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Abstract: [Problem] The risks of hosting large-scale sports events are very difficult to evaluate
and often directly affected by natural environment risks, events management risks, and social
environment risks. Before hosting the events, accurately assessing these risks can effectively minimize
the occurrence of risks and reduce the subsequent losses. [Aim] In this article, we advocate the use of
a back propagation neural network (BPNN) model for risk evaluation and early warning of large-scale
sports events. [Methods] We first use expert surveys to assess the risks of 28 large-scale sports events
using 12 indicators associated with climate conditions, events management, and natural disasters.
We then apply the BPNN model to evaluate the risks of 28 large-scale sports events with sufficient
samples by adding white noise with mean zero and small variance to the small actual samples. We
provide a general rule to establish a BPNN model with insufficient and small samples. [Results]
Our research results show that the recognition accuracy of the established BPNN model is 86.7%
for the 15 simulation samples and 100% for the 28 actual samples. Based on this BPNN model, we
determined and ranked the risk level of the events and the importance of each indicator. Thus,
sample S8 had the highest risk and the second highest was sample S14, and indicator nine was the
most important and indicator one the least important. [Conclusions] We can apply the established
BPNN model to conveniently evaluate the risk of hosting a large-scale sports event. By analyzing
the nonlinear relationship between each indicator and the risk of the sports event, and applying the
established BPNN model, we can propose more targeted and effective measures and suggestions
for eliminating and decreasing the risks of hosting a large-scale sports event, and ensure large-scale
sports events can be successfully hosted.

Keywords: neural network; large-scale sports event (LSSE); early warning; risk evaluation;
samples; training

MSC: 93-10; 91G70

1. Introduction and Literature Review

Hosting a large-scale sports event (LSSE) can attract thousands of tourists from all
over the world, which bring economic prosperity to the host city and promote its develop-
ment of manufacturing, tourism, exhibition, transportation, and cultural industries. Thus,
successfully hosting a large-scale sports event such as the Olympic Games, the FIFA World
Cup, etc., has become a “name card” of a city and the embodiment of national competitive-
ness. However, there are also many risks associated with hosting large-scale sports events.
For example, the long cycle and huge investment can lead to financial risks. Factors such as
weather, epidemics, accidents, and the environment will also bring other risks to large-scale
sports events [1–6]. In recent years, research on the risks of hosting large-scale sports events
has received increasing attention. In fact, organizing such events is very complicated, and
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requires the coordination of various stakeholders. Any negligence may lead to a huge disas-
ter. For example, in May 2021, 21 people died in a 100 km cross-country race held in Gansu
province, China. Therefore, before hosting a sports event, organizers must analyze, forecast,
and manage various uncertainties and risks. So far, research in this area has not received
much attention. The existing research on the identification, classification, and prevention
of sports event risks is mainly qualitative [4,5,7–9]. There have been studies on establishing
different risk evaluation systems for large-scale events from the perspectives of event
organization, operation, and politics [10–15]. From a theoretical perspective, Liu et al. [10]
argued that the neural network-fuzzy optimization model can be used to provide early
warnings. The Fuzzy Analytic Hierarchy Process (F-AHP) and the Fuzzy Comprehensive
Evaluation Method (FCEM) are more extensively studied in the literature [8,12]. Using
questionnaire survey data, a structural equation model to assess the risk of sports events
was employed by Pu et al. [12]. On the basis of the results of an expert scoring method
and investigation, several studies [13–16] adopted ANN technology to model and conduct
exploratory research on the risk of hosting large-scale sports events. Theoretically, the main
issues of the F-AHP and FCEM are that they are subjective evaluation methods, which are
directly affected by the knowledge and experience of experts participating in the evaluation.
These methods are subjective and require tedious work. Thus, it is very difficult to evaluate
the risk of large-scale sports by applying F-AHP and FCFM, and these subjective methods
cannot be used effectively to evaluate the risk of large-scale sports.

Risk evaluation of sports events is a complicated nonlinear pattern recognition prob-
lem affected by various factors. Its working principle is unclear. It is difficult to achieve
desired results using traditional comprehensive evaluation and statistical methods. The
ANN model can perform well for nonlinear approximation and can be applied to the mod-
eling of the “black box” system, and risk evaluation [13–26]. Under normal circumstances,
building a reliable, robust, and effective ANN model requires a large number of samples,
which should be divided into training samples, validation samples, and testing samples.
Certain basic principles and steps must be followed during the modeling process. The
validation samples are used to monitor the training process in real time to avoid “over-
training”. The testing samples are used to measure the performance of the established
BPNN model. Otherwise, the established model has no generalization ability and cannot
be used in practice [17–23]. Unfortunately, the main issues or shortcomings presented
in the literature [14,15] are that the total number of samples used for establishing a back
propagation neural network (BPNN) model is too small, the network structure topology
is too large, and there is no validation sample to monitor the training process in real time.
The relevant basic principles and the steps of modeling a BPNN model are not followed.
As a result, the “overtraining” phenomenon is certainly prone to occur. Therefore, these
established BPNN models are unreliable and have no practical value. Furthermore, in prac-
tice, it is difficult to obtain a large number of samples due to the high cost and long cycle
of collecting risk evaluation cases. Therefore, this article is very meaningful and practical
because it establishes a more reliable, effective, and general risk evaluation neural network
model for large-scale sports events with a small number of risk evaluation samples.

In order to solve the above-mentioned problems with small samples and a large
topology, and improve the reliability and robustness of the BPNN model, we generate a
sufficient number of samples by adding white noise with mean zero and small variance
to the small actual samples in this article. We thus establish a robust and reliable BPNN
model for risk assessment of large-scale sports events that obeys the basic principles and
steps. Such a study can provide insights for large-scale sports events to minimize and
control risks, which will help accelerate the development of the sports industry, in addition
to strength of the city and national competitiveness.

