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Abstract: This paper proposes a new fractional-order model reference adaptive control (FOMRAC)
framework for a fractional-order multivariable system with parameter uncertainty. The designed
FOMRAC scheme depends on a fractional-order nonlinear scalar update law. Specifically, the scalar
update law does not change as the input–output dimension changes. The main advantage of the
proposed adaptive controller is that only one parameter online update is needed such that the
computational burden in the existing FOMRAC can be relieved. Furthermore, we show that all
signals in this adaptive scheme are bounded and the mean value of the squared norm of the error
converges to zero. Two illustrative numerical examples are presented to demonstrate the efficiency of
the proposed control scheme.
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1. Introduction

Over the past few decades, there have been considerable efforts towards linear systems
with parameter uncertainty. Adaptive control has been one of the methods to solve this
uncertainty. Among various adaptive control techniques, model reference adaptive control
(MRAC) is the most popular and mature method, which provides feedback controller
structures and adaptive laws for the control of systems to ensure that the closed-loop
signals are bounded and the output or the state of the uncertain plant can asymptotically
track the output or the state of the desired reference model, despite the uncertainties of the
system parameters [1,2].

Fractional calculus has captured the attention of many scientists and engineers work-
ing in a variety of fields in recent years [3–7]. This is mostly owing to its ability to more
accurately model specific physical systems than the traditional integer-order option, such
as manipulator systems, multi-area power systems, multisource renewable energy systems,
and electrical vehicles [8–12]. On the other hand, it is suitable for describing hereditary and
memorial properties of various processes for which traditional integer-order differential
equations fail to capture relevant phenomena, such as heat conduction and viscoelastic
mechanics in materials with memory, and Zika virus transmission [13–18]. The expansion
of MRAC to fractional-order systems, known as FOMRAC, has been proposed in the litera-
ture for more than a decade. Many useful results and applications for FOMRAC are studied
based on a single-input single-output (SISO) plant. Among them, Shi et al. [19] proved
the stability of the closed-loop control system strictly based on the continuous frequency
distributed model. Then, a fractional-order composite MRAC was developed in [20] by
incorporating the parameter estimate error into the parameter updating law to achieve
better performance.
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Recently, the FOMRAC for multiple-input-multiple-output (MIMO) systems has been
studied in the works of Norelys Aguila-Camacho and Manuel A. Duarte-Mermoud [21–24].
For example, in Ref. [21], they have proposed the standard fractional-order update laws
and proved the Lyapunov stability of a fractional-order MIMO MRAC system by using a
series of fractional inequalities. In Ref. [22], they further proved the convergence to zero of
the mean value of the squared norm of the output error. In particular, the order of the plant
and the adaptive laws in the above results are the same. In Ref. [24], they proposed the
fractional-order update laws whose order is smaller than that of the plant. However, the
above results usually require online estimation of multiple unknown parameters, and as
the input–output dimension of the FOMRAC system increases, the number of parameters
that need to be updated online also increases, which greatly increases the computational
burden and limits the practicality of FOMRAC. Therefore, the issue of how to reduce the
number of parameters estimated online is a critical problem to be solved for the MIMO
FOMRAC system.

In this article, a new FOMRAC framework is proposed for fractional-order multivari-
able systems with parameter uncertainty. The proposed fractional-order adaptive controller
with state feedback depends on a fractional-order nonlinear scalar update law. Specifically,
the scalar update law does not change as the input–output dimension changes. The major
contributions of this paper can be formulated as follows:

1. we design a new FOMRAC scheme to handle the parameter uncertainty and to ensure
the system error stability and closed-loop signal boundedness;

2. using the proposed FOMRAC framework, only one parameter online update is needed
such that the control scheme is computationally inexpensive;

3. we conduct a complete theoretical analysis of the boundedness of all signals involved
in this adaptive scheme and the convergence to zero of the mean value of the squared
norm of the system error for the proposed control architecture;

4. we verify the effectiveness of this control design by two illustrative numerical examples.

This paper is organized as follows. Section 2 briefly gives some basic concepts about
fractional calculus and some necessary lemmas. Section 3 presents the FOMRAC problem.
The adaptive controller based on a fractional-order scalar update law and the stability
analysis for the adaptive control architecture are shown in the main results given in Section 4.
Section 5 presents two numerical examples to clarify the validity of the proposed approach.
Section 6 contains the conclusions and future works.

