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Abstract: In this paper, we address the problem of secure decision of membership. We present a Zero-
Knowledge Dual Membership Proof (ZKDMP) protocol, which can support positive and negative
(Pos-and-Neg) membership decisions simultaneously. To do it, two secure aggregation functions
are used to compact an arbitrarily-sized subset into an element in a cryptographic space. By using
these aggregation functions, a subset can achieve a secure representation, and the representation size
of the subsets is reduced to the theoretical lower limit. Moreover, the zeros-based and poles-based
secure representation of the subset are used to decide Pos-and-Neg membership, respectively. We
further verify the feasibility of combining these two secure representations of the subset, so this result
is used to construct our dual membership decision cryptosystem. Specifically, our ZKDMP protocol
is proposed for dual membership decisions, which can realize a cryptographic proof of strict Pos-and-
Neg membership simultaneously. Furthermore, the zero-knowledge property of our construction
ensures that the information of the tested element will not be leaked during the implementation of
the protocol. In addition, we provide detailed security proof of our ZKDMP protocol, including
positive completeness, negative completeness, soundness and zero-knowledge.

Keywords: security protocol; aggregation function; subset representation; dual membership decision;
zero-knowledge proof

MSC: 12L05; 94A60; 03E75

1. Introduction

With the development of cryptography research, some basic math skills and concepts
are becoming more and more significant in the last decade. For instance, set theory, as
one of theoretical foundations of computer science and engineering, has been widely used
in database design [1], large-scale data processing [2], fault diagnosis [3] and other areas.
Wherein, the problem of determining whether or not an element belongs to a set is called set
membership decision. It is not only the basis of set theory but also a common problem on
the Internet, and has been widely concerned and applied in many fields, such as e-auction,
blacklist and whitelist mechanism, anonymous certificate systems, and so forth [4–7]. For
example, as a common access control technology, the blacklist mechanism allows access to
any user in the system except those explicitly mentioned. This mechanism is essentially
used to determine whether the user is in the blacklist set.

A naive method to solve the set membership decision problem is to compare a tested
element x with all elements in a set S one-by-one. However, this method is very ineffective
and does not meet the needs of large-scale membership determination on the Internet.
In order to improve efficiency, Bloom Filter (BF) [8] and Cryptographic Accumulator
(CA) [9] are applied to the membership decision by compressing the set into a compact
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representation. Usually, the following points need to be considered for a cryptographic
membership decision scheme:

1. Representing the set S and the element x into specific cryptographic forms;
2. Deciding whether or not x belongs to S in terms of the relationship between x and

S’s representation.

Specifically, the BF-based method maps each element in the set into k positions on
an array by k different hash functions and sets the bits of these positions to 1. This array
is called the representation of the set. When testing, the tested element is first mapped
by the above k hash functions, the tested element must not be in the set if one of these
mapped positions in the array is 0; otherwise, the tested element is likely to be in the set if
these positions are all 1. The CA-based method works as follows. It first accumulates all of
the elements in the set to a random value as the representation of the set. In the decision
stage, a verifier can determine whether the tested element belongs to the set based on the
algebraic relationship between the element’s witness and published accumulative value.

In the above methods, the way to solve the membership decision problem is one-time
testing between the tested element and the compressed form of the set. Obviously, they are
more efficient in comparison with one-by-one testing in the naive method. In order to fur-
ther protect the privacy of tested element, Zero-Knowledge Proof (ZKP) technology [10–12]
is considered in [7,13,14]. In these schemes, zero-knowledge property allows one to prove
that a tested element belongs to a set without revealing its information. This feature has
bright application prospects. For example, in the financial supervision, a user can prove to
a bank that they belong to a public user set without disclosing their identity information,
which will reduce the disclosure of the user’s privacy.

Although many remarkable results have been made on the membership decision and
related problems, there are still some challenges, especially under the requirements of
complex applications and the security required by large-scale and dynamic networks. For
example, although the existing set representation has a certain compression feature, the
more detailed and secure set compact representation still needs to be further studied to meet
the needs of large-scale network applications. Furthermore, the research on cryptographic
protocol supporting privacy protection remains a challenge for protecting a sensitive tested
element in the membership decision.

In view of the above challenges, this paper aims to construct a secure representation
of the set and design a Zero-Knowledge Dual Membership (Dual membership denotes two
opposite set membership, i.e., ∈ and /∈, = and 6=) Proof (ZKDMP) protocol. The highlights
of this paper can be described as follows: (a) defining the cryptographic representation
of the set and formalizing its security, (b) proposing the concept of Secure Decision of
Membership to decide the Pos-and-Neg membership, and (c) constructing the ZKDMP
protocol to support strict Pos-and-Neg membership decisions.

1.1. Related Works

Bloom Filter (BF) is an efficient tool that can be used to test whether an element is
a member of a set. In 2009, Nojima and Kadobayashi [15] proposed a cryptographically
secure privacy protection BF protocol. They adopted the blind signature and oblivious
pseudorandom function to enhance the privacy of bit information in the array, and gave a
simple security definition and analysis. Subsequently, Ramezanian [16] enhanced the above
work by using Goldwasser–Micali homomorphic encryption and blind RSA signature. Fur-
thermore, he also proposed several membership testing schemes with privacy protection.

In 1993, Cryptographic Accumulator (CA) was introduced in [9]. It accumulates a set
of elements into a short commitment and generates a short witness for all the accumulated
elements. These witnesses can be publicly verified with commitments, so as to prove the
relationship between elements and sets. On this basis, Papamanthou et al. [17] presented a
q-strong multilinear Diffie–Hellmann (q-SMDH) accumulator construction. They combined
this accumulator with a constant-depth tree in a nested way and proposed a cryptographic
protocol for determining the membership of sets. Then, Papamanthou et al. [18] further
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improved the above scheme and gave an accumulator based on bilinear mapping, as well
as a more strict definition and security proof. Additionally, Derler et al. [19] revised the
concept of the accumulator by introducing indiscriminability and proposed an undeniable
universal accumulator. Ghosh et al. [20] paid attention to the privacy of accumulator and
proposed a zero-knowledge accumulator, which would not disclose the information of the
set in the execution process.

At the same time, CA is also used to decide the non-membership. Li et al. introduced
the concept of the universal accumulator in [21], different from traditional accumulative
machines, this scheme can efficiently compute the non-membership witness for all elements
that have not been accumulated. Furthermore, this scheme is proved to be secure under the
strong RSA (sRSA) assumption. After that, Damgård and Triandopoulos [22] completed the
above scheme and presented a new accumulator construction based on bilinear mapping,
which supports the proof of a set non-membership. The security of this scheme is reduced
to the q-strong Diffie–Hellman (q-SDH) assumption. Then, Yu et al. [23] constructed the
first universal accumulator from the small integer solution (SIS) assumption in a standard
lattice. Their scheme could not only generate short witnesses for non-accumulators but
also made a zero-knowledge proof for non-accumulator witnesses.

Recently, some ZKP protocols for membership are proposed to prove that an element
in or not a public set without disclosing the element. In 2008, Camenisch et al. [24] presented
two new approaches to building set-membership zero-knowledge proofs based on q-SDH
and RSA assumption, respectively. Furthermore, their protocols can be used to range proof
in zero-knowledge. After that, Peng et al. [25] constructed two new non-membership proof
protocols to prove that a committed element is not in a finite set. Benarroch et al. [7] also
proposed an efficient ZKP protocol supporting membership or non-membership decisions
based on the strong RSA (sRAS) assumption.

In addition, there are many other studies on membership decision. Guo et al. proposed
a membership encryption scheme in [26,27]. By adding a set of tokens to the ciphertext,
their scheme required the user to hold the token belonging to the token set when decrypting
the message. In terms of design, their scheme adopted a construction based on polynomial
root-value decision, which can be regarded as an extension of the broadcast encryption.
Arfaoui et al. [28] applied membership proof to Near-Field Communication and proposed
a secure mobile ticketing protocol for the public transportation. This protocol ensured
the anonymity of users, so as to prevent service providers from tracking users’ tracks.
According to the zero-knowledge set membership proof, Baza et al. [29] proposed a time-
locked deposit protocol for ride sharing in order to ensure the privacy of both drivers and
riders. Locher and Haenni [30] also proposed an Internet voting protocol based on the same
technology, which can ensure the anonymity of voting without authority. In summary, in the
Table 1, we list the comparison results between some related works [7,16,17,22,24,25] and
ours in terms of technology, decision mode, zero-knowledge and hardness assumptions.

Table 1. Comparison between related literature and our protocol.