The main contributions are as follows: First, we generate a sufficient number of
samples by adding white noise with mean zero and small variance to the actual samples to
satisfy the establishment of a reliable neural network model. Second, we established the
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robust BPNN model for risk evaluation of large-scale sports by obeying the basic principles
and steps, thereby avoiding the problem of overtraining.

This paper is structured as follows: In Section 2, we survey the literature regarding
establishing an index system for risk evaluation of large-scale sports events and the 28 col-
lected samples and the descriptive statistics. Subsequently, we provide the theoretical
principles and steps of neural network modeling used in this study in Section 3. There-
after, in Section 4, the BPNN model for risk evaluation and early warning of large-scale
sports events is established. The empirical results of the BPNN models are shown in
Sections 5 and 6 presents the discussion. Section 7 draws the conclusions and addresses
the further research on the application of the BPNN model in practice.

2. The Establishment of an Index System for Risk Evaluation of Large-Scale
Sports Events

Large-scale sports events refer to those sports events with a large scale, various
stakeholders, and complex operations and organization processes. Such sports events can
have a significant impact on the host city. Examples include the Olympic Games, the Asian
Games, the FIFA World Cup, the Formula One World Championship, and the International
Car Rally. In recent years, scholars have established a few risk evaluation index systems to
study large-scale sports events from different perspectives. Since the focus of this article is
guidance about how to establish a more reliable, effective, and generalized ANN model
based on a small number of samples, we will not detail the process and the principles of
establishment of a reasonable risk evaluation index system for large-scale sports events.
Here, we adopt the evaluation index system established by Huo et al. [15]. In this system,
the risks of hosting large-scale sports events are composed of risks associated with the
social environmental, natural environmental, and the event management. The social
environmental risks include the risk of the local economy x1, the risk of the harmonious
cultural environment x2, and the risk of the political stability x3. The natural environmental
risks include the risk of the geographic environment x4, the risk of the climatic conditions
x5, and the risk of the natural disasters x6. The event management risks include the quality
risk of the event participants x7, the risk of the event management systems x8, the risk of
the event information x9, the event risk of the management measures x10, the event risk
of the organizational methods x11, and the risk of the management mechanisms x12. In
short, the risk evaluation index system of hosting larger-scale sports events is composed of
12 indicators.

Huo et al. [15] employed questionnaire surveys and expert interviews to score the
12 risk factors (evaluation indicators) of 28 large-scale sports events (the actual samples)
shown in Table 1. The descriptive statistics of these 28 samples for the evaluation indicators
of each risk level are shown in Table 2.

Table 1. The indicator values of the 28 samples and the corresponding risk level.

Samples x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Risk Level

S1 4 2 2 4 4 5 3 3 2 3 3 4 moderate

S2 4 1 4 2 2 3 4 1 4 5 2 2 severe

S3 1 4 2 3 2 1 1 4 2 1 5 4 mild

S4 1 4 1 1 1 3 1 5 2 2 5 2 mild

S5 3 2 5 1 2 3 4 1 5 5 1 4 severe

S6 4 2 5 2 1 3 4 2 2 4 2 4 mild

S7 3 3 2 2 4 4 2 4 3 3 3 5 moderate

S8 4 2 5 1 4 4 5 2 5 5 2 3 severe

S9 5 3 1 2 4 4 3 2 4 4 2 5 moderate

S10 4 2 5 2 2 2 5 2 2 5 2 4 mild
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Table 1. Cont.

Samples x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Risk Level

S11 5 1 4 1 2 2 5 2 1 4 3 5 mild

S12 4 3 4 4 3 4 3 3 2 2 5 4 moderate

S13 2 4 2 5 2 2 3 4 1 1 4 1 mild

S14 2 1 5 1 3 2 5 1 5 4 1 3 severe

S15 1 5 1 4 1 2 1 5 1 1 4 2 mild

S16 1 4 2 5 2 3 3 5 1 2 5 1 mild

S17 2 5 1 5 4 1 2 5 1 2 5 2 mild

S18 5 4 3 5 5 3 2 3 3 5 3 5 moderate

S19 2 5 1 4 3 1 2 5 1 2 5 2 mild

S20 2 5 1 4 2 2 3 5 2 1 4 2 mild

S21 3 4 3 2 5 4 4 1 5 4 1 4 moderate

S22 4 3 2 4 5 4 2 2 3 2 4 3 moderate

S23 5 4 3 3 4 5 3 4 2 2 2 3 severe

S24 1 5 2 5 3 1 1 5 1 5 5 3 mild

S25 3 5 1 5 3 4 3 5 1 2 4 1 mild

S26 1 4 1 5 2 3 1 5 2 2 5 1 mild

S27 3 2 3 2 3 3 5 2 3 4 2 3 severe

S28 1 5 1 5 3 1 2 5 1 2 5 2 mild

Table 2. Descriptive statistics for the evaluation indicators of the 28 large-scale sports events.

Risk Level * x1 x2 x3 x4 x5 x6 x7 x9 x10 x11 x12

The maximum value

1 5 5 5 5 4 4 5 2 5 5 5

2 5 4 4 5 5 5 4 5 5 5 5

3 5 4 5 3 4 5 5 5 5 2 4

The minimum value

1 1 1 1 1 1 1 1 1 1 2 1

2 3 2 1 2 3 3 2 2 2 1 3

3 2 1 3 1 2 2 3 2 2 1 2

The mean value

1 2.07 4 2 3.73 2.2 2.07 2.47 1.4 2.4 4.2 2.4

2 4 3.14 2.43 3.29 4.29 4 2.71 3.14 3.29 3 4.29

3 3.5 2 4.17 1.67 3 3.33 4.33 4 4.17 1.67 3

Standard deviation
1 1.33 1.31 1.46 1.53 0.86 0.96 1.41 0.51 1.40 1.08 1.30

2 0.82 0.69 0.98 1.25 0.76 0.58 0.76 1.07 1.11 1.29 0.76

3 1.05 1.10 0.98 0.82 0.89 1.03 0.82 1.26 1.17 0.52 0.63

Note: * Risk levels 1, 2, and 3 indicate that a large-scale sport event has a mild risk, a moderate risk, and a severe
risk, respectively. The number of the samples with risk levels 1, 2, and 3 are 15, 7, and 6, respectively.