2. Preliminaries

This section introduces some fundamental concepts of fractional calculus, as well as
some properties of fractional operators that will be used throughout the paper.

Notation. The following notations are used throughout the whole paper. Let R and
R+ denote the set of real, non-negative real numbers, respectively. Rn denotes the set of
n× 1 real column vectors, Rn×m denotes the set of n× m real matrices. The matrix P is
symmetric if P = PT . P > 0 denotes the positive definite matrix P. tr(A) denotes the trace
of the matrix A.

Definition 1. Riemann–Liouville fractional integral [3].

t0 Iβ
t g(t) =

1
Γ(β)

∫ t

t0

g(τ)
(t− τ)1−β

dτ, t > t0, β > 0, (1)

where Γ(β) is the Gamma function.

Definition 2. Caputo Fractional Derivative [3].

C
t0

Dβ
t g(t) =

1
Γ(n− β)

∫ t

t0

gn(τ)

(t− τ)β−n+1 dτ, t > t0, (2)
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with n− 1 < β < n, β > 0.

The following lemmas will be used to prove the main results in this paper.

Lemma 1 ([23]). Let g(t) ∈ Rn be a vector of differentiable functions. Then, for all t > t0, the
following relationship holds

C
t0

Dβ
t [g

T(t)Pg(t)] ≤ 2gT(t)PC
t0

Dβ
t g(t), (3)

where β ∈ (0, 1], and P ∈ Rn×n, satisfying P = PT > 0.

Lemma 2 ([23]). Let A(t) ∈ Rm×n be a time-varying differentiable matrix. Then, for any time
instant t ≥ t0, the following relationship holds

C
t0

Dβ
t [tr(AT(t)A(t)] ≤ 2tr[AT(t)C

t0
Dβ

t A(t)],
∀β ∈ (0, 1], ∀t > t0.

(4)

Lemma 3 ([22]). Let g(.) : R+ → R be a bounded nonnegative function. If there exists some
β ∈ (0, 1] such that

1
Γ(β)

∫ t

t0

g(τ)
(t− τ)1−β

dτ < L, ∀t > t0, with L ∈ (0, ∞), (5)

then

lim
t→∞

tβ−ε

∫ t
t0

g(τ)dτ

t
= 0, ∀ε > 0. (6)

3. FOMRAC Problem

Consider a fractional-order MIMO plant with parameter uncertainty given by

C
t0

Dβ
t xp(t) = Apxp(t) + Bpu(t),

xp(t0) = xp0, t ≥ t0,
(7)

where xp(t) ∈ Rn is a measurable state vector, u(t) ∈ Rm is the control input and the
fractional order β ∈ (0, 1]. In addition, Ap ∈ Rn×n is an unknown constant state matrix
capturing the parameter uncertainty in the fractional-order MIMO plant, and Bp ∈ Rn×m

denotes a known control matrix. For the well-posedness of the FOMRAC problem, we
assume that the pair (Ap, Bp) is controllable. Recall that the controllability conditions
ensure that the control input u(t) has sufficient access to the internal state to stabilize all
unstable modes of a plant.

In addition, the fractional-order reference model is chosen by

C
t0

Dβ
t xm(t) = Amxm(t) + Bmr(t), xm(t0) = xm0, t ≥ t0, (8)

where xm(t) ∈ Rn is a reference state vector, Am ∈ Rn×n is Hurwitz and known, Bm ∈ Rn×m

is known and r(t) ∈ Rm is bounded and piecewise continuous. It is assumed that xm(t),
for all t ≥ t0, represents the desired trajectory for xp(t).

The objective of the FOMRAC is to design a feedback controller u(t) such that all the
signals remain bounded and, ideally, the state of the uncertain system xp(t) can track the
state of the reference model xm(t) asymptotically.

Next, define an ideal feedback controller that perfectly eliminates the uncertainty and
allows xp(t) to follow xm(t) as

u∗(t) = Kr(t) + Θ∗xp(t), t ≥ t0. (9)
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Here, K ∈ Rm×m, Θ∗ ∈ Rm×n are the ideal control gains chosen such that the matching
conditions

Am = Ap + BpΘ∗, (10)

and
Bm = BpK, (11)

hold. Since Bp is known, K can be obtained directly from the matching condition (11). Since
Ap is unknown, Θ∗ is also unknown.