Literature Technology Decision Mode Zero-Knowledge Hardness Assumption

Benarroch et al. [7] Merkle trees Dual membership Yes –
Ramezanian [16] Bloom filter Membership No RSA

Papamanthou et al. [17] CA Membership No q-SMDH
Damgård et al. [22] CA Non-membership No t-SDH

Camenisch et al. [24] Digital signature, CA Membership Yes q-SDH, RSA
Peng et al. [25] Commitment Non-membership Yes sRSA

ZKDMP Aggregation functions Dual membership Yes t-SDH

1.2. Our Contributions

The purpose of this work is to construct a novel Zero-Knowledge Dual Membership
Proof (ZKDMP) protocol, which can support Pos-and-Neg membership decisions simulta-
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neously. To that end, a new security representation of a subset using aggregation functions
is introduced to achieve a secure membership decision. The contributions of this paper are
listed below.

1. We first formalize the security requirements of the aggregator based on our previous
work [31], which refers to the security properties in easy or hard to compute aggre-
gated values for a given set and a certain element. Based on them, two aggregation
functions, ZeroAggr and PoleAggr, can achieve a secure representation of a subset in
terms of zero-pole interpolation and reach the theoretical lower limit for the represen-
tation size of subsets. Moreover, the security of our aggregation functions are proved
under the t-SDH assumption (see Sections 3 and 4).

2. We propose the concept of Secure Decision of Membership (SDM) and use the zeros-
based and poles-based secure representation of the subset to decide the Pos-and-Neg
membership, respectively. Thus, the security of membership decisions can be reduced
to the security of ZeroAggr and PoleAggr. Furthermore, we verify the feasibility of
combining these two secure representations of subset, so this kind of combination
could act as the foundation for constructing a dual membership decision cryptosystem
(see Section 5).

3. Following the approach of the SDM, we construct a ZKDMP protocol for the dual
membership decision, which can realize a cryptographic proof of the strict Pos-and-
Neg membership. In contrast with a single membership decision, the proposed
protocol can prevent elements outside the system from affecting the decision result.
Furthermore, the zero-knowledge property of our protocol ensures that the informa-
tion of the tested element will not be leaked during the interactive proof of the protocol.
Moreover, we provide the complete security proofs of the ZKDMP protocol, including
positive completeness, negative completeness, soundness and zero-knowledge (see
Section 6).

In addition, in our secure representation of the subset, there is no limit to the number
of elements in the universal set (in fact, when the system parameter p = 2512, the number
of elements in the universal set is about 1051 and a set with so many elements can be
considered almost infinite in a practical application). Finally, the performance evaluations
show that our protocol has a simple and easy-to-understand structure.

1.3. Organization

Our approach for cryptographic Pos-and-Neg memberships is presented in Section 2.
Zeros-based and poles-based representation of the subset are introduced in Sections 3 and 4,
respectively. Moreover, the secure membership decision is discussed in Section 5. We
present the ZKDMP protocol and its security analysis in Section 6. The performance
evaluations are given in Section 7. Finally, our conclusion is presented in Section 8.

2. Our Approach

This paper aims to construct a new zero-knowledge protocol that can support dual
membership (positive and negative, Pos-and-Neg) decisions, simultaneously. The basis of
constructing such a protocol is to realize a secure representation of subsets. Next, we first
show the core idea for designing cryptographic construction of a set-membership (∈ or 6∈).
The notations and abbreviations used throughout the paper are shown in Table 2.
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Table 2. Notation table.

Symbol Description

P(U ) the power set of the set U
A a probabilistic polynomial-time adversary
Re a cryptographic representation of element e
CS a cryptographic representation of set S
B bilinear pairing operation

e(·, ·) a bilinear mapping
PPT probabilistic polynomial-time
S the relative complement of S in U , U \ S

ZeroAggr zeros-based aggregation
PoleAggr poles-based aggregation

2.1. Secure Representation of the Subset (SRS)

Our basic idea is to cryptographically represent the subset by using the aggregation
function. In fact, based on the aggregation function (in short, Aggregator) proposed in
our previous work [31], we can further define the security properties of the aggregation
function, so as to take the output of the Aggregator as the security representation of the subset
(SRS). Specifically, for any set U , an Aggregator is a cryptographic function if it can map
any subset of U into a fixed-size value. The specific definition of the aggregation function
is described below.

Definition 1 (Aggregator). Given a set U = {e1, e2, · · · , en}, let P(U ) be the power set of U ,
PK that denotes the public key space. The algorithm Aggregator : PK×P(U )→ G satisfies:

Aggregator(mpk,S) = RS , (1)

where mpk ∈ PK is the public key, S is a subset of U and RS ∈ G is a random element.

Note that the aggregation function is a publicly computable function because the
public key is used as input of the Aggregator. Moreover, there is no restriction on the
size of the set U or the subset S . In addition, this definition only presents the functional
requirement of the Aggregator, and is not related to its security requirements. We give a
simple description of the secure Aggregator with two security properties as follows.

Definition 2 (Secure Aggregator). Given a subset S , a secure aggregation function can compress
S into a constant-size random element, and satisfies the following security properties.

• Easy to compute the aggregated value for normal input, i.e.,

– try to add an element into S where the element is not in S ; or
– try to delete from S an element which is already present in S .

• Hard to compute the aggregated value for abnormal input, i.e.,

– try to add an element into S where the element is already present in S ; or
– try to delete from S an element which is not in S .

2.2. Roadmap for SRS

According to the security properties of the aggregate function defined in the last sec-
tion, it is challenging to design a secure aggregation function for the security representation
of the subset, especially for a subset of any size. We here present our intuition to solve
this challenging problem. Our approach will be used to construct two secure aggregation
functions in Sections 3 and 4. For the convenience of explanation, as shown in Figure 1, we
describe this approach as follows.
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1. For U = {e1, e2, · · · , en}, ∀ei ∈ U is mapped to a random point in a cryptographic
space. In this step, we also pick partial information of these mapped points and
publish them as public keys mpk;

2. For a subset S ⊂ U , we construct a curve c(x) through random points mapped from
elements in S ;

3. We pick a secret γ and define the output of the aggregation function as an encapsu-
lation of the point (γ, c(γ)), E(c(γ)) ← Aggregator(mpk,S), where E(·) denotes a
cryptographic encapsulation function;

4. Two security features of the aggregate function are defined to ensure that the aggrega-
tion is secure against malicious adversary attacks.

U={e1, ,en}

S={e1, ,em}

Step 1 Step 2

Step 3

Secret g 

Step 4

(g , c(g )) 

c(x) 

(a) (b)

(d)

The security features of aggregation function:

1) E(c(g )) is defined as the result of Aggregation of S; 

2) Aggregation function satisfies the properties:

 Easy to compute for normal input;

 Hard to compute for abnormal input.

(c)

Figure 1. Cryptographic representation of subset and aggregation function. (a) Map ei to a random
point in a cryptographic space. (b) Curve c(x) through random points mapped from elements in S .
(c) an encapsulation of the point (γ, c(γ)). (d) Two security features of the aggregate function.

According to secure aggregation functions, we can achieve a secure representation of
subsets. Before introducing secure aggregate functions, we first recall the definitions of
zeros and poles in rational polynomials.

Definition 3 (Zeros and Poles). Let H(x) = P(x)
Q(x) be a rational polynomial. Then, z is called a

zero of the polynomial H(x) if P(z) = 0, and z is a pole of the polynomial H(x) if Q(z) = 0.

3. Zeros-Based Representation of Subset

Given a polynomial-sized set of elements U = {e1, · · · , en}, we first translate these
elements into some random points in a one-dimensional plane; that is, (x1, x2 · · · , xn) =
(hash(e1), · · · , hash(en)) ∈ Zn

p, where we assume each element ei is denoted as a binary
string and hash is a collision-resistant hash function. We utilize the cryptographic hash to
ensure that all points are distributed uniformly in the whole space Zp and each point is
unique and nonzero, i.e., xi 6= xj and xi 6= 0 for all i, j ∈ [1, n], i 6= j. Since the size of U
is usually far less than that of Zp, we do not limit the size of U (e.g., p > 2512 for a secure
elliptic curve).