Table 2 shows that for most indicators, the larger (smaller) the mean value of an
indicator, the greater the risk level (e.g., x3, x7, and x10). However, several indicators such
as indicators x2, x4, and x8 are the opposite. The maximum values of several indicators (e.g.,
x1 and x10) are the same. Some indicators have the largest (smallest) value at risk-level 2
(e.g., x2). Obviously, there is a complicated nonlinear relationship between the value of
each evaluation indicator and the risk level of hosting large-scale sports events. Thus, it
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may be inappropriate to use general evaluation and classification methods such as F-AHP
or FCEM, or systematic clustering methods proposed in the literatures [8,12].

3. The Basic Principles and Steps of Neural Network Modeling

An artificial neural network (ANN) is especially suitable for modeling and analysis
of nonlinear systems [17–27]. There are different types of ANN models used in different
applications, which include supervised and unsupervised ANN models. The BP neural
network (BPNN), radial basis neural network (RBFNN), probabilistic neural network
(PNN), and generalized regression neural network (GRNN) are widely used supervised
architectures. The SOFM is unsupervised. The algorithm of the BPNN model, statistically
accounting for 80–90% of the used ANN models, is relatively simple and can be easily
programmed. Therefore, in this article, we adopt the BPNN model. The basic principles, the
algorithms, and the formulas of BPNN are described in the literature [17–23], and are not
repeated in this article. In particular, BPNN performs well for nonlinear approximations.
Therefore, it is suitable for nonlinear modeling. However, it is not easy to construct a model
with strong generalization ability. In order to ensure that the established model avoids
overtraining and has good generalization, we should use a reasonable network structure
topology, i.e., a reasonable number of hidden layers and number of nodes. We should
use the network connection weights from before the occurrence of overtraining. In BPNN
model training, even when the training error is small, the error of the non-training samples
could be large. In other words, although the BPNN model remembers the rules of the
training dataset, it does not extract the contained actual rules of the data. Overtraining leads
to the established BPNN models having poor generalization. In order to establish a reliable,
effective, and generalized BPNN model, it is necessary to follow the basic principles and
the steps during modeling the BPNN model process [17–23,27–29]:

(1) Collect as many samples as possible. When the cost of obtaining samples is high
or the samples are difficult to obtain, we can add normal distributed random noise (that
is white noise with mean zero and small variance) to each variable (indicator) to generate
enough samples. Moreover, according to the distribution law of existing samples, samples
can be generated artificially.

(2) Split the sample data, randomly or according to some algorithm, into the training
dataset [17,19–23,27], the validation dataset (about 20%), and the testing dataset (about 20%)
(namely, three datasets) with similar properties. We use the training dataset to optimize
the network connection weights. The validation dataset is used to monitor the training
process in real time to judge whether overtraining occurs, that is, to determine whether the
established BPNN model has good generalization. We use the testing dataset to evaluate
the established model’s performance. When the test error is basically in agreement with
or a little greater than that of the training dataset and the validation dataset (no more
than 1.5 times) and is small enough, it shows that the established BPNN model has good
generalization and prediction performance. With the increase in training epoch, the training
error certainly continues to decrease, and the validation error first decreases, gradually
reaches the minimum, and then increases again, that is, the overtraining phenomenon
occurs. When this occurs, we should either stop the training process or take the weight of
the network connection before the occurrence of overtraining.

(3) Ensure the network structure topology is as compact as possible. As a rule of thumb,
the number of training datasets must be greater than the number of network connection
weights, i.e., generally 3–5 times or more. The reasonable number of neuron nodes in
the hidden layer is situation-dependent and can only be determined by a trial-and-error
method. As the number of the neuron nodes in the hidden layer increases, the training error
decreases; at the same time, the validation error reduces at the beginning and gradually
reaches the minimum. After that, the error may remain unchanged or start to rise again.
This indicates that we have a reasonable number of neuron nodes in the hidden layer with
the minimum validation error.
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(4) Check the BPNN model’s performance with the testing dataset. We regard the
BPNN model with good generalization ability and practical value when the testing error is
in agreement with or a little greater than that of the training dataset and validation dataset.
Otherwise, we still regard the BPNN model as having poor generalization ability; that is,
we must retrain the BPNN model from the very beginning.

In BPNN modeling, even with the same samples and structure topology, if the initial
connection weights of the network are different, the final results will be different. Therefore,
for each network structure, it is necessary to train at least 10 times. The model with the
smallest validation error and testing dataset (approximately the same as the training error)
is the optimal model.

4. The Establishment of the BPNN Model for Risk Evaluation and Early Warning of
Large-Scale Sports Events
4.1. The Generation of New Samples

When the input/output relations are complex and highly non-linear, the BPNN needs
a relatively large training dataset (hundreds of data points) to capture these relations
adequately. Because the cost of obtaining a large number of samples is very high, only
28 actual samples of large-scale sport event risks based on the scores from experts and actual
investigation were collected and obtained by Huo et al. [15]. One of the most challenging
problems when training a small dataset in establishing a BPNN model occurs as overfitting
(overtraining or overlearning). Therefore, different methods have been developed and
implemented in BPNN modeling to cope with the small dataset conditions [30]. One of
the simplest and widely used methods is to generate sufficient simulated data to train the
BPNN [18]. Generally speaking, the error of the expert’s scoring will not be greater than 0.5.
We thus set the maximum error of each indicator score to be 0.4. Therefore, based on the
28 original actual sample data points, we construct a new virtual sample by adding or
subtracting a random value obeying a normal distribution with a mean of 0 and a standard
deviation of 0.4 based on each indicator value, and thus generate enough sample data.
We also add a random value obeying a normal distribution with a mean value of 0 and a
standard deviation of 0.2 to the corresponding output value of each sample with the risk
levels 1, 2, and 3 for mild risk, moderate risk, and severe risk, respectively.