The actual adaptive controller is an estimate of the ideal controller, with the purpose
of approaching the ideal controller in the limit. Let

u(t) = Kr(t) + Θ(t)xp(t), t ≥ t0, (12)

be the actual adaptive controller, where Θ(t) : R+ → Rm×n is the estimate of Θ∗.
Now, define the estimation error as Θ̃(t) = Θ(t)−Θ∗. Then, the closed-loop plant

model can be written as

C
t0

Dβ
t xp(t) = Amxp(t) + Bmr(t) + BpΘ̃(t)xp(t), xp(t0) = xp0, t ≥ t0. (13)

Let e(t) = xp(t) − xm(t) be the tracking error. Then, the tracking error equation is ex-
pressed as

C
t0

Dβ
t e(t) = Ame(t) + BpΘ̃(t)xp(t), e(t0) = e0, t ≥ t0. (14)

The goal of FOMRAC is changed to design the adaptive laws to adjust Θ(t) in such a
way that all the closed-loop signals remain bounded and ideally lim

t→∞
‖e(t)‖ = 0.

In 2015, Duarte-Mermoud, M. A. et al. [23] designed the standard fractional-order
update laws

C
t0

Dβ
t Θ(t) = −BT

p Pe(t)xT
p (t),

Θ(t0) = Θ0, t ≥ t0,
(15)

where P ∈ Rn×n is a positive definite symmetric matrix satisfying the Lyapunov equation

AT
mP + PAm = −Q, (16)

where Q ∈ Rn×n is positive definite. Since Am is a Hurwitz constant matrix, it follows
from converse Lyapunov theory [25,26] that, for any given matrix Q > 0, there exists a
unique matrix P > 0 that satisfies the Lyapunov Equation (16). Recently, Aguila-Camacho,
N. et al. [24] designed the fractional-order update laws for Θ(t) as

C
t0

Dα
t Θ(t) = −BT

p Pe(t)xT
p (t),

Θ(t0) = Θ0, t ≥ t0,
(17)

where 0 < α < β ≤ 1. This denotes that the order of the adaptive laws can be smaller than
the order of the plant. Specifically, when the plant under control is of integer order, the
adaptive laws can be fractional, which is one of the most promising applications from the
practical point of view.

In the above works, Θ(t) ∈ Rm×n is an adaption parameter matrix satisfying m× n
update laws, where m and n are the dimension of the input and output, respectively.
However, as the input–output dimension of the FOMRAC system increases, the number
of parameters that need to be updated online also increases, which greatly increases the
computational burden of the online part and limits the practicality of FOMRAC. Therefore,
how to reduce the number of parameters estimated online is a critical problem to be solved
for the MIMO FOMRAC system.
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4. Main Results

Following the analysis above, we aim to explore an adaptive control architecture
aiming at mitigating the the number of parameters to be updated online in FOMRAC.
To achieve this, we design the fractional-order scalar function ϕ(t) ∈ R. Then, C

t0
Dβ

t Θ(t) =

δTC
t0

Dβ
t ϕ(t), where δ = (δi,j) ∈ Rn×m is a designed non-zero parameter matrix. Now, in

order to determine the scalar update law for FOMRAC, let the estimation error have the
form provided by Θ̃(t) = δT ϕ(t). The equations of the plant model and the tracking error
can thus be written as

C
t0

Dβ
t xp(t) = Amxp(t) + Bmr(t) + BpδT ϕ(t)xp(t), (18)

and
C
t0

Dβ
t e(t) = Ame(t) + BpδT ϕ(t)xp(t), e(t0) = e0, t ≥ t0, (19)

respectively.
The main finding of this research is stated in the following theorem.

Theorem 1. Consider the uncertain fractional-order multivariable system described by (7), the
reference model given by (8) and the feedback controller given by (12). If the parameter update laws
are constructed as

C
t0

Dβ
t Θ(t) = δTC

t0
Dβ

t ϕ(t) (20)

with the scalar update law

C
t0

Dβ
t ϕ(t) = − 1

tr(δδT)
eT(t)PBpδTxp(t), ϕ(t0) = ϕ0, (21)

where e(t) = xp(t)− xm(t) is the the tracking error, and P ∈ Rn×n is a positive-definite solution
of the Lyapunov Equation (16), then it holds that:

(i) The tracking error e(t), the scalar function ϕ(t), the system state xp(t), the estimation error
Θ̃(t) and parameter Θ(t) remain bounded for all t ≥ t0;

(ii) The mean value of ‖e(t)‖2 converges to zero when t→ ∞.