Next, for S = {e′1, e′2, · · · , e′m} ⊂ U , we wish to find an effective method to compress
the corresponding points (hash(e′1), · · · , hash(e′m)) in S into a random point (x, y) in a
two-dimensional plane. To do so, an (m + 1)-order polynomial fS (x) is defined over S .

fS (x) = x(x + x′1) · · · (x + x′m) = x ∏
e′i∈S

(x + x′i) (mod p) (2)

It is easy to find that fS (x) will be different if a different subset S is used. We
map the subset S into a point (x, y) = (x, fS (x)). Given an unknown and random x,
fS (x) is random and unpredictable. An adversary cannot guess the correct value when x
is unknown.
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We further introduce the Discrete Logarithm Problem (DLP) into the above-mentioned
construction in order to guarantee the privacy of x and the unpredictability of fS (x). That
is, given a multiplicative cyclic group G, where g is a generator of G, we map the subset
S into the point (gx, g fS (x)) rather than (x, fS (x)). Based on the assumption of DLP, the
privacy of x, as well as the unpredictability of g fS (x), will be guaranteed even when gx

keeps public.
For a secret γ and a subset S , we next define the aggregation function by the above

based on the above polynomial fS (x). Since the hash values of all elements in the subset S
are used for the (negative) zeros in fS (x) ( fS (x) = x ∏e′i∈S

(x− (−x′i)) = x ∏e′i∈S
(x + x′i)

(mod p).), this aggregation function is named Zeros-based Aggregator (ZeroAggr). In
addition, it can aggregate all elements of S to g fS (γ).

Definition 4 (ZeroAggr). Let g be a generator in the group G and S ⊂ U . The Zeros-based
Aggregator (ZeroAggr) inputs the public key mpk and a subset S outputs an element in G as follows.

GS = ZeroAggr(mpk,S) = g fS (γ) = gγ·∏ei∈S (γ+xi) (3)

where γ is the secret, the public key mpk = {gi = gγi}i∈[1,|U |] and xi = hash(ei).

Security Definition and Analysis

Let f (x) be a polynomial, we make use of a simple polynomial division with monomial
in order to remove a certain (negative) zero xi from this polynomial, i.e., f (x)

x+xi
. Two

cases may arise. In the first case, xi is not a root of f (x), such that we define f (x) =

(x + xi)q(x) + r(x) and f (x)
x+xi

= q(x) + r(x)
x+xi

, where q(x) and r(x) are two polynomials and
the remainder r(x) 6= 0. In the second case, xi is a root of f (x), such that the remainder is
equal to 0. Hence, we are able to convert the decisional problem of membership into a new
problem: whether or not the remainder r(x) is equal to 0?

According to the above-mentioned discussions, we define the set subtraction as S− =
S \ {ei} and the corresponding subtraction of the Zeros-based aggregation is expressed as:

GS− = GS\{ei} = gγ·∏ek∈S\{ei}
(γ+xk) = g

fS (γ)
γ+xi , (4)

where xi = hash(ei). Let fS (x)
x+xi

= q(x) + r(x)
x+xi

. According to ei ∈ S or ei 6∈ S , we have the
two following cases:

• Case ei ∈ S means that (x + xi)| fS (x) and r(x) = 0, such that GS− = gq(γ);
• Case ei 6∈ S means that xi is not one root of fS (x) and r(x) 6= 0, such that GS− =

gq(γ) · g
r(γ)
γ+xi .

It is easy to find that GS− can be computed by zeros-based aggregation algorithm for

ei ∈ S , otherwise we must have the ability to compute g
r(γ)
γ+xi from mpk = {gi = gγi}i∈[1,|U |].

Hence, we continue to transfer the problem of set membership into a computational
problem: whether or not GS− can be computed in a polynomial time.

Based on the above discussion, the security definition of zeros-based aggregation
under the dividing polynomial with a monomial is defined below.

Definition 5 (Security of ZeroAggr). Given an element ei ∈ U and a subset S ⊂ U , a ZeroAggr
function on S is called a secure zeros-based aggregation if it has the following two properties:

1. Easy to compute GS− for ei ∈ S . The value of GS− = g
fS (γ)
γ+xi can be computed by the

ZeroAggr algorithm within a polynomial time, that is,

Pr[ZeroAggr(mpk, S−) = GS− | ei ∈ S] > 1− ε. (5)
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2. Hard to compute GS− for ei 6∈ S . Any probabilistic polynomial-time adversary A comput-

ing GS− = g
fS (γ)
γ+xi succeeds with negligible probability ε, that is,

Pr[A(mpk, ei, S) = GS− | ei 6∈ S ] < ε. (6)

We next prove that our ZeroAggr function is a secure zeros-based aggregation under
the Strong Diffie–Hellman (SDH) assumption. The following is the description of the t-SDH
problem [32].

Definition 6 (t-SDH Problem). Given some elements (G, Gα, · · · , Gαt
) in G, find a pair

(c, G1/(α+c)) such that c 6= 0 (mod p).

The SDH assumption holds in some infinite family of groups, if the aforementioned
t-SDH problem is hard for any t that is polynomially bounded in the security parameter,
where the group size p grows exponentially with the security parameter. According to this
assumption, we prove the security of ZeroAggr in a straightforward manner.

Theorem 1. Our ZeroAggr function is a secure zeros-based aggregator under the t-SDH assumption.

Proof. Let (G, Gα, Gα2
, · · · , Gαt

)→ (c, G1/(α+c)) be an instance of t-SDH. We convert this
instance into a ZeroAggr function: let g = G and γ = α (α is an unknown secret), such that
we have gi = gγi

= Gαi
and mpk = {gi}i∈[1,t], where we assume that t ≥ |U|. We have the

two following cases for any ei ∈ U and S ⊂ U (|S| = k):

• Easy to compute GS− for ei ∈ S . Given a subset S and an element ei ∈ S , we
define fS−(x) = x ∏ek∈S ,ek 6=ei

(x + xk) = ∑k−1
i=0 cixi+1 based on (x + xi)| fS (x). This

information is sufficient to compute the value:

GS− = g fS− (γ) = g∑k−1
i=0 ciγ

i+1
= ∏k

i=1(G
αi
)ci−1 . (7)

• Hard to compute GS− for ei 6∈ S . If there is a PPT algorithm A can compute GS− =

g
fS (γ)
γ+xi but (x + xi) - fS (x). Then we can solve the SDH problem as follows. Let

fS (x)
x+xi

= q(x) + r(x)
x+xi

be defined as above, where q(x) = ∑k
i=0 dixi and r(x) = r are two

known polynomials. Hence, we can compute:

G1/(α+xi) = (GS−/ ∏k
i=0(G

αi
)di )1/r (8)

because we have G
fS (γ)
γ+xi = Gq(γ) ·G

r
γ+xi and Gq(γ) = ∏k

i=0(G
αi
)di . This means we forge

a valid solution (xi, G1/(α+xi)) for the t-SDH problem. However, this is a contradiction
with the t-SDH assumption.

Thus, the ZeroAggr function is secure under the t-SDH assumption.

4. Poles-Based Representation of Subset

We have presented an effective approach to deal with the decisional problem of
positive membership (∈) based on zeros-based aggregation, but it is not enough to realize
the decisional problem of negative membership ( 6∈). To solve this problem, we expect to
build a “conversely” aggregation function that is easy to compute for e 6∈ S but hard to
compute for ei ∈ S . We will use the poles-based aggregation to deal with this problem in
this section.

Similar to zeros-based aggregation, we next show the construction of the Poles-based
Aggregator (PoleAggr). ForR = {e′1, · · · , e′m} ⊂ U , this function can compress elements
ofR into a random point (x, y) even if the size ofR is large. Then, we use hash values of
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elements in the subsetR as the poles of the polynomial, such that the m-order polynomial
gR(x) is defined as follows, where m = |R|.

gR(x) = 1
(x+x′1)···(x+x′m)

= 1
∏e′i∈R

(x+x′i)
(mod p) (9)

In the above polynomial, x′i is the results of hash(e′i). The output of gR(x) is random
and unpredictable for a unknown and random x. Note that give a random value x, the
probability of collision between x and all cryptographic hash values {h(e′i)}m

i=1 is negligible
when p is large enough. This means that the probability of x + x′i = 0 or division by zero
errors is also negligible.

We next define the PoleAggr based on the above-mentioned polynomial gR(x). In this
definition, we let h be a generator in the cyclic group G. Our goal is to compute hgR(γ) for a
secret γ in terms of the public parameter mpk. This definition is expressed as follows:

Definition 7 (PoleAggr). Let h be a generator in the group G and R ⊂ U . The Poles-based
Aggregator (PoleAggr) inputs the public key mpk and the subset R, outputs an element in G
as follows.

HR = PoleAggr(mpk,R) = hgR(γ) = h
1

∏ei∈R
(γ+xi) , (10)

where γ is the secret, the public key mpk = {hi = h
1

γ+xi }i∈[1,|U |] and xi = hash(ei).

When hi and hj are known, we can easily obtain:

H{ei ,ej} = (
hj
hi
)

1
xi−xj = (h

1
γ+xj /h

1
γ+xi )

1
xi−xj = h

1
(γ+xi)(γ+xj) (11)

iff xi 6= xj (or ei 6= ej).