The number of the original data samples of mild risk, moderate risk, and severe risk
provided by Huo et al. [15] are 15, 7, and 6, respectively. According to the ANN modeling
theory, a balanced sample size of different risk levels contributes to the improvement in the
reliability and effectiveness of the established BPNN model. Therefore, in this article, we
created 300 mild-risk samples, 301 moderate-risk samples, and 300 severe-risk samples.

In summary, the advantages of this algorithm for generating sufficient simulation
samples are as follows. Firstly, we can obviously reduce the cost and overcome the difficulty
of collecting sample data. Secondly, this proposed algorithm makes it possible to apply
the BPNN model with small sample data and avoid overtraining. Thirdly, the generated
samples perfectly agree with the actual samples and there are no conflicting samples.

Because of the sufficient number of samples, we randomly split the samples into three
datasets with similar properties. Among them, we obtained 541 training samples (about
60%), 180 testing samples (about 20%), and 180 validation samples (about 20%). The mean
values and standard deviations of the three datasets are shown in Table 3. The maximum
value of the indicators of the samples is 5.4, and the minimum value is 0.6.

Table 3. The mean value and standard deviation of the three datasets.

Type of Samples Mean Value Standard Deviation

Training dataset (Tr) 1.992 0.8275

Validation dataset (Va) 1.990 0.7984

Test dataset (Te) 2.029 0.8162
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4.2. The Establishment of a BPNN Model with Strong Generalization Ability
4.2.1. Determining a Reasonable Network Structure

When determining the network structure, we generally start with a single hidden
layer and use the trial-and-error method of structure expansion to determine the reasonable
number of hidden layer nodes. In this study, we used the STATISTICA Neural Network
(SNN), a neural network software package produced by STATSOFT [17]. The transfer
functions used on the hidden layer and output layer were both sigmoid functions. The
Quasi-Newton training method was applied to train the model. The maximum epochs
were 5000. The data on input layer and on output layer were normalized in the range

of (0.2, 0.8) using the Minimax conversion function
[

0.2 + 0.6 × xij−min(xj)
max(xj)−min(xj)

]
to help

improve the accuracy of the models developed [17]. Here, we took all the samples as
training set data. First, the number of neuron nodes in the hidden layer was one, and the
root mean squared error (RMSE) of the established BPNN model was about 0.33. When the
number of neuron nodes increased to two, the RMSE reduced to 0.079, and the correlation
coefficient reached more than 0.995, indicating that the accuracy of the established BPNN
model was high and the error was small. We found that when more than three nodes in
the hidden layer are used, there is no significant improvement in the RMSE. Therefore, the
reasonable number of neuron nodes in the hidden layer of the BPNN model was set to 2
or 1.

4.2.2. Establishing a BPNN Model with Good Generalization

The 541 training datasets, the 180 validation datasets, and the testing dataset were
reasonably grouped with similar characteristics, and the network structure topology of the
BPNN model was 12-2-1. That is, there were 12 nodes, 2 nodes, and 1 node in the input
layer, the hidden layer, and the output layer, respectively. We used the SNN software to
train the BPNN model. We found that overtraining may occur during the training process.
Moreover, according to the ANN modeling principle, the network weights should follow
a normal distribution, and the absolute value of the weights should be less than 10. To
avoid overtraining in the training process, we obtained the BPNN models with the RMSEs
of the training samples, validation samples, and testing samples of 0.0793, 0.0799, and
0.0811, respectively. Here, the correlation coefficients were 0.9960, 0.9958, and 0.9954. The
average absolute errors (AAEs) were 0.0625, 0.0630, and 0.0642. We found that the model
performance values of these testing samples were similar to those of the training samples
and validation samples (slightly larger but very close), indicating that the established
BPNN model has strong generalization and predictive ability, which meets the requirement
of the inherent law for training sample data.

4.2.3. Analysis of the Effects of Each Evaluation Indicator on the Risks of Large-Scale
Sports Events

A variation in an indicator will cause a change in the degree of risk, which can thus
describe the importance of the indicator [17–19,27]. Using the “Sensitivity Analysis” of
SNN software, we obtained the importance of each indicator (shown in Table 4). As shown
in Table 4, indicator x9, which has the largest ratio, has the greatest impact on the sports
events risk followed by the indicators x5, x8, and x6 with respect to ratios. The ratios of
the indicators x5, x8, and x6 are all greater than 2. The ratios of the other indicators are
between 1.05 and 1.888, indicating that they are also important and indispensable. Using
the “Response Graph” and the “Response Surface” functions, we obtained the nonlinear
relationship between the indicators and the risk levels of the large-scale sports events.
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Table 4. Ranking of the importance of each evaluation indicator.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Ranking 12 11 9 8 2 4 5 3 1 7 10 6

Error * 0.085 0.099 0.105 0.125 0.282 0.173 0.150 0.278 0.444 0.130 0.104 0.146

Ratio ** 1.069 1.246 1.328 1.576 3.554 2.185 1.888 3.510 5.597 1.640 1.307 1.846

Notes: *: The Error refers to the error of the established BPNN model when the indicator is deleted. **: The
Ratio refers to the ratio of the error of the established BPNN model when the indicator is deleted to the error of
the BPNN model including all indicators. In Table 4, a larger value of Ratio for an indicator indicates that the
indicator is more important than an indicator which has lower value of Ratio.

