office-31,
ImageCLEF-DA

http://github.com/thuml/
MADA

Dynamic Adversarial
Adaptation Network

(DAAN)
Yu et al. [79]

ImageCLEF-DA,
Office-Home http://transferlearning.xyz

Cycle-Consistent
Adversarial Networks

(CycleGAN)
Zhu et al. [81]

ImageNet https://github.com/junyanz/
CycleGAN

Feature
Transformation

Maximum Classifier
Discrepancy (MCD)

Saito et al. [82]

Digits, VisDA, Toy https://github.com/mil-
tokyo/MCD_DA

Adversarial Feature
Augmentation
Volpi et al. [83]

SVHN, MNIST,
NYUD

https://github.com/
ricvolpi/adversarial-feature-
augmentation

Adversarial Discriminative
Domain Adaptation (ADDA)

Tzeng et al. [84]

SVHN, MNIST,
USPS

https://github.com/thuml/
Transfer-Learning-Library

Simulated Generative
Adversarial Networks

(SimGAN)
Shrivastava et al. [85]

MPIIGaze https://github.com/0b01/
SimGAN-Captcha

Curriculum based Dropout
Discriminator for Domain

Adaptation (CD3A)
Kurmi et al. [87]

ImageCLE,
Office-31,

Office-Home

https://github.com/DelTA-
Lab-IITK/CD3A

http://transferlearning.xyz
https://github.com/wzell/cmd
https://github.com/wzell/cmd
https://github.com/userb2020/s3d
https://github.com/userb2020/s3d
https://github.com/jindongwang/transferlearning
https://github.com/jindongwang/transferlearning
https://github.com/hyeonseobnam/sagnet
https://github.com/hyeonseobnam/sagnet
https://github.com/ddtm/caffe/tree/grl
https://github.com/ddtm/caffe/tree/grl
http://github.com/thuml/CDAN
http://github.com/thuml/CDAN
http://github.com/thuml/MADA
http://github.com/thuml/MADA
http://transferlearning.xyz
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/mil-tokyo/MCD_DA
https://github.com/mil-tokyo/MCD_DA
https://github.com/ricvolpi/adversarial-feature-augmentation
https://github.com/ricvolpi/adversarial-feature-augmentation
https://github.com/ricvolpi/adversarial-feature-augmentation
https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library
https://github.com/0b01/SimGAN-Captcha
https://github.com/0b01/SimGAN-Captcha
https://github.com/DelTA-Lab-IITK/CD3A
https://github.com/DelTA-Lab-IITK/CD3A
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Table A1. Cont.

Categories Subcategories Solvers Dataset Open-Source

Region Proposal Network
(RPN)

Chen et al. [88]

Cityscapes ,KITTI,
SIM10K

https://github.com/yuhuayc/
da-faster-rcnn

Categorical Consistency
Regularization (CCR)

Xu et al. [90]

Cityscapes, Foggy
Cityscapes,
BDD100k,

PASCAL, VOC,
Clipart1k

https://github.com/Megvii-
Nanjing/CR-DA-DET

Relational-Based Cross-Domain
Relationship

Collaborative Consistency
Learning (CCL)
Isobe et al. [91]

GTA5, SYNTHIA,
Cityscapes,
Mapillary

https://github.com/junpan19/
MTDA
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