Security Definition and Analysis

We define the addition of the set and element asR+ = R∪{ei} and the corresponding
addition of poles-based aggregation is expressed as the equation:

HR+ = HR∪{ei} = hgR(γ)· 1
γ+xi = h

1
(γ+xi)·∏ek∈R

(γ+xk) , (12)

where xi = hash(ei). Depending on whether ei is an element of R or not, we have the
following two cases:

• Case ei 6∈ R. This means that hash(ei) 6= hash(ek) for all ek ∈ R and a collision-

resistant hash(·), such that HR+ = hgR+ (γ) = h
1

(γ+xi)·∏ek∈R
(γ+xk) ;

• Case ei ∈ R. This means that xi is a double pole of gR+(x), such that HR+ =

h
gR− (γ)·

1
(γ+xi)

2 = h
1

(γ+xi)
2 ∏ek∈R\{ei}

(γ+xk) .

It is easy to find that HR+ can be computed by the poles-based aggregation algorithm

for ei 6∈ R, otherwise we must have ability to compute the value h
gR− (x)· 1

(γ+xi)
2 from the

public parameter mpk = {hi = h
1

γ+xi }ei∈U . However, it is improbable to calculate this
value by Equation (11) because of the “divided by zero” exception. We will provide a
rigorous proof in the proof of Theorem 2. Therefore, the following is a security definition of
poles-based aggregation by dividing the polynomial with the monomial.

Definition 8 (Security of PoleAggr). Given an element ei ∈ U and a subsetR ⊂ U , a PoleAggr
function onR is called a secure poles-based aggregation if it has the following two properties:
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1. Easy to compute HR+ for ei 6∈ R. The value of HR+ = h
gR(γ)
γ+xi can be computed by

PoleAggr algorithm within a polynomial time, that is,

Pr[PoleAggr(mpk,R+) = HR+ | ei 6∈ R] > 1− ε. (13)

2. Hard to compute HR+ for ei ∈ R. Any probabilistic polynomial-time adversary A comput-

ing HR+ = h
gR(γ)
γ+xi succeeds with negligible probability ε, that is,

Pr[A(mpk, ei,R) = HR+ | ei ∈ R] < ε. (14)

Although the two functions, ZeroAggr and PoleAggr, are dramatically different in
form, they have the same security foundation, called the strong Diffie–Hellman (SDH)
assumption. We can prove the security of PoleAggr in a more subtle way, where the value
G f (γ), built on the polynomial f (x) = ∏n

i=1(x + xi), could be used as a generator in G.

Theorem 2. Our PoleAggr function is a secure poles-based aggregator under the t-SDH assumption.

Proof. Let (G, Gα, Gα2
, · · · , Gαt

)→ (c, G1/(α+c)) be an instance of t-SDH. We convert this
instance into a PoleAggr function: Let U = {e1, · · · , en} and f (x) = ∏n

i=1(x + xi) for
n ≤ t. We define h = G f (γ) and γ = α (α is an unknown secret), such that we have
hi = h1/(γ+xi) = G fi(γ) and mpk = {hi}i∈[1,n], where fi(x) = f (x)/(x + xi) = ∑n−1

i=0 dixi

and G fi(γ) = ∏n−1
i=0 (G

αi
)di for all ei ∈ U . We have the two following cases for any ei ∈ U

andR ⊂ U (|R| = k):

• Easy to compute HR+ for ei 6∈ R. Given a subsetR and an element ei 6∈ R, we define:

f (x) · gR+(x) = f (x)
∏ek∈R+ (x+xk)

= ∏ek∈U\(R∪{ei})
(x + xi) = ∑n−k−1

i=0 cixi (15)

based on (x + xi)| f (x). Such that, we can compute the value of HR+ by using:

HR+ = hgR+ (γ) = G f (x)·gR+ (x) = G∑n−k−1
i=0 ciγ

i
= ∏n−k−1

i=0 (Gαi
)ci . (16)

• Hard to compute HR+ for ei ∈ R. Assume that there exists a PPT algorithm A can

compute the value HR+ = h
gR(γ)
γ+xi = G

f (x)·gR(γ)
γ+xi but (x + xi) - f (x) · gR(x), where

f (x) · gR(x) = ∏ek∈U\R(x + xi). We construct a PPT algorithm solving the SDH

problem as follows: Let f (x)·gR(x)
x+xi

= q(x) + r(x)
x+xi

be defined as above, where q(x) =

∑n−k−1
i=0 dixi and r(x) = r are two known polynomials. Hence, we can compute

the value:
G1/(α+xi) = (HR+/ ∏n−k−1

i=0 (Gαi
)di )1/r (17)

because we have G
f (γ)·gR(γ)

γ+xi = Gq(γ) · G
r

γ+xi and Gq(γ) = ∏n−k−1
i=0 (Gαi

)di . The value
(xi, G1/(α+xi)) is a valid output of the t-SDH problem, but it is contradiction with
SDH assumption.

Therefore, the PoleAggr function is secure under the t-SDH assumption.

5. Secure Decision of Membership

The zeros-based and poles-based representation of the subset have exhibited an ability
for the decision of (positive and negative) membership. In this section, we further show
that our method is able to provide a clear and concise form for the decision problem of
either positive or negative membership when both representations of the subset are used
together.
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We first present a simple definition for the membership predicate, which is the funda-
mental principle in our construction of the dual membership decision protocol. Informally,
a predicate P(·) is a statement that may be true or false according to the values of its
variables. Generally, a predicate over membership is defined as follows:

Definition 9 (Membership Predicate). For U = {e1, · · · , eN}, a membership predicate is a
binary function P : U ×P(U ) → {0, 1} whose result represents the truth or falsehood of the
condition e ∈ S (P∈(e,S) = 1) or e 6∈ S (P6∈(e,S) = 1), where e ∈ U , S ∈ P(U ) and the
subscript of P denotes the set-membership.

If the condition is defined as e ∈ S , it is called a positive membership predicate P∈.
Similarly, if the condition is e 6∈ S , it is called a negative membership predicate P6∈. Next,
we define the cryptographic decision problem of positive and negative membership below.

Definition 10 (Secure Decision of Membership, SDM). Let P(e,S) denote a membership
predicate for ∈ or 6∈. Given an element e and a subset S , we say that a probabilistic polynomial time
(PPT) algorithm Veri f yP is a secure decision of membership if,

• Completeness: if P(e,S) = 1 holds, then the verifier will accept the proof, that is,

Pr[Veri f yP(Re, CS ) = 1 | P(e,S) = 1] = 1 (18)

• Soundness: if P(e∗,S) = 0 holds, then the verifier will accept the proof with negligible
probability ε, that is,

Pr[Veri f yP(Re∗ , CS ) = 1 | P(e∗,S) = 0] < ε (19)

where, Re denotes a cryptographic representation of element e and CS is a cryptographic representa-
tion of subset S ⊂ U .

Before discussing the SDM problem, we can observe the fact that ‘zeros’ and ‘poles’ in
a rational polynomial function could cancel each other out if and only if zeros and poles
are equal. It is this fundamental truth that compels us to combine ZeroAggr and PoleAggr
functions together, such that we can verify whether or not the same ‘zeros’ and ‘poles’ exist
in these two functions.

We now show how to put zeros-based aggregation and poles-based aggregation
together. We use a bilinear mapping e : G×G 7→ GT to implement this combination. For
any generators g, h in G and any elements a, b in Z∗p, then we have e(ga, hb) = e(g, h)ab.
Therefore, let ZeroAggr and PoleAggr work in the group G in such a bilinear system, so
that we integrate two aggregation functions into an element in GT . Such a result value will
be further used to make the decision of set-membership.

5.1. SDM for Positive Membership

We now present a practical solution for the SDM problem on positive membership.
This solution is built on three algorithms, Setup, Extract, and Verify∈, as follows:

• Setup: this is a probabilistic algorithm that generates the public key and a secure repre-
sentation of subset S ; that is, (mpk, HS )← Setup(S,U ,S), where S = {p,G,GT , e, g, h}.
Firstly, we randomly pick a secret γ ∈ Z∗p and a positive integer n ∈ Z+, and then
generate the public key:

mpk = (gγ, . . ., gγn
), (20)

as well as the private key sk = (γ). Next, given the arbitrary subset S = {e1, · · · , em}
and m < n, we make use of the poles-based aggregation function to compute the
value:

HS ← PoleAggr(sk,S) = hgS (γ) (21)
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where gS (x) = 1
∏ek∈S (x+xk)

and xk = hash(ek).