4.3. Interval Distribution of the Output Value of the Established BPNN Model for Different
Risk Levels

According to the BPNN model established above, the output value range of the
300 mild-risk samples lies in [0.9017, 1.2712] with an average value of 0.9660. The range of
the 301 moderate-risk samples lies in [1.7846, 2.2264] with an average value of 1.9866. The
range of the 300 severe-risk samples lies in [2.7033, 3.0719] with an average value of 3.0128.
For samples that are not within the range of the above three types of risk levels, the risk
level can be determined according to the principle of the most proximity.

5. Empirical Results
5.1. Risk Evaluation for the 28 Actual Large-Scale Sports Events

In this section, we input the evaluation indicator values of the 28 large-scale sports
events (namely S1, S2, . . . , in Table 1) provided by Huo et al. [18] into the BPNN model
established above, and obtain the output values of the 28 samples: 1.9980, 3.0291, 0.9409,
0.9806, 3.0133, 1.0056, 2.054, 3.0635, 1.9744, 0.9824, 0.9707, 2.0003, 0.9524, 3.0590, 0.9214,
0.9581, 0.9038, 1.9494, 0.9050, 0.9854, 2.0001, 1.9594, 2.9921, 0.9018, 0.9857, 0.9175, 3.0038,
and 0.9028.

We can see that the output values of the 15 mild-risk samples are between 0.9018
and 1.0056. These output values are all within the range of the mild-risk samples for the
BPNN model. In other words, for the mild-risk samples, the accuracy of the model is 100%.
Similarly, the output values of the seven moderate-risk samples range from 1.9494 to 2.0054,
indicating that, for the moderate-risk sample, the accuracy of the model is also 100%. The
output values of the six severe-risk samples range from 2.9921 to 3.0635, indicating that the
model identification accuracy of the severe-risk samples is also 100%. Our study shows
that, for the risk level of the 28 samples in [15], the recognition accuracy of our established
BPNN model is 100%.

The recognition accuracy of the actual samples shows that the established BPNN
model is reliable and consistent with the facts.

5.2. Results and Risk Level Assessment

Since there are no specific data of the nine testing samples in [15], we could not use
these samples for reverification. In order to further verify the validity and reliability of the
BPNN model established in this paper, we generated the following 15 simulation samples,
as shown in Table 5. The indicator values of the samples SS1, SS2, and SS3 equal to the mean
values of the three types risk-level samples, which are the 15 mild-risk, the 7 moderate-risk,
and the 6 severe-risk levels. The risk levels of the above three simulation samples must
then be mild-risk, moderate-risk, and severe-risk, respectively. The simulation samples SS4
and SS5 samples are created by adding 1 to each indicator value of the first two samples
of the mild-risk level shown in Table 1 [15]. For the mild-risk simulation samples SS6
and SS7, we add or subtract 1 for the mean value of each indicator value of the mild-risk
level samples. Similarly, based on the moderate-risk level samples, we generate simulation
samples numbered 8–11. Based on the severe-risk level samples, we generate severe-risk
simulation samples SS12–SS15. The 15 simulation samples are shown in Table 5.
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Table 5. The indicator values of the 15 simulation samples and their output values and the risk levels.

Simulation Samples x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Output Value Risk Level

SS1 2 4 2 4 2 2 2 4 1 2 4 2 0.9116 mild

SS2 4 3 2 3 4 4 3 3 3 3 3 4 2.0538 moderate

SS3 4 2 4 2 3 3 4 2 4 4 2 3 3.0219 severe

SS4 2 5 3 4 3 2 2 5 3 2 5 5 1.4860 mild

SS5 2 5 2 2 2 4 2 5 3 3 5 3 1.7443 moderate

SS6 3 5 3 5 3 3 3 5 2 3 5 3 0.9188 mild

SS7 1 3 1 3 1 1 1 3 1 1 3 1 0.9202 mild

SS8 5 3 3 5 5 5 4 4 3 4 4 5 1.9826 moderate

SS9 4 4 3 3 5 5 3 5 4 4 4 5 2.0751 moderate

SS10 5 4 3 4 5 5 4 4 4 4 4 5 2.0196 moderate

SS11 3 2 1 2 3 3 2 2 2 2 2 3 2.0831 moderate

SS12 5 2 5 3 3 4 5 2 5 5 3 3 3.0539 severe

SS13 4 3 5 2 3 4 5 2 5 5 2 5 2.8962 severe

SS14 5 3 5 3 4 4 5 3 5 5 3 4 2.9912 severe

SS15 3 1 3 1 2 2 3 1 3 3 1 2 2.9887 severe

Table 5 shows that the results of the three types of samples (samples SS1 to SS3)
according to the established BPNN model are completely correct. Except for the samples
SS4 and SS5, the output values of other samples are in the interval corresponding to the
different risk levels. Thus, it is convenient to determine the risk levels of the samples (large-
scale sports events). As is shown in Table 5, the recognition accuracy of the 15 simulation
samples is above 86.7%.