Proof. Consider the quadratic Lyapunov function given by

V(e(t), ϕ(t)) = eT(t)Pe(t) + tr{[δT ϕ(t)]T [δT ϕ(t)]}, (22)

where P = PT > 0 satisfies (16), and note that V(0, 0) = 0. Since P > 0, V(e(t), ϕ(t)) > 0
for all (e(t), ϕ(t)) 6= (0, 0).

According to Lemmas 1 and 2, we can obtain the β-order Caputo derivative of
V(e(t), ϕ(t)) as follows:

C
t0

Dβ
t V(e(t), ϕ(t)) ≤ 2eT(t)PC

t0
Dβ

t e(t) + tr{[δT ϕ(t)]TC
t0

Dβ
t [δ

T ϕ(t)]}. (23)

Now, substituting (19) and (16) into (23), we can obtain that

C
t0

Dβ
t V(e(t), ϕ(t))
≤ −eT(t)Qe(t) + 2eT(t)PBpδT ϕ(t)xp(t)
+ 2tr(δδT)ϕ(t)C

t0
Dβ

t ϕ(t).
(24)

If the scalar update law is designed as (21), then we can infer that

C
t0

Dβ
t V(e(t), ϕ(t)) ≤ −eT(t)Qe(t). (25)

Accordingly,
C
t0

Dβ
t V(e(t), ϕ(t)) ≤ −λmin(Q)‖e(t)‖2 ≤ 0. (26)
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Applying the fractional integral of order β to inequality (26), we can obtain that

eT(t)Pe(t) + tr{[δT ϕ(t)]TδT ϕ(t)}
−eT(t0)Pe(t0)− tr{[δT ϕ(t0)]

TδT ϕ(t0)}.
≤ −λmin(Q)t0 Iβ

t ‖e(t)‖2.
(27)

Since λmin(Q)t0 Iβ
t ‖e(t)‖2 ≥ 0, ∀ ≥ t0, then

eT(t)Pe(t) + tr{[δT ϕ(t)]TδT ϕ(t)} ≤ eT(t0)Pe(t0) + tr{[δT ϕ(t0)]
TδT ϕ(t0)}. (28)

Considering the boundedness of initial values for e(t0), ϕ(t0), then inequality (28)
implies that e(t) and ϕ(t) remain bounded for all t ≥ t0. Since xp(t) = xm(t) + e(t),
Θ̃(t) = δT ϕ(t) and the boundedness of xm(t), then system state xp(t) and estimation error
Θ̃(t) are bounded for all t ≥ t0. Accordingly, parameter Θ(t) is bounded for all t ≥ t0.

Since e(t) and ϕ(t) are bounded, then it can be obtained that t0 Iβ
t ‖e(t)‖2 ≤ ∞. Then,

using Lemma 3, we can conclude that

lim
t→∞

tβ−ε

∫ t
t0
‖e(τ)‖2dτ

t
= 0, ∀ε > 0. (29)

Accordingly, the mean value of ‖e(t)‖2 converges to zero when t→ ∞, and this completes
the proof.

A block diagram showing the adaptive control framework based on the fractional-
order scalar update law is given in Figure 1.

Figure 1. Visualization of the adaptive control framework with the fractional-order scalar update law.

5. Simulation Example

In this section, we present two numerical examples to demonstrate the utility of the
proposed adaptive control scheme. The scheme was implemented in Matlab/Simulink,
using the FOMCON Toolbox to obtain the required results.

Example 1. Let us consider a MIMO fractional-order linear time-invariant plant with parameter
uncertainty, which is given by

C
0 Dβ

t xp(t) = Apxp(t) +
[

0.8 0.8
0 0.8

]
u(t),

xp(0) =
[

0.06
0.06

]
, t ≥ 0,

(30)
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where xp(t) = [xp1(t), xp2(t)]
T . Here, Ap is an unknown constant state matrix that denotes the

parameter uncertainty. For simulation purposes, the true Ap =

[
1 1
−1 −1

]
.

For this study, we choose the reference model given by

C
0 Dβ

t xm(t) =
[

0 1
−4 −2

]
xm(t) +

[
0 1
4 1

]
r(t),

xm(0) =
[

0.1
0.1

]
, t ≥ 0,

where xm(t) = [xm1(t), xm2(t)]
T . Consequently, the ideal control gains become K =[

−5 0
5 1.25

]
and Θ∗ =

[
2.5 1.25
−3.75 −1.25

]
.