• Extract: this is an algorithm that yields the witness of an arbitrary element ei. We
can extract the witness Wi of ei from the private key sk by using the equation Wi ←
Extract(sk, ei) = e(g, h)

γ
γ+xi .

• Verify∈: this is a verification algorithm that tests membership of an element ei that
is in the subset S , that is, Veri f y∈(Wi, HS ), where Wi is the witness of ei and HS is
secure representation of S .

– Firstly, we check the relation ei ∈ S . If it holds, we compute S− = S \ {ei} and:

GS− ← ZeroAggr(mpk,S−) = g fS− (γ) = gγ
∏ek∈S

(γ+xk)

γ+xi . (22)

– Secondly, we check whether or not the witness Wi is equal to e(GS− , HS ), that is:

Wi
?
= e(GS− , HS ). (23)

If the above equation holds, we say that ei ∈ S ; otherwise, we say that ei 6∈ S .

The above solution for SDM over the positive membership is described by Figure 2.
Firstly, the poles-based representation of subset HS is generated by using PoleAggr(S) for
a given subset S . Secondly, given an element ei, we extract the value Wi ← Extract(sk, ei)
as the witness of ei. Next, the zeros-based representation GS− of S− = S \ {ei} is also
yielded if ei is in S . Then, the bilinear map between HS and GS− is used to remove all of
the same elements between the two corresponding subsets, S and S−. Finally, the final
decision is realized by matching the above result of the bilinear map and witness Wi.

PoleAggr(mpk,S)

ZeroAggr(mpk,S-)

S={e1, ,em}
Bilinear 
Mapping ==

e

Witness 
(Referred Value)

S-

Decision of Positive Membership

Yes

No—

Figure 2. The diagram of the secure decision of positive membership.

In this solution, any adversary cannot cheat or forge the final decisional result based
on the theorem below.

Theorem 3. The above construction is a secure decision of positive membership if the ZeroAggr
function is a secure zeros-based aggregator.

Proof. According the Definition 10, we prove that our construction satisfies the two follow-
ing properties:

• Completeness: When ei ∈ S , the Equation (23) holds for all valid GS− in terms of:

e(GS− , HS ) = e(g fS− (γ), hgS (γ)) = e(gγ
∏ek∈S

(γ+xk)

γ+xi , h
1

∏ek∈S
(γ+xk) ) = e(g, h)

γ
γ+xi = Wi. (24)

• Soundness: According to the precondition of this theorem, we assume that the Ze-
roAggr function is a secure zeros-based aggregation. This means that for every PPT
adversary A (see Definition 5), then:

Pr[A(mpk, e∗i ,S) = GS− | e
∗
i 6∈ S ] < ε (25)
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for any given element e∗i 6∈ S . We will prove that the verifier accepts the verification
with negligible probability ε; that is, Pr[Veri f y∈(Wi, HS ) = 1] < ε, where Wi and HS

are two assured and unchanged values. We also know that Wi = e(g, h)
γ

γ+x∗i and HS =

h
1

∏ek∈S
(γ+xk) , where x∗i = hash(e∗i ). This means that the adversary can forge a valid G∗

to meet the equation: Pr[Veri f y∈(Wi, HS ) = 1] = Pr[e(g, h)
γ

γ+x∗i = e(G∗, h
1

∏ek∈S
(γ+xk) )].

Without loss of generality, let G∗ = gz, so that we have the probability:

Pr[Veri f y∈(Wi, HS ) = 1]

=Pr[e(g, h)
γ

γ+x∗i = e(G∗, h
1

∏ek∈S
(γ+xk) )]

G∗=gz

= Pr

 e(g, h) = e(g, h)
z(γ+x∗i )

γ∏ek∈S
(γ+xk) |

gz ← A(mpk, e∗i ,S)

 · Pr[gz ← A(mpk, e∗i ,S)]

=Pr

A(mpk, e∗i ,S)→ gz = g
γ

∏ek∈S
(γ+xk)

γ+x∗i


=Pr[A(mpk, e∗i ,S) = GS− | e

∗
i 6∈ S ] < ε.

(26)

In this equation, we require the relation z(γ+x∗i )
γ∏ek∈S (γ+xk)

= 1 to make:

Pr

e(g, h) = e(g, h)
z(γ+x∗i )

γ∏ek∈S
(γ+xk)

 = 1. (27)

In this case, z = γ
∏ek∈S (γ+xk)

γ+x∗i
and GS− = gz.

This means that the adversary’s advantage to break a secure decision of positive
membership is equal to the advantage of breaking the secure zeros-based aggregator.

5.2. SDM for Negative Membership

We next present a practical solution for the SDM problem over negative membership.
This solution is similar to the previous SDM over positive membership. We also present
this solution by the three following algorithms:

• Setup: this algorithm generates the public key and a secure representation of subset
S ; that is, (mpk, GS )← Setup(S,U ,S). Firstly, we randomly pick a secret γ ∈ Z∗p and
a positive integer n ∈ Z+, and generates the public key:

mpk = (h
1

γ+x1 , . . .h
1

γ+xn ), (28)

as well as the private key sk = (γ). Next, given an arbitrary subset S = {e1, · · · , em},
we make use of the zeros-based aggregation function to compute the value:

GS ← ZeroAggr(S) = g fS (γ), (29)

where fS (γ) = γ∏ek∈S (x + xk) and xk = hash(ek).
• Extract: this is an algorithm that yields the witness of element ei. We can extract the

witness Wi of ei from sk as Wi ← Extract(sk, ei) = e(g, h)
γ

γ+xi .
• Verify 6∈: this is a verification algorithm that tests the membership of an element ei that

is in the subset S ; that is, Veri f y 6∈(Wi, GS ), where Wi is the witness of ei and GS is a
secure representation of S .
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– Firstly, we check the relation ei 6∈ S . If it holds, we compute S+ = S ∪ {ei} and:

HS+ ← PoleAggr(mpk,S+) = hgS+ (γ) = h
1

(γ+xi)·∏ek∈S
(γ+xk) . (30)

– Secondly, we check whether or not the witness Wi is equal to e(GS+ , HS ), that is:

Wi
?
= e(GS , HS+). (31)

If the above equation holds, we say that ei 6∈ S ; otherwise, we say that ei ∈ S .

As shown above, Figure 3 has almost the same structure as that in Figure 2. It is an
important property to help us combine them (SDMP and SDMN) into one cryptographic
protocol (see our membership decision ZKP protocol in next section). However, when we
carefully inspect the details, there also exist two differences between SDM for Pos-and-
Neg membership. One is that both positions of two aggregation functions, ZeroAggr and
PoleAggr, are swapped with each other; and another is that the ‘+’ operation in Figure 3
takes the place of the ‘–’ operation in Figure 2.

ZeroAggr(mpk,S)

PoleAggr(mpk,S+)+

S={e1, ,em}
Bilinear 
Mapping ==

e

Witness
(Referred Value)

S+

Decision of Negative Membership

Yes

No

Figure 3. Diagram of secure decision of negative membership.

Next, we prove that our solution is secure against cheating or forgery according to the
theorem below.

Theorem 4. The above construction is a secure decision of negative membership if the PoleAggr
function is a secure poles-based aggregator.

Proof. In terms of the definition of SDM, we prove tha our construction satisfies the two
following properties:

• Completeness: When ei 6∈ S , the Equation (31) holds for all valid HS+ in terms of:

e(GS , HS+ ) = e(g fS (γ), hgS+ (γ)) = e(gγ∏ek∈S
(γ+xk), h

1
(γ+xi )·∏ek∈S

(γ+xk ) ) = e(g, h)
γ

γ+xi = Wi. (32)

• Soundness: According to the precondition of this theorem, we assume that the Ze-
roAggr function is a secure zeros-based aggregation. This means that for every PPT
adversary A (see Definition 8):

Pr[A(mpk, e∗i ,S) = HS+ | e
∗
i ∈ S ] < ε (33)

for a given element e∗i ∈ S . We will prove that the verifier accepts the verification with
negligible probability ε; that is, Pr[Veri f y 6∈(Wi, GS ) = 1] < ε, where Wi and GS are

two assured and unchanged values. We also know that Wi = e(g, h)
γ

γ+x∗i and GS =

gγ ∏ek∈S (γ+xk), where x∗i = hash(e∗i ). In this case, the adversary can forge a valid H∗ to
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meet the equation: Pr[Veri f y 6∈(Wi, GS ) = 1] = Pr[e(g, h)
γ

γ+x∗i = e(gγ ∏ek∈S (γ+xk), H∗)].
Without loss of generality, we let H∗ = hz, so that:

Pr[Veri f y 6∈(Wi, GS ) = 1]

=Pr[e(g, h)
γ

γ+x∗i = e(gγ ∏ek∈S (γ+xk), H∗)]

H∗=hz
= Pr

[
e(g, h)

γ
γ+x∗i = e(g, h)zγ ∏ek∈S (γ+xk) |
hz ← A(mpk, e∗i ,S)

]
· Pr[hz ← A(mpk, e∗i ,S)]

=Pr

[
A(mpk, e∗i ,S)→ hz = h

1
(γ+x∗i )∏ek∈S

(γ+xk)

]
=Pr[A(mpk, e∗i ,S) = HS+ | e

∗
i ∈ S ] < ε.

