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Abstract: The current article studies optical solitons solutions for the dimensionless form of the
stochastic resonant nonlinear Schrödinger equation (NLSE) with both spatio-temporal dispersion
(STD) and inter-modal dispersion (IMD) having multiplicative noise in the itô sense. We will discuss
seven laws of nonlinearities, namely, the Kerr law, power law, parabolic law, dual-power law,
quadratic–cubic law, polynomial law, and triple-power law. The new auxiliary equation method is
investigated. We secure the bright, dark, and singular soliton solutions for the model.
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1. Introduction

The stochastic nonlinear differential equations which contain the stochastic term with
multiplicative noise play an essential role in scientific fields and engineering. One of these
models’ fundamental physical problems is getting their soliton solutions. The search for
mathematical techniques to deduce exact solutions for these equations is a fundamental
action. It is well known that the resonant nonlinear Schrödinger equation (NLSE) com-
prises the nonlinear dynamics of optical solitons and Madelung fluids. Generally, in the
quantum Hall effect, we take into consideration the study of chiral solitons in a specific
resonant term in (1 + 1) dimensions [1–8] and in (2 + 1) dimensions [9]. Recently, many
papers have deduced the exact solitons solutions for nonlinear partial differential equations
(NLPDEs) by using different methods. Namely, Hirota bilinear method [10], physical
information neural network (PINN) method [11], Riccati equation expansion method, and
Jacobian elliptic equation expansion method [12], semi-inverse variational principle [13],
improved adomian decomposition method [14], undetermined coefficients method [15],
modified simple equation scheme, and trial equation approach [16], ansatz approach [17],
tanh-coth scheme [18], the mapping method based on a Riccati equation [19], and others.
Recently, there are new applications of NLSEs such as, the physical information neural net-
work [20], the waveguide amplifier [21], the breather solutions in different planes [22], the
comprehended dynamics of solitary waves in the local case [23], and the anti-interference
ability of stable solutions [24]. Recently, a number of articles on stochasticity have been
published [25–35].

In the article [36], the authors discussed the wick-type stochastic NLSE using the
Hirota method combined with the Hermite transformation; howver, in our present article,
we have discussed the stochastic resonant NLSE in the itô sense using the new auxiliary
equation method. These two governing models are absolutely different.
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The current paper focuses on studying the dimensionless form of the stochastic reso-
nant NLSE with both STD and IMD having multiplicative noise in the itô sense with seven
different kinds of nonlinear forms. In the recent corresponding Itô calculus, the soliton
solutions will be deduced by using the new auxiliary equation method.

Governing Model

The dimensionless form of the stochastic resonant NLSE with both STD and IMD
having multiplicative noise in the itô sense is introduced, for the first time, as

iΦt + aΦxx + bΦxt + F
(
|Φ|2

)
Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (1)

where Φ = Φ(x, t) is a complex-valued function symbolizes the wave profile, a, b, γ, δ,
and σ are real-valued constants with i =

√
−1. The first term of Equation (1) is the linear

temporal evolution, also the chromatic dispersion (CD) and STD terms are symbolized by a
and b, respectively. Next, F

(
|Φ|2

)
is the functional which represents the nonlinearity forms,

while γ is the coefficient of resonant nonlinearity, and δ is coefficient of IMD. Finally, σ is the

coefficient of noise strength and W(t) is the standard Wiener tactic such that
dW(t)

dt
is the

white noise. Without noise (σ = 0), Equation (1) reduces to the well-known resonant NLSE
with both STD and IMD which has been previously studied in [7,8]. The motivation for

adding the stochastic term σ(Φ− ibΦx)
dW(t)

dt
to Equation (1) is to formulate the stochastic

differential equation with noise or fluctuations depending on the time, which has been
recognized in many areas via physics, engineering, biology, chemistry, and so on.

The purpose of the present paper is to derive bright, dark, and singular soliton
solutions for Equation (1) with seven various forms of nonlinearity, namely, Kerr law,
power law, parabolic law, dual-power law, quadratic-cubic law, polynomial law, and
triple-power law by using the new auxiliary equation technique.

In Section 2, we will construct the mathematical analysis for Equation (1). In Sections 3–9,
we will establish seven laws of nonlinearities mentioned above for Equation (1) and solving
them by using the new auxiliary equation method. In Section 10, conclusions will be presented.