Now, we take the samples SS4 and SS5 to analyze the rationality of the established
BPNN model results and determine their risk levels. Taking each indicator value of the
sample numbered S3 in Table 1 as the reference sample, if we only change one indicator
value by increasing +1 each time, we will have 12 samples. Compared with the output value
of the sample SS3, the increments and decrements in the output value of these samples
are −0.0046, −0.0220, −0.0248, 0.0021, 0.4512, 0.1769, −0.0133, −0.0326, 0.4485, −0.0300,
0.0000, and 0.1223, respectively. That is, the indicators x5, x9, x6, and x12 significantly affect
the output values of the established BPNN model. The nonlinear relationship between the
score (obtained through surveys or experts, and in the range [1, 5]) of the indicator x5 and
the output value (risk level) of the established BPNN model is shown in Figure 1. Similarly,
we can obtain the nonlinear relationship between other indicators and the output values
of the BPNN model. Due to the interactions among the various indicators, the change in
the output value of the sample SS4 in Table 5 according to the established BPNN model is
less than the simple sum of the above-mentioned increments and decrements. Since the
output value of the sample SS4 in Table 5 is closer to the mild-risk interval than to the
moderate-risk interval (0.2148 vs. 0.2986), we can judge the sample as the mild-risk level.

Similarly, after we change each indicator value of the sample SS5 in Table 5 by one
unit, the increments and decrements of the established BPNN model output values are re-
spectively 0.0053, −0.0084, −0.0001, −0.0207, 0.0713, 0.0482, 0.0115, 0.0000, 0.1616, −0.0165,
0.0000, and −0.0232. We found that the change in the output value of sample SS5 is greater
than the simple summation of the above increments and decrements. As shown in Figure 2,
the relationship between the indicator x5 and x9, and the established BPNN model output
value is nonlinear. For indicators x5 and x9, the simple sum of the model increments is
0.2329, but the corresponding joint increment of the established BPNN model reaches
0.6812, indicating that there is a significantly obvious mutual influence. The output value of
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sample numbered 5 is 1.7443, which is very close to the lower bound of the moderate-risk
interval. Therefore, we judge the sample SS5 in Table 5 as having a moderate-risk level. In
fact, the samples SS4 and SS5 in Table 5 are also correctly determined according to the close
proximity to the adjacent risk-level intervals.
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Figure 1. The nonlinear relationship between the score (obtained through surveys or experts, and
in the range [1, 5]) of the evaluation indicator x5 and the output value (risk level) of the established
BPNN model.
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According to the results of the sensitivity analysis and the nonlinear relationship
between the risk and the indicator, we can rank the importance of the indicators, and the
effect or the joint effect of each indicator or pair of indicators. From the cognition accuracy
of the 15 simulation samples, we can conclude that the established BPNN model possesses
enough accuracy and robustness.

6. Discussions
6.1. How to Establish a Robust BPNN Model

Insufficient samples pose difficulties for this research. It is impossible to split these
28 samples into a training dataset, validation dataset, and testing dataset. For example,
the network connection weight of the BPNN model with a network structure topology
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of 12-2-3 is 35, which is greater than 28. Without validation data to monitor the training
process in real time, overtraining can easily occur.

Taking the mean values of samples of the three types of risk levels as the validation
samples, we used SNN software to train 28 original samples. Our investigation revealed
the following problems. (1) If the number of neuron nodes in the hidden layer is larger
than 3, the RMSE of the established BPNN model can be quickly reduced to 0, and the error
of the validation samples is very unstable (i.e., the error is sometimes large and sometimes
small). (2) When the network structure topology 12-1-3 is adopted, the training error is
very large, and the recognition accuracy of the 28 samples is very low. When the network
structure topology 12-2-3 is used (the number of network connection weights is 35 and still
greater than the number of training samples), the RMSE of the established BPNN model
can be less than 0.005. (3) Although the convergence RMSE of the BPNN model was set
to be 0.005, the results of the established BPNN models were unstable. We took sample
A~D as the typical examples. Sample A was the sample number 13 in Table 5. All indicator
values of the sample B are equal to 2. All the values of samples C and D are equal to 3 and
4, respectively. We trained the BPNN model many times for the above 28 samples; when
the RMSEs of the BPNN model were less than 0.005, we obtained four different BPNN
models, which are Case 1 to Case 4 shown in Table 6.

Table 6. A comparison of the output values and risk levels of the four established BPNN models with
the four typical samples.

Samples O1 + O2 O3 Risk Level

Case 1 *

A ** 0.0023 0.5116 0.5917 ++ Severe

B 0.8406 0.0025 0.011 Mild

C 0.035 0.6528 0.0176 Moderate

D 0.0054 0.9767 0.0122 Moderate

Case 2

A 0.0035 0.0858 0.9219 Severe

B 0.5944 0.0005 0.0456 Mild

C 0.0111 0.2583 0.2417 Moderate

D 0.0033 0.8949 0.0799 Moderate

Case 3

A 0.0019 0.062 0.9395 Severe

B 0.3796 0.0027 0.5483 Severe

C 0.0202 0.0085 0.9306 Severe

D 0.0031 0.0655 0.8941 Severe

Case 4

A 0.0055 0.6471 0.1056 Moderate

B 0.7550 0.0042 0.1059 Mild

C 0.6956 0.0707 0.0056 Mild

D 0.2617 0.6287 0.0012 Moderate
Notes: *: The RMSEs of the established BPNN models in Cases 1, 2, 3, and 4 are 0.00439, 0.00456, 0.00422, and
0.00422, respectively, which are very close to each other. **: The samples A, B, C, and D are the four typical
samples. +: O1, O2, and O3 are the output values of the three nodes in the output layer of the established BPNN
models. ++: The bold value is the greatest one of the three output values and shows the risk level.