(34)

In this equation, we require the relation γ
γ+x∗i

= zγ∏ek∈S (γ + xk) to make the prob-

ability Pr
[

e(g, h)
γ

γ+x∗i = e(g, h)zγ∏ek∈S (γ+xk)
]
= 1, such that z = 1

(γ+x∗i )∏ek∈S (γ+xk)
=

1
(γ+x∗i )

2 ∏ek∈S\{e
∗
i }
(γ+xk)

and HS+ = hz.

This means that the adversary’s advantage to break secure decisions of negative
membership is equal to the advantage of breaking secure poles-based aggregation.

Based on the above security analysis of SDM, the computational complexity of α
is O(log p · (

√
(p/d) + d)) operations in the group G and the complexity of space is

O(max{
√

p/d,
√

d}), where p is the order of the group G and d is a factor of p + 1. Obvi-
ously, the number of elements in the subset is determined by d, and the security of the SDM
is ensured by p, which contains a large factor (e.g., d ≤ p1/3). For example, when p ≈ 2512

and d ≈ 2170, the complexity of recovering the secret in the private key is still O(2170). At
this time, the number of elements in the set can reach 2170 ≈ 1051, which means that the
number of elements is unlimited in practical applications.

In all, it is easy to see that the decision problems of Pos-and-Neg membership are
converted into the problems of effective computation of GS− and HS+ from the two above-
mentioned solutions. More importantly, these two solutions have nearly the same structure
from the view of Figures 2 and 3, for the reason that we easily combine the predicate ∈ and
6∈ into a cryptosystem. In the next section, we also apply for this approach to construct a
dual membership proof protocol.

6. Zero-Knowledge Dual Membership Proof Protocol

Our ZKDMP protocol is described by an interactive proof system between the prover
and verifier. We assume that the verifier holds a public set of elements S and the prover
owns a secret element e. The prover proves to the verifier the element e ∈ S or e 6∈ S
without revealing the element itself.

Definition 11. Given two parties, Prover (P) and Verifier (V), the protocol is a secure membership
decision over the universal set U for a certain element e and a subset S ⊂ U , if it satisfies the three
following properties:

• Positive Completeness: For the positive membership e ∈ S and the honest prover, the
verifier outputs True with probability at least 1− ε after interacting with prover, where ε is a
neglectable probability, i.e.,

Pr[〈P(e), V(S)〉 = True | e ∈ S ] ≥ 1− ε. (35)
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• Negative Completeness: For the negative membership e ∈ S (e /∈ S and e ∈ U ) and the
honest prover, the verifier outputs False with probability at least 1− ε′ after interacting with
prover, where ε′ is a neglectable probability, i.e.,

Pr[〈P(e), V(S)〉 = False | e ∈ S ] ≥ 1− ε′. (36)

• Soundness: For any inefficient e∗ 6∈ U and any prover P∗, the verifier outputs True or
False with probability at most ε′′ after interacting with prover, where ε′′ is a neglectable
probability, i.e.,

Pr[〈P∗(e∗), V(S)〉 = True ∨ False | e∗ /∈ U ] < ε′′. (37)

We define a new output state ⊥ that denotes e∗ is irrelevant to the set U . Hence, according to
the soundness property, we define this state as the output of the interactive proof system under
e∗ /∈ U , i.e.,

Pr[〈P∗(e∗), V(S)〉 =⊥ | e∗ /∈ U ] ≥ 1− ε′′. (38)

• Zero-knowledge [33]: For any verifier V∗, there is a PPT machine M∗ such that the
following two probability distributions are statistically indistinguishable.

– {〈P, V∗〉(e)} denotes the output of the interactive proof system in the V∗ view on
common input e.

– {M∗(e)} is the output of machineM∗ on input e.

The statistical indistinguishability of the above two probability distributions can be denoted as
{〈P, V∗〉(e)} ∼= {M∗(e)}.

Note that the output of ZKDMP protocol involves three cases: True denotes positive
membership (e ∈ S), False denotes negative membership (e /∈ S and e ∈ U ) and ⊥ denotes
invalid membership (e /∈ U ). We call it a strict Pos-and-Neg membership decision.

6.1. The Proposed Protocol

In our ZKDMP protocol, as shown in Figure 4, we choose S = (p,G,GT , e(·, ·)), G is
a generator in G and the prime p is the order of the group. Furthermore, for any identity
ei ∈ {0, 1}∗, the hash function can compute hash(ei) = xi ∈ Z∗p, where a collision-resistant
hash function is used to prevent two different elements from mapping into a same value, i.e.,
for any ei 6= ej, hash(ei) 6= h(ej). Detailed construction of our protocol can be found below.

• Setup (S,U ). Let G denote a generator in G, the Setup algorithm chooses δ in Z∗p,
then it sets H = Gδ and V = e(G, H). Furthermore, the algorithm picks γ in Z∗p and

sets Gj = Gγj
for j ∈ [1, |U |]. For any ei ∈ U , this algorithm computes xi = hash(ei)

and Hi = H
1

γ+xi and outputs the master key msk = (δ, γ, G). Finally, it publishes
mpk =

{
S,U , {Gj}j∈[1,|U |], {Hi}ei∈U , H, V

}
.

• Protocol. The complete protocol is divided into the following three stages:
Initial stage: The prover random chooses ei ∈ U and s ∈ Z∗p, then the manager

computes the witness Ei = G
xi

γ+xi and the commitment Gs by using the master key.
Finally, the manager sends Ei and Gs to the prover and the verifier, respectively. The
verifier also chooses a subset S from the universal set U .
Interactive-proof stage: Based on the three-move structure in Σ-protocols, our pro-
posed protocol is described below.

– Commitment: Prover randomly picks k ∈ Z∗p and computes e(Ek
i , H), then it

sends this calculation result to the verifier;
– Challenge: Verifier randomly selects r in Z∗p, then sends (S , r) to the prover;
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– Response: Prover computes (u, Wk) and sends them to the verifier as the re-
sponses, where u = k + sr,

W =

{
GS− = ZeroAggr(mpk,S \ {ei}) ei ∈ S ,
HS+ = PoleAggr(mpk,S ∪ {ei}) ei /∈ S .

(39)

Verification stage: The verifier computes T = Vu/e(Ek
i , H) · e(Gr

s , H), and returns
True if T = e(Wk, HS ), else False if T = e(GS , Wk), otherwise ⊥, where GS =
ZeroAggr(mpk,S) and HS = PoleAggr(mpk,S).

Prover(ei, Ei, s) Veri f ier(S , pk)
pick up a random k ∈ Z∗p ,
compute e(Ek

i , H)

e(Ek
i , H),Gs

−−−−−−−−−−−−−−−−−−−→ pick up a random r ∈ Z∗p
S , r←−−−−−−−−−−−−−−−

compute W = HS+ if ei 6∈ S ;
else compute W = GS− ,
and u = k + sr

Wk , u−−−−−−−−−−−−−−−−→
compute T = Vu/e(Ek

i , H) · e(Gs , H)r ;
return ei ∈ S if T = e(Wk , HS );
else return ei /∈ S if T = e(GS , Wk);
else return ⊥.

Figure 4. The proposed zero-knowledge dual membership proof protocol.

6.2. Security Analysis

According the Definition 11, we prove that the proposed membership decision protocol
satisfies the following four properties.

(1) Positive Completeness: When ei ∈ S , we have the following equation:

e(Ek
i , H) · e(Gr

s , H) · e(Wk, HS )

=e(G
xi ·k

γ+xi , H) · e(Gsr, H) · e(Gk
S−, HS )

=e(G
xi ·k

γ+xi , H) · e(Gsr, H) · e(G
fS (γ)k
γ+xi , H

1
gS (γ) )

=e(G, H)k+sr = Vu

(40)

Then, the verifier can output True with probability:

Pr[〈P(e), V(S)〉 = True | e ∈ S ] = Pr[e(Ek
i , H) · e(Gr

s , H) · e(Wk, HS ) = Vu | e ∈ S ] = 1. (41)

(2) Negative Completeness: When ei ∈ S , we have the following equation:

e(Ek
i , H) · e(Gr

s , H) · e(GS , Wk)

=e(G
xi ·k

γ+xi , H) · e(Gsr, H) · e(GS , Hk
S+)

=e(G
xi ·k

γ+xi , H) · e(Gsr, H) · e(G fS(γ) , H
k

gS (γ)·(γ+xi) )

=e(G, H)k+sr = Vu

(42)

Then, the verifier can output False with probability:

Pr[〈P(e), V(S)〉 = False | e ∈ S ] = Pr[e(Ek
i , H) · e(Gr

s , H) · e(GS , Wk) | e ∈ S ] = 1. (43)

(3) Soundness: Before proving the soundness of the proposed protocol, we firstly
define the following events.