2. Mathematical Analysis

In order to solve the stochastic Equation (1), we use a wave transformation involving
the noise coefficient σ and the Wiener process W(t) in the form

Φ(x, t) = g(z) ei[−κx+ωt+σW(t)−σ2t], (2)

and
z = x− vt, (3)

where κ, ω, and v are real constants. Thus, the real function g(z) represents the pulse
shape, while κ, ω, and v symbolize to soliton frequency, wave number and soliton velocity,
respectively. Inserting (2) and (3) in Equation (1), one deduces

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + F

(
g2
)

g = 0, (4)

and [
−v− 2aκ + bκv + b

(
ω− σ2

)
− δ
]

g′ = 0. (5)

which represent the real and imaginary parts, respectively. From Equation (5), the soliton
velocity is obtained as

v =
b
(
ω− σ2)− 2aκ − δ

1− bκ
, (6)
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provided
bκ 6= 1. (7)

In the next sections, we will solve Equation (4) when F
(
Φ2) takes seven forms of

nonlinearities.

3. Kerr Law

To this end, the nonlinearity form of the Kerr law is specified by

F
(

g2
)
= cg2, (8)

such that c is a non-zero constant. Equation (1) using (8) becomes

iΦt + aΦxx + bΦxt + c|Φ|2Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (9)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + cg3 = 0. (10)

Now, we will employ the following method to solve Equation (10).

New Auxiliary Equation Approach

To use this method (see [37]), we allow the solution of Equation (10) to be

g(z) =
N

∑
m=0

HmQm(z), (11)

as long as Q(z) satisfies the ODE

Q′2(z) =
M

∑
h=0

rhQh(z), M 6 8, (12)

where Hm and rh are constants, such that HN 6= 0, rM 6= 0 and N is the balance number
which is determined from the formula

D
[

gjg(l)
]
= N(j + 1) + l

(
M
2 − 1

)
.

Set M = 8, one gets
D
[

gjg(l)
]
= N(j + 1) + 3l, (13)

which means D(g) = N, D
(

g2) = 2N, D(g′) = N + 3, D(g′′) = N + 6 and so on.
The current method derives the solutions of Equation (12) as

Family-1 . If r0 = r1 = r3 = r4 = r6 = r7 = 0, r2 > 0, then one gets
(I) Bright soliton solutions

Q(z) =

 2εr2√
r2

5 − 4r2r8 cosh(3
√

r2z)− εr5


1
3

, (14)

provided r2
5 − 4r2r8 > 0 and ε = ±1.
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(II) Singular soliton solutions

Q(z) =

 2εr2√
−
(
r2

5 − 4r2r8
)

sinh(3
√

r2z)− εr5


1
3

, (15)

provided r2
5 − 4r2r8 < 0 and ε = ±1.

Family-2. If r0 = r1 = r3 = r4 = r6 = r7 = 0, r2 > 0 and r8 =
r2

5
4r2

, then one gets

(I) Dark soliton solutions

Q(z) =
{
− r2

r5

[
1± tanh

( 3
2
√

r2z
)]} 1

3
. (16)

(II) Singular soliton solutions

Q(z) =
{
− r2

r5

[
1± coth

( 3
2
√

r2z
)]} 1

3
. (17)

As a result, by using (13), we balance g′′ and g3 in Equation (10), to derive N = 3. Conse-
quently, from (11), the solution of Equation (10) has the form

g(z) = H0 + H1Q(z) + H2Q2(z) + H3Q3(z), (18)

where Hm(m = 0, 1, 2, 3) are constants and H3 6= 0. Substituting (18) and (12) with M = 8
into Equation (10), one derives the following algebraic equations,

18(a− bv + γ)H3r8 + cH3
3 = 0,

20(a− bv + γ)H2r8 + 6cH2H2
3 + 33(a− bv + γ)H3r7 = 0,

(a− bv + γ)[4H2r0 + H1r1] + 2cH3
0 + 2H0

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
= 0,

3cH2
2 H3 + (a− bv + γ)(4H1r8 + 9H2r7 + 15H3r6) + 3cH1H2

3 = 0,

3cH2
0 H1 + (a− bv + γ)(6H3r0 + 3H2r1 + H1r2) +

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
H1 = 0,

3(a− bv + γ)H1r3 + 15(a− bv + γ)H3r1 + 6cH0H2
1 + 6cH2

0 H2
+2
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
H2 + 8(a− bv + γ)H2r2 = 0,

3cH2
1 H3 + [12H3r4 + 7H2r53H1r6](a− bv + γ) + 3cH1H2

2 + 6cH0H2H3 = 0,

6cH0H2
3 + 2cH3

2 + [7H1r7 + 27H3r5 + 16H2r6](a− bv + γ) + 12cH1H2H3 = 0,

12cH0H1H3 + 6cH2
1 H2 + 6cH0H2

2 + [5H1r5 + 12H2r4 + 21H3r3](a− bv + γ) = 0,[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
H3 + (5H2r3 + 9H3r2)(a− bv + γ) + cH3