For this case, matrices Q = I2×2 and P =

[ 2
3

1
8

1
8

5
16

]
exist such that AT

mP + PAm = −Q.

Further, we choose δ =

[
0 3
−5 −5

]
for the proposed fractional-order nonlinear

scalar update law given by (21). Then, the update law of Θ(t) is

C
0 Dβ

t Θ(t) = δTC
0 Dβ

t ϕ(t),

where

C
0 Dβ

t ϕ(t) =
1
59

[(−3.9e1(t)− 1.05e2(t))xp1(t) + (12.5e1(t) + 2.25e2(t))xp2(t)].

For convenience, the reference signal r(t) is chosen as the unit step signal and the
fractional order used is β = 0.8. Then, we have the following numerical results displayed
in Figures 2–6.

60

Time, t

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

e
1

40200

Figure 2. Time evolution of tracking error e1(t).

Time, t

e
2

-0.04

-0.02

0

0.02

0.04

6040200

Figure 3. Time evolution of tracking error e2(t).
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Time, t

0

0.4

0.8

1.2

1.6

2

x
1

6040200

xm1

xp1 

Figure 4. Plant and model reference outputs xp1 (t) and xm1 (t).

Time, t

-1

-0.5

0

0.5

1

x
2

6040200

xm2

xp2 

Figure 5. Plant and model reference outputs xp2 (t) and xm2 (t).

0 100 200 300 400 500

Time, t

-3

-1.5

0

1.5

3

φ

10-4

Figure 6. Scalar function ϕ(t).

Figures 2–6 show that, as stated by the analysis above, the tracking error, the scalar
function ϕ(t) and the system state remain bounded for every t ≥ 0. In addition to the
boundedness of the closed-loop signals, Figures 2 and 3 show that the tracking error
converges to zero, although only the convergence of the mean value of ‖e(t)‖2 was analyti-
cally proven.

External Disturbance

To illustrate the robustness of the system, we consider that the system (30) is subject to
a parametric variation of the state matrix Ap in the form Anewp = Ap + εD at t = 20 s, where

ε > 0 and D ∈ Rn×n. Here, we choose ε = 0.001, D =

[
1 1
1 1

]
, and the simulation results

are shown in Figures 7 and 8. This example shows that, even in the case of an external
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disturbance to the system (30), the proposed FOMRAC scheme maintains its performance
and the tracking of the reference model trajectory.

Time, t

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

e
1

3020100 40

0
20 21 22 23

2

4
10

-4

Figure 7. System response of e1 under the external disturbances.

Time, t

-0.04

-0.02

0

0.02

0.04

e
2

3020100 40

20 21 22 23
-4

-2

0
10

-4

Figure 8. System response of e2 under the external disturbances.

Example 2. Let us consider a fractional-order multivariable system with parameter uncertainty,
where xp(t) = [xp1(t), xp2(t)]

T , Ap is unknown, and Bp is known and given by Bp = [1, 1]T ,

Am =

[
−1 0
0 −2

]
, Bm = [1, 1]T . For the purpose of simulation, the true Ap =

[
−4 1
−3 −1

]
.

Therefore, the ideal control gain becomes K = 1 and Θ∗ = [3,−1].

In the simulation, we set matrix P = I2×2 and Q =

[
2 0
0 4

]
exist such that AT

mP +

PAm = −Q.
From (15), (17) and (21), we can obtain that

C
0 Dβ

t Θ(t) =
[
−(e1(t) + e2(t))xp1(t),−(e1(t) + e2(t))xp2(t)

]
,

C
0 Dα

t Θ(t) =
[
−(e1(t) + e2(t))xp1(t),−(e1(t) + e2(t))xp2(t)

]
,

C
0 Dβ

t ϕ(t) = − 1
tr(δδT)

(e1(t) + e2(t))δTxp(t),
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where 0 < α < β ≤ 1, and the number of update laws in the standard fractional-order
adaptive controller and the fractional adaptive controller in [24] is 2, and ours is only 1.
Therefore, compared with the other two adaptive controllers, our controller can reduce the
number of parameters updated online.