1. Event A1 denotes 〈P∗(e∗), V(S)〉 = True.
2. Event A2 denotes 〈P∗(e∗), V(S)〉 = False.
3. Event A denotes A1 ∪ A2.
4. Event B1 denotes e∗ /∈ S .
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5. Event B2 denotes e∗ /∈ S , i.e., (e∗ ∈ S) ∪ (e∗ /∈ U ).
6. Event B denotes e∗ /∈ U , i.e., B is the joint of events B1 and B2, B = B1B2.

In this case, A1 and A2 are mutual exclusive events, i.e., A1 A2 = ∅, the Equation (37)
can be written as:

Pr[〈P∗(e∗), V(S)〉 = True ∨ False | e∗ /∈ U ]
=Pr[A|B] = Pr[(A1 ∪ A2) | B]

=
Pr[(A1 ∪ A2)B]

Pr[B]
=

Pr[(A1B) ∪ (A2B)]
Pr[B]

=
Pr[A1B] + Pr[A2B]

Pr[B]
.

(44)

For any e∗ /∈ U , we get Pr[B] = 1. Thus, the above equation:

Pr[A|B] = (Pr[A1B] + Pr[A2B])/ Pr[B] = Pr[A1B1B2] + Pr[A2B1B2] ≤ Pr[A1B1] + Pr[A2B2]. (45)

Let Pr[A1B1] = ε1 and Pr[A2B2] = ε2. Assuming that both ε1 and ε2 are neglectable,
then Pr[A|B] is also neglectable. In this case, the soundness of our protocol can be proven.
In the following, we show that the above assumption is correct, i.e., both Pr[A1B1] = ε1
and Pr[A2B2] = ε2 are neglectable.

Proof. For any e∗ /∈ U , we have Pr[B1] = 1 and Pr[A1B1] =
Pr[A1|B1]

Pr[B1]
= Pr[A1|B1]. Thus,

we have:

Pr[A1B1] = Pr[A1|B1] = Pr[〈P(e∗), V(S)〉 = True | e∗ /∈ S ] = Pr[T = e(Wk, HS ) | e∗ /∈ S ] = ε1. (46)

We prove that the verifier accepts the positive verification with probability ε1 for
the given e∗ /∈ S . It means that a PPT adversary A can forge W to make the verifier

successfully verify T = e(Wk, HS ) with probability ε1. We know that HS = H
1

fS (γ) is an
assured and unchanged value. This means that the adversary A can forge a valid W to
meet the equation: Pr[T = e(Wk, HS )] = Pr[Vu/e(Ek

∗, H)e(Gr
s , H) = e(Wk, HS )]. Without

loss of generality, let W = Gz, so we have the following probability.

Pr[T = e(Wk, HS )]

=Pr[Vu/e(Ek
∗, H)e(Gr

s , H) = e(Wk, HS )]

=Pr[Vu = e(Wk, HS ) · e(Ek
∗, H) · e(Gr

s , H)]

=Pr[e(G, H)k+sr = e(Wk, H
1

fS (γ) ) · e(G
x∗k

γ+x∗ , H) · e(Gsr, H)]

W=Gz
= Pr

[
e(G, H)k+sr = e(G, H)

zk
fS (γ)

+ x∗k
γ+x∗ +sr |

Gz ← A(mpk, e∗,S)

]
· Pr[Gz ← A(mpk, e∗,S)]

=Pr
[
A(mpk, e∗,S)→ Gz = G

γ fS (γ)
γ+x∗

]
=Pr[A(mpk, e∗,S) = GS− | e

∗ 6∈ S ] = ε1.

(47)

In the above equation, we require zk
fS (γ)

+ x∗k
γ+x∗ = k to make:

Pr
[

e(G, H)u = e(G, H)
zk

fS (γ)
+ x∗k

γ+x∗ +sr
]
= 1, (48)

such that z = γ fS (γ)
γ+x∗ and GS− = Gz = W. If the probability ε1 is non-neglectable, this

means that the adversary A can secure zeros-based aggregation with a non-neglectable
advantage ε1, that is contradictory to the Theorem 1. Thus, ε1 is neglectable.
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For any e∗ /∈ U , we have Pr[B2] = 1 and Pr[A2B2] =
Pr[A2|B2]

Pr[B2]
= Pr[A2|B2], so that we

have the probability:

Pr[A2B2] = Pr[A2|B2] = Pr[〈P(e∗), V(S)〉 = False | e∗ /∈ S ] = Pr[T = e(GS , Wk) | e∗ /∈ S ] = ε2. (49)

We next prove that the verifier accepts the negative verification with probability ε2 for
given e∗ /∈ S , i.e., e∗ ∈ S or e∗ /∈ U . It means that a PPT adversary A can forge W to make
the verifier successfully verify T = e(GS , Wk) with probability ε2. We know that GS =
Gγ fS (γ) is an assured and unchanged value. This means that the adversary A can forge a
valid W to meet the equation: Pr[T = e(GS , Wk)] = Pr[Vu/e(Ek

∗, H)e(Gr
s , H) = e(GS , Wk)].

Without loss of generality, let W = Hz, that we have the following probability.

Pr
[

T = e(GS , Wk)
]

=Pr
[
Vu/e(Ek

∗, H)e(Gr
s , H) = e(GS , Wk)

]
=Pr

[
Vu = e(GS , Wk) · e(Ek

∗, H) · e(Gr
s , H)

]
=Pr[e(G, H)k+sr = e(Gγ fS (γ), Wk) · e(G

x∗k
γ+x∗ , H) · e(Gsr, H)]

W=Hz
= Pr

[
e(G, H)k+sr = e(G, H)

γ fS (γ)zk+ x∗k
γ+x∗ +sr |

Gz ← A(mpk, e∗,S)

]
· Pr[Gz ← A(mpk, e∗,S)]

=Pr
[
A(mpk, e∗,S)→ Hz = H

1
(γ+x∗) fS (γ)

]
=Pr

[
A(mpk, e∗,S) = HS+ | e

∗ /∈ S
]
= ε2.

(50)

In this equation, we require γ fS (γ)zk + x∗k
γ+x∗ = k to make:

Pr
[

e(G, H)k = e(G, H)
zkγ fS (γ)+ x∗k

γ+x∗
]
= 1, (51)

such that z = 1
(γ+x∗) fS (γ)

and HS− = Hz = W. For any e∗ /∈ S (e∗ ∈ S or e∗ /∈ U ) the
Equation (50) holds. If e∗ ∈ S and the probability ε2 is non-neglectable, this means that the
adversary A can break secure poles-based aggregation with a non-neglectable advantage
ε2, that is contradictory to the Theorem 2. Thus, ε2 is neglectable.

Therefore, ε1 and ε2 are neglectable, so Pr[A|B] ≤ ε1 + ε2 is also neglectable, it
means that:

Pr[〈P∗(e∗), V(S)〉 = True ∨ False | e∗ /∈ U ] ≤ ε1 + ε2. (52)

The soundness of our ZKDMP protocol is proved.

(4) Zero-knowledge: The zero-knowledge of our membership decision protocol im-
plies that the verifier cannot learn any information of the tested element e beyond that
e ∈ S , e ∈ S or e /∈ U .

Theorem 5. The proposed dual membership decision is a zero-knowledge proof protocol.

Proof. Let ViewV∗(ei) be the output of the interactive proof system in V∗ view on common
input ei, the distribution of ViewV∗(ei) during the correct executing of our protocol can be
denoted as:

ViewV∗(ei) = {〈P, V∗〉(ei)} = {Y,S , r, Wk, u} ∈R {GT , P(U ),Z∗p,G,Z∗p}. (53)

In the above equation, Y = e(Ek
i , H) and P(U ) is the power set of U . Next, we

construct the PPT machineM∗ as follows.