1 + 6cH0H1H2
+3cH2

0 H3 + 2(a− bv + γ)H1r4 = 0.



(19)

Thus, we utilize the following types of solutions:
Type-1. Set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (19) and solving them by

using the Maple, one secures

H0 = 0, H1 = 0, H2 = 0, H3 = 3
√
− 2(a−bv+γ)r8

c , r2 = − (ω−σ2)(bκ−1)−aκ2−δκ

9(a−bv+γ)
, r5 = 0, r8 = r8, (20)
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provided c(a− bv + γ)r8 < 0. Consequently, inserting (20) along with (14) and (15) into
Equation (18), one deduces the solutions of Equation (9) as
(I) Bright soliton solutions

Φ(x, t) = ±
√
− 2[(ω−σ2)(bκ−1)−aκ2−δκ]

c sech

[√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

]
ei[−κx+ωt+σW(t)−σ2t], (21)

provided
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
c < 0 and (a− bv + γ)

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
< 0. (see Figure 1)
(II) Singular soliton solutions

Φ(x, t) = ±
√

2[(ω−σ2)(bκ−1)−aκ2−δκ]
c csch

[√
− [(ω−σ2)(bκ−1)−aκ2−δκ]

a−bv+γ (x− vt)

]
ei[−κx+ωt+σW(t)−σ2t], (22)

provided
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
c > 0 and (a− bv + γ)

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
< 0. (see Figure 2)

Figure 1. Plot of the bright soliton solution (21) with a = 0.2, b = 0.35, c = 0.4, δ = 0.5, κ = 0.25,
ω = 0.6, σ = 0.35, v = −0.4743835616, γ = 0.5, and −10 ≤ x, t ≤ 10.

Figure 2. Plot of the singular soliton solution (22) with a = 0.2, b = 0.35, c = −0.4, δ = 0.5, κ = 0.25,
ω = 0.6, σ = 0.35, v = −0.4743835616, γ = 0.5, and −10 ≤ x, t ≤ 10.
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Type-2. Set r0 = r1 = r3 = r4 = r6 = r7 = 0 and r8 =
r2

5
4r2

, in Equation (19) and solving
them by using the Maple, one obtains

E0 =

√
− (ω−σ2)(bκ−1)−aκ2−δκ

c , E1 = 0, E2 = 0, E3 = 9r5(a−bv+γ)
2[(ω−σ2)(bκ−1)−aκ2−δκ]

√
− (ω−σ2)(bκ−1)−aκ2−δκ

c ,

r2 =
2[(ω−σ2)(bκ−1)−aκ2−δκ]

9(a−bv+γ)
, r5 = r5,

(23)

provided c
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
< 0 and (a− bv + γ) 6= 0. Consequently, in-

serting (23) along with (16) and (17) into Equation (18), one deduces the solutions of
Equation (9) as
(I) Dark soliton solutions (see Figure 3)

Φ(x, t) = ±
√
− (ω−σ2)(bκ−1)−aκ2−δκ

c tanh

[√
(ω−σ2)(bκ−1)−aκ2−δκ

2(a−bv+γ) (x− vt)

]
ei[−κx+ωt+σW(t)−σ2t], (24)

(II) Singular soliton solutions (see Figure 4)

Φ(x, t) = ±
√
− (ω−σ2)(bκ−1)−aκ2−δκ

c coth

[√
(ω−σ2)(bκ−1)−aκ2−δκ

2(a−bv+γ) (x− vt)

]
ei[−κx+ωt+σW(t)−σ2t], (25)

provided c
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
< 0 and (a− bv + γ)

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
> 0.

Figure 3. Plot of the dark soliton solution (24) with a = 0.2, b = 0.35, c = 0.4, δ = 0.5, κ = 0.25,
ω = 0.6, σ = 0.35, v = −0.4743835616, γ = −0.5, and −10 ≤ x, t ≤ 10.
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Figure 4. Plot of the singular soliton solution (25) with a = 0.2, b = 0.35, c = 0.4, δ = 0.5, κ = 0.25,
ω = 0.6, σ = 0.35, v = −0.4743835616, γ = −0.5, and −10 ≤ x, t ≤ 10.

4. Power Law

To this aim, the nonlinearity form of the power law is specified by

F
(

g2
)
= cg2n, (26)

such that c is a non-zero constant and n is the power nonlinearity parameter. Equation (1)
using (26) becomes

iΦt + aΦxx + bΦxt + c|Φ|2nΦ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (27)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + cg2n+1 = 0. (28)

By using (13), we balancing g′′ and g2n+1 in Equation (28), to derive N = 3
n . Since N is not

integer, then one takes

g(z) = [ϕ(z)]
3
n , (29)

as long as ϕ(z) > 0. Inserting (29) into Equation (28) obtains

3(a− bv + γ)
[
nϕϕ′′ + (3− n)ϕ′2

]
+ n2

[(
ω− σ2

)
(bκ − 1)− aκ2 − δκ

]
ϕ2 + n2cϕ8 = 0.