Comparing the results of the established BPNN models with the four cases in Table 6,
we find that although the RMSEs of the established BPNN models are very small and
approximately equal to each other, the output results of the same sample can vary greatly.
For example, for sample B, the risk levels of Cases 1, 2, and 4 are all mild-risk, whereas that
of Case 3 is severe-risk. For sample C, the risk levels of Cases 1 and 2 are both moderate-
risk, whereas the risk levels of Cases 3 and 4 are severe-risk and mild-risk, respectively. In
addition, for sample C of Case 2, the output values of the three nodes in the output layer are
approximately the same and far less than 0.50. It is thus very difficult to determine the risk
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level of sample C. In practice, it is very difficult to determine the risk levels of the samples
in the case of the Exclusive-Or problem of risk assessment [14,15]. For example, we can set
the three risk levels as an Exclusive-Or problem, in which a positive classification is marked
by a 1 in the output node (variable), and a negative classification by a 0. In this example,
there is a three-value nominal output, and one-of-N coding. The values for the first risk
level are (1, 0, 0), the second level (0, 1, 0), and the third level (0, 0, 1). The question is: how
can we judge the risk level if the output values of the three nodes in the output layer are
(0.333, 0.333, 0.333), or (0.500, 0.500, 0.000), or (0.500, 0.000, 0.500), etc.? For a BPNN model
with multiple neuron nodes in the output layer, it is theoretically convenient to determine
the risk level of the sample and actually very difficult to judge the real risk level of the
sample. For sample B under Case 3, the output values of the three nodes in the output layer
corresponding to the mild-risk, the moderate-risk, and the severe-risk levels are 0.3796,
0.0027, and 0.5483, respectively; the meaning of the results is thus not able to be explained
or judged unambiguously. Our further experiments show that even if the RMSEs of the
established BPNN models are as small as 0.0025, the evaluation results of the above four
samples could still be very different (the detailed specific results are omitted and available
upon request). For example, according to the established BPNN models, we judge the risk
level of sample B as severe-risk in some cases and as mild-risk in the other cases.

To summarize, theoretically, if the number of network connection weights is greater
than the number of training samples, and no validation samples are applied to check
the training process to avoid overtraining, the established BPNN models are naturally
and certainly unreliable and do not have good generalization. According to the above
28 samples only, a reasonable and reliable BPNN model cannot be established. If multiple
neuron nodes in the output layer are used in the BPNN model, the output results of the
BPNN model are usually ambiguous and difficult to interpret.

In theory, if we follow the basic principles and steps for BPNN modeling described in
Section 3, then we can establish a robust BPNN model with good generalization perfor-
mance and practical value, and we did so in this study. In practice, we firstly generate the
sufficient number of samples according to the 28 actual samples with white noise. Secondly,
the samples are randomly divided in the proportions 3:1:1 between the training, validation,
and testing datasets (541, 180, and 180, respectively) without bias. We ensure the network
structure topology is as compact as possible, and that there are at least five times (preferably,
ten times) as many data points in the training dataset as the number of connection weights
in the network topology. We compare the training error with various neurons in the hidden
layer. The performance of the BPNN model with two hidden neurons is good enough.
Thirdly, we overcome the main limitation of BPNN model, which is that overtraining
or overfitting can easily occur in the training process. We apply a validation dataset to
cross-verify the training process to check and stop training when the validation error starts
to rise. Fourthly, the BPNN model is only likely to generalize well if the validation error is
reasonably close to that of the testing dataset. If there is a significant discrepancy between
the validation and test errors—that is, the validation error is always significantly higher
than the test error, or vice versa—the three subsets must be reassigned. If the validation
and test errors are reasonably consistent, one can be reasonably confident that the estab-
lished network will generalize effectively. In this paper, we established the BPNN models
with RMSEs of 0.0793, 0.0799, and 0.0811, and the average absolute errors (AAEs) were
0.0625, 0.0630, and 0.0642 for the training, validation, and testing datasets, respectively.
The performance values of the testing dataset were similar to those of the training data
and validation data. Thus, the established BPNN model has strong generalization and
predictive ability, which reveals the inherent law of the training dataset, the validation
dataset, and the testing dataset.

6.2. How to Reduce the Risk of Hosting Large-Scale Sports Events

In theory, decreasing the indicator value of the most important indicator with the
maximum weight is the most effective scheme to decrease the risk level of hosting large-
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scale sports events. According to the results shown in Table 4, the most efficient measures
to decrease the risk level of the sports events consist firstly of reducing the value of the
indicator, then reducing the value of the indicator, etc. However, due to the complex non-
linear relationship between the indicator value and the risk level of the sports events, for a
specific case, we should analyze the most effective comprehensive measures for decreasing
the risk level of the sports events based on the established BPNN model. Assuming the
same cost of decreasing one unit for each indicator, we should first analyze the impact of
each indicator on the risk level of the sports events, and then analyze the comprehensive
impact of the two indicators, etc., to formulate effective measures and recommendations.
We take a sample with all indicator values being 2 as an example; the output value of the
established BPNN model is 1.8351, indicating the moderate-risk level. By sequentially
applying −1 or +1 to each indicator value, we obtain 24 simulation samples. The changes
in the output values of the established model are given by −0.1136, 0.1171, 0.3592, −0.3735,
0.1468, −0.2316, 0.3818, −0.3362, −0.7371, 0.3863, −0.7026, 0.6816, −0.2834, 0.2924, 0.1081,
−0.4210, −0.8685, 0.9061, 0.6594, −0.6481, 0.1579, −0.1524, −0.1037, and −0.0745. From the
above results, we firstly find that when the value of the indicator x9 is decreased from 2 to 1,
the output value of the established BPNN model drops from 1.8351 to 0.9665, indicating
that the risk level of the sample is no longer the moderate-risk level, but becomes the
mild-risk level. Secondly, when the value of the indicator x5 decreases from 2 to 1, the
BPNN model output value drops from 1.8351 to 1.0981, indicating that the risk level of the
sample also becomes the mild-risk level. Thirdly, if the values of both the indicators x9
and x5 change from 2 to 1, the BPNN model output value drops from 1.8351 to 0.9399, and
the risk level of the sample becomes the mild-risk level. Similarly, when the value of the
indicator x9 increases from 2 to 3, the BPNN model output value changes from 1.8351 to
2.7411; that is, the risk level of the sample changes from the moderate-risk level to the
severe-risk level. When the value of the indicator x6 increases from 2 to 3, the BPNN model
output value increases from 1.8351 to 2.5166, indicating that the risk level of the sample
also increases from the moderate-risk level to the severe-risk level. If the values of the
indicators x9 and x6 increase from 2 to 3, the BPNN model output value increases from
1.8351 to 2.8479, indicating that the risk level of the sample changes from the moderate-risk
level to the severe-risk level. Conversely, when the values of the indicators x2, x3, x4, and
x10 decrease from 2 to 1, the BPNN model output value does not decrease but increases,
indicating that the risk levels of the sample do not decrease but increase. The results of
these simulation examples show that the impact of different indicators on the risk level
of the large-scale sport events is usually different. Some indicators have positive impacts
on the results, and other indicators have negative impacts. If we take the inappropriate
measures, the risk level of the larger-scale sport events will not decrease but increase. It is
important to adjust the indicators that are the most conducive to decreasing the risks of
hosting large-scale sports events.