1. Randomly pick a subset S ∈R P(U ).
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2. Randomly pick r ∈R Z∗p.
3. Randomly pick W ∈R G, k ∈R Z∗p, then it computes Wk and u = k + rs.
4. Compute Y as follows:

Y =


Vu

e(Gr
S ,H)·e(Wk ,HS )

ei ∈ S ,
Vu

e(Gr
S ,H)·e(GS ,Wk)

ei ∈ S ,

y ei /∈ U .

(54)

In the above equation, y is a random element chosen in GT . Obviously, the above
constructionM∗(e) = {Y,S , r, Wk, u} is a valid protocol simulation. Y has always been a
random element in GT no matter ei ∈ S , ei ∈ S or ei /∈ U . Therefore, we haveM∗(ei) ∈R
{GT , P(U ),Z∗p,G,Z∗p} and {〈P, V∗〉(ei)} ∼= {M∗(ei)}. Thus, the zero-knowledge property
of our ZKDMP protocol is proved.

7. Performance Evaluation

As shown in Table 3, the comparisons of computation and communication over-
heads are provided between four existing zero-knowledge membership proof proto-
cols [24,25,28,34] and ours. In this paper, n, EG and EGT denote the number of elements in
S , exponentiation operations in G and GT , respectively. MG and DG are multiplication and
devision operations in G. MGT and B are multiplication operation in GT and the bilinear
pairing operation, respectively. The lengths of elements in G, GT and Z∗p are defined as lG,
lGT and lZ∗p , respectively. In addition, the operations in Z∗p, multiplication in G and hash
take less time than the other operations, we neglect them in our evaluation.

Table 3. Computation and communication overheads of related protocols and ours.

Computation Overheads Communication Overheads

Protocol Prover Verifier Prover Verifier

[24] 3EG + MG + 2EGT + MGT + 2B (n + 4)EG + 2MG + 3EGT +
2MGT + 3B 2lG + lGT + 3lZ∗p (n+1)lG + lZ∗p

[25] nEG 2nEG + nMG nlG + 4nlZ∗p nlG

[28] 9EG + 4MG (n + 7)EG + 4MG 4lG + 4lZ∗p nlG + lZ∗p

[34] 4EG + MG + 2EGT + MGT + 2B (n + 6)EG + 3MG + 3EGT +
2MGT + 3B 2lG + lGT + 3lZ∗p (n + 1)lG

Our protocol

(
n2+n

2 +2
)

EG +
(

n2+n
2

)
DG + B for ei /∈ S ;

(n + 1)EG + (n− 1)MG + B for ei ∈ S
EGT + MGT + 3B 2lG + lGT + lZ∗p (n+1)lZ∗p

In terms of computation overheads, the prover’s costs in [24,28,34] are constants. How-
ever, computation costs of the verifier are linear with the number of elements in the subset.
In our protocol, for positive membership decisions, i.e., ei ∈ S , the prover’s computation
cost is exponential with the number of elements in S ; for negative membership decisions,
i.e., ei /∈ S , the prover’s computation overheads are linear with the number of elements
in S . However, the computation costs of our verifier is constant for either the positive or
negative set membership. Furthermore, let us turn our attention to communication costs.
Obviously, in Table 3, all of the provers’ communication costs are constants in [24,28,34]
and ours, while that of the verifiers are linear with the number of elements in the subset.

In order to evaluate the performance of membership decision protocols in [24,25,28,34]
and ours, we implement them based on the Java Pairing Based Cryptography Library (JPBC)
and IntelliJ IDEA 2020.3.3. All programs run on a 64-bit Windows 10 PC with Intel Core
i5-4590S processor (Qual Core, 3.00 GHz). Moreover, we choose the SHA-256 cryptographic
algorithm as the hash function in our experiments. Let the tested set, U = {e1, e2, · · · , e150},
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be any ei in a random arbitrary-length string, i.e., ei ∈ {0, 1}∗. Note that in order to
reduce the experimental error, all of our experiments are repeated 100 times arithmetically
averaging the final results. The simulation parameters are shown in Table 4.

Table 4. Parameters setting.

Simulation Parameters Value

Security strength 128 bit
The type of the pairing Type-A

Elliptic curve y2 = x3 + x
The order of the pairing group 160 bit

Warm Up 5 rounds

As shown in Figure 5, we compare the computation overheads of these protocols
in the experiments. From Figure 5a, it is obvious that the time costs of the prover in
the negative membership decision in our protocol is more expensive than those of the
others. The reason is that the prover in our interactive protocol will compute the poles-
based aggregation function, which requires a lot of exponentiation operations in G. In our
positive membership decision, the time costs of the prover are similar to that in [25], which
is higher than that in [24,28,34]. In the other hand, as shown in Figure 5b, the time costs of
our verifier are constant and less than that of the other four protocols, which are consistent
with the theoretical analysis.
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Figure 5. Time overheads comparison between existing four protocols and ours. (a) The time costs of
the prover. (b) The time costs of the verifier [24,25,28,34].

By using the aforementioned setup and tools, we simulate the aggregation algorithms
(see [31]) and show the results of experiments in Figure 6. As shown in this figure, our
poles-based aggregation takes longer than the zeros-based aggregation for the same number
of elements in the subset. This is because, the PoleAggr needs to perform more exponential
operations than that of ZeroAggr and this operation is more time-consuming than others.
Specifically, in the PoleAggr, the number of exponential operations is exponentially related
to the number of subset elements, however, that of ZeroAggr is linear with the number of
subset elements.
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Figure 6. The computation time of our aggregation algorithms.

Our ZKDMP is executed by a three-move interaction between a prover and a verifier.
In order to clearly describe the protocol, we split the interaction into three functions, i.e.,
Commit, Respond and Veri f y. Specifically, the first two functions are run by the prover
and the last one is by the verifier. The details of these three functions are described in
Algorithms 1 and 2. The pseudocodes of our protocol is provided in Algorithm 3. It is not
difficult to see that three aforementioned functions are simple and concise. Therefore, our
ZKDMP protocol (Algorithm 4) has a simple and easy-to-understand structure.

Algorithm 1 Commit(ei, msk, mpk)

1: randomly pick k, s ∈ Z∗p
2: xi ← Hash(ei)

3: Ei ← G
xi

γ+xi

4: comm← (e(Ek
i , H), Gs)

Algorithm 2 Respond(ei, r,S , msk, mpk)
1: if ei ∈ S then
2: W ← PoleAggr(mpk,S−)
3: else
4: W ← ZeroAggr(mpk,S+)
5: end if
6: u← k + sr
7: resp← (Wk, u)

Algorithm 3 Veri f y(resp, comm,S , mpk)

1: T ← e(G,H)u

e(Ek
i ,H)e(Gr

S ,H)

2: if T = e(Wk, HS ) then
3: out← True
4: else if T = e(Wk, GS ) then
5: out← False
6: else
7: out←⊥
8: end if
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Algorithm 4 ZKDMP(ei,S , resp, comm, mpk)

1: Prover runs Commit(ei, msk, mpk) and sends comm to Verifier
2: Verifier randomly picks r ∈ Z∗p and subset S and sends them to Prover
3: Prover runs Respond(ei, r,S , msk, mpk) and sends resp to Verifier
4: Verifier runs Veri f y(resp, comm, mpk) and outputs out

Moreover, we implement our ZKDMP and evaluate the overheads of the Setup and
three stages in the interactive protocol, including initial, interactive-proof and verification.
As shown in Figure 7, the time costs of the Setup, initial and verification are constants. In the
interactive-proof stage, the main overheads come from the calculation of the aggregation
functions. Specifically, the time costs of the positive set membership is exponential with
the number of elements in S , that of negative set membership is linear with the number of
elements in S .
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Figure 7. The computation time of our ZKDMP.

8. Conclusions

In this paper, we focus on the cryptographic principle and construction for secure
membership decision in set theory. Firstly, we formalize the security of the aggregator,
and then use ZeroAggr and PoleAggr to compress an arbitrary-size subset into an element
in the cryptospace for achieving the secure representation of the subset. Secondly, this
paper provides the concept of SDM and uses the zeros-based and poles-based secure
representation of the subset to decide the Pos-and-Neg membership, respectively. Finally,
we propose the ZKDMP protocol for supporting strict Pos-and-Neg membership decisions.
In addition, our aggregation functions are proved to be secure under the t-SDH assumption
and the proposed ZKDMP protocol has positive completeness, negative completeness,
soundness and zero-knowledge. Moreover, the performance evaluation shows that the
ZKDMP protocol has a simple and easy-to-understand structure. In future work, the
aggregation complexity will be optimized, i.e., parallelized algorithm, to improve the
decision efficiency of the ZKDMP protocol. On the other hand, the secure aggregation
functions should be widely applied to construct other cryptosystems, such as attribute-
based encryption, broadcast encryption and role-based encryption.
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