To further demonstrate the efficacy of the proposed adaptive control architecture, we
compare the evolution of system state and system error with the standard fractional-order
adaptive controller in [23], the fractional adaptive controller in [24] and our proposed
adaptive controller. The initial values correspond to xp(0) = [0.1, 1]T , xm(0) = [1, 2]T ,
the fractional order used is β = 0.8, and the reference signal r(t) = 15sin(8t) + 10cos(6t).
For convenience, we choose α = 0.6 for the fractional adaptive controller in [24], and
δ = [−1, 1]T for our proposed adaptive controller. Then, we have the following numerical
results shown in Figures 9–12.

Time, t

-1

-0.5

0

0.5

e
1

The method in Duarte-Mermoud, M. A. et al. 2015

The method in Aguila-Camacho, N. et al. 2019

Our method

0 20 40 60 80

Figure 9. Time evolution of tracking error e1(t) with the standard fractional order adaptive con-
troller in Duarte-Mermoud, M. A. et al. [23], the fractional adaptive controller in Aguila-Camacho,
N. et al. [24], and our proposed adaptive controller with the fractional-order scalar update law in
this paper.

Time, t

e
2

0 20 40 60 80
-1

-0.5

0

0.5

The method in Duarte-Mermoud, M. A. et al. 2015

The method in Aguila-Camacho, N. et al. 2019

Our method

Figure 10. Time evolution of tracking error e2(t) with the standard fractional order adaptive con-
troller in Duarte-Mermoud, M. A. et al. [23], the fractional adaptive controller in Aguila-Camacho,
N. et al. [24], and our proposed adaptive controller with the fractional-order scalar update law in
this paper.
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Time, t

-6

-4

-2

0

2

4

6

8

x
1

xp1 in Aguila-Camacho, N. et al. 2019

xp1 in Duarte-Mermoud, M. A. et al. 2015xm1

xp1 in our paper

0 108642

Figure 11. Plant and model reference outputs xp1 (t) and xm1 (t) with the standard fractional order
adaptive controller in Duarte-Mermoud, M. A. et al. [23], the fractional adaptive controller in
Aguila-Camacho, N. et al. [24], and our proposed adaptive controller with the fractional-order scalar
update law in this paper.
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Figure 12. Plant and model reference outputs xp2 (t) and xm2 (t) with the standard fractional order
adaptive controller in Duarte-Mermoud, M. A. et al. [23], the fractional adaptive controller in
Aguila-Camacho, N. et al. [24], and our proposed adaptive controller with the fractional-order scalar
update law in this paper.

From Figures 9–12, we can find that the standard fractional-order adaptive controller
in [23], the fractional adaptive controller in [24] and our proposed adaptive controller
all can make the tracking error bounded so that xp(t) follows xm(t). Moreover, from
Figures 9 and 10, taking the 5% error band, we can obtain that the response adjustment
times of e1 and e2 with the standard fractional-order adaptive controller, the fractional
adaptive controller in [24] and our proposed adaptive controller are 3.1033 s, 2.9814 s,
7.5304 s, and 1.5791 s, 1.029 s, 3.5002 s, respectively. Moreover, the ratio of overshoot of
e1 and e2 is 0.3152:0.1941:0, and 0.3063:0.1895:0, respectively. Therefore, compared with
the other two fractional-order adaptive controllers, the response adjustment time of our
controller is relatively longer, but the overshoot is smaller.

Based on the above analysis, our control architecture can reduce the online computa-
tion burden while maintaining the stability of the tracking error.

6. Conclusions and Discussion

For fractional-order multivariable systems with parameter uncertainty, as the input–
output dimension of the FOMRAC system increases, the number of parameters that need
to be updated online in the controller also increases, which will increase the computational
cost and resource consumption for increasingly complex systems. Motivated by this, a
FOMRAC scheme based on the nonlinear scalar update law has been designed in this paper
to relieve the computational burden existing in fractional-order controllers and ensure
that the desired tracking performance can be achieved. Specifically, the scalar update law
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does not change as the input–output dimension changes. Compared with the existing
results, the main advantage of the proposed adaptive controller is that only one parameter
online update is needed such that the control scheme is computationally inexpensive.
Moreover, we prove the boundedness of all signals involved in this adaptive scheme and
the convergence to zero of the mean value of the squared norm of the error. Two illustrative
numerical examples are presented to confirm the efficiency of the proposed architecture. As
for future perspectives, our research efforts will generalize our work to nonlinear fractional-
order systems, input–output multivariable fractional-order systems and fractional-order
systems with limited state information.
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