In practice, the host of the LSSE should invite an expert panel (as a group) to assess
the risk level. According to the evaluation system, the expert panel investigates the hosting
conditions and obtains the scores of all indicators. Then, the expert panel obtains the
risk level of the LSSE according to the BPNN model established above. Furthermore, it is
efficient and effective for the host of the LSSE to adjust the indicators’ values that are the
most conducive to reducing the risk level of hosting the LSSEs with relatively low cost, so
as to achieve twice the result with half the effort; otherwise, half the result is achieved with
twice the effort. The management department of the LSSE can supervise and check the
preparatory work of the host and then also implement improvement measures according
to the above-established BPNN model.

6.3. Comparison with Clustering Methods

Although the risk levels of the actual 28 samples are judged by the experts and the
problem is a supervised training problem, we still tried to classify the samples using k-
means cluster and hierarchical cluster analysis algorithms. We applied the DPS software to
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classify the 28 actual samples into three categories using the above analysis algorithms [31].
The recognition accuracy was 82.1%, that is, samples S3, S4, and S5 in the mild-risk level
were mistaken as being in the severe-risk level, sample 21 in the moderate-risk level was
mistaken as being in the severe-risk level, and sample 27 in the severe-risk level was
mistaken as being in the moderate-risk level. The results show that the 28 actual samples
cannot be correctly classified by applying cluster analysis algorithms. This again means the
relationship between the scores of the indicators and the risk level is obviously nonlinear.

6.4. The Limitation of the Study

Although the generated samples are in good agreement with the actual samples, the
generated samples are not the facts, so the limitation of the study is that the established
BPNN model needs to be tested and checked using more actual large-scale sports. Second,
we established a support vector machine (SVM) model and random forest (RF) model with
the same data. In fact, the results using SVM and RF were qualitative and quantitative
using the BPNN model. There was a difference between them.

7. Conclusions and Future Research

In this article, we established a BPNN model with a network structure topology of
12-2-1 for risk level assessment and early warning for hosting large-scale sports events.
The network structure topology is compact enough, and the size of the training dataset
was more than 3–5 times the number of network connection weights. We used validation
samples to monitor the training process in real time to avoid overtraining. This established
BPNN model thus has good generalization performance and practical value. Our research
shows that the recognition accuracy of the three types of 28 actual samples is 100%, and is
86.7% for the 15 simulation samples. The established BPNN model reveals the non-linear
relationship between each indicator value (or multiple indicator values) and the output
value (risk level) of the established BPNN model. According to the results of sensitivity
analysis, we determined and ranked the importance of each indicator, and the risk levels of
the samples. Of the 12 indicators, indicator x9 is the most important, indicator x5 is ranked
second, and indicator x1 is least important. Of the 28 actual samples, S8 possess the highest
risk, S14 the second highest, and S24 the least. Our research provides a theoretical basis to
establish a robust BPNN model, and the established BPNN model can be used to predict
and reduce the risk level of hosting large-scale sports events in practice.

According to the 28 actual samples, we generated 901 samples by adding a random
value obeying a normal distribution with zero mean value and standard deviation of 0.4,
and the output value with zero mean value and standard deviation of 0.2. We divided the
901 sample data points into a training dataset, validation dataset, and testing dataset, with
similar characteristics of almost equal mean values and variations.

We analyzed and monitored the change in the RMSEs of the training dataset and the
validation dataset in the training process of the BPNN model with 28 original samples.
We found that the number of network connection weights is greater than the number
of training samples and the established BPNN model has an excessively large network
structure topology, which makes the BPNN model prone to overtraining easily. If no
validation samples are used to monitor the training process in real time, overtraining
easily occurs and is unavoidable. Our training experiments proved that the established
BPNN models often have completely different results even when the RMSEs are small
enough, indicating that the established BPNN model does not have a good generalization
performance and practical values.

To build an effective BPNN model with good generalization performance, we need to
follow the modeling principles and the basic steps. In addition, due to the various initial
connection weights, the established BPNN model is non-unique. The established BPNN
model we built is only one of the feasible models. If the network structure topology is
compact, the possibility of overtraining in the training process is low. We can also take
the connection weights before the occurrence of the overtraining as the last results of the
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established BPNN model. The RMSE of the testing dataset should be similar to the RMSE
of the training dataset and the validation dataset. Otherwise, the results of the established
BPNN model are not reliable, reasonable, or practical, and, thus, the established BPNN
model will produce results with poor generalization.

In general, the greater the number of actual samples are, the more reliable the estab-
lished BPNN model. Therefore, if possible, we will gather more samples. Furthermore, we
should try to generate samples with greater variance added to indicators and the output
variable to study whether the robustness of the established BPNN model can be improved.
Thirdly, we will apply the established BPNN model to predict and reduce the risk level for
hosting actual large-scale sports events.
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