(30)
Now, we will employ the following method to solve Equation (30).

New Auxiliary Equation Approach

As a result, by using (13), we balance ϕϕ′′ and ϕ8 in Equation (30), deriving N = 1.
Consequently, from (11), the solution of Equation (30) has the form

ϕ(z) = H0 + H1Q(z), (31)

where Hm(m = 0, 1) are constants and H1 6= 0. Substituting (31) and (12) with M = 8 into
Equation (30), one derives the following algebraic equations,
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cn2H8
1 + 9(n + 1)(a− bv + γ)H2

1r8 = 0,

16cn2H0H7
1 +

[
3(5n + 3)H2

1r7 + 12H1nH0r8
]
(a− bv + γ) = 0,

112cn2H5
0 H3

1 +
[
3(n + 6)H2

1r3 + 12H1nH0r4
]
(a− bv + γ) = 0,

3(a− bv + γ)
[
H2

1r4(n + 3) + 5H1nH0r5
]
+ 140cn2H4

0 H4
1 = 0,[

9H1nH0r3 + 18H2
1r2
]
(a− bv + γ) +

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
n2H2

1 + 28cn2H6
0 H2

1 = 0,

112cn2H3
0 H5

1 +
[
9H2

1 nr5 + 18H1nH0r6 + 18H2
1r5
]
(a− bv + γ) = 0,

56cn2H2
0 H6

1 +
[
21H1nH0r7 + 12H2

1 nr6 + 18H2
1r6
]
(a− bv + γ) = 0,

2
[(

ω− σ2)(bκ − 1)− aκ2 − δκ + cH6
0
]
n2H2

0 +
[
6H2

1r0(3− n) + 3H1nH0r1
]
(a− bv + γ) = 0,

3H1[2nH0r2 + (6− n)H1r1](a− bv + γ) + 4n2H0H1
[(

ω− σ2)(bκ − 1)− aκ2 − δκ + 4cH6
0
]
= 0.



(32)

Thus, we utilize the following type of solutions:
Type-1. Set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (32) and, solving them by

using the Maple, obtaining

H0 = 0, H1 =
[
− 9(n+1)(a−bv+γ)r8

n2c

] 1
6 , r2 = − n2[(ω−σ2)(bκ−1)−aκ2−δκ]

9(a−bv+γ)
, r5 = 0, r8 = r8, (33)

provided c(a− bv + γ)r8 < 0. Consequently, inserting (33) along with (14) and (15) into
Equation (31), one deduces the solutions of Equation (27) as
(I) Bright soliton solutions

Φ(x, t) =

{
±
√
− (n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

c sech

[
n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

(a−bv+γ) (x− vt)

]} 1
n

ei[−κx+ωt+σW(t)−σ2t], (34)

provided
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
c < 0 and (a− bv + γ)

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
< 0.
(II) Singular soliton solutions

Φ(x, t) =

{
±
√

(n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]
c csch

[
n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

(a−bv+γ) (x− vt)

]} 1
n

ei[−κx+ωt+σW(t)−σ2t], (35)

provided
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
c > 0 and (a− bv + γ)

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
< 0.

5. Parabolic Law

To this aim, the nonlinearity form of the parabolic law is specified by

F
(

g2
)
= c1g2 + c2g4, (36)

where c1 and c2 are constants and c2 6= 0. Equation (1) using (36) becomes

iΦt + aΦxx + bΦxt +
(

c1|Φ|2 + c2|Φ|4
)

Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (37)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + c1g3 + c2g5 = 0. (38)
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By using (13), we balancing g′′ and g5 in Equation (38), to derive N = 3
2 . Since N is not

integer, one then takes

g(z) = [ϕ(z)]
3
2 , (39)

as long as ϕ(z) > 0. Inserting (39) into Equation (38) obtains

3(a− bv + γ)
[
2ϕϕ′′ + ϕ′2

]
+ 4
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
ϕ2 + 4c1 ϕ5 + 4c2 ϕ8 = 0. (40)

Next, we employ the following method to solve Equation (40).

New Auxiliary Equation Approach

As a result, by using (13), we balance ϕϕ′′ and ϕ8 in Equation (40), to get N = 1.
Consequently, from (11), the solution of Equation (40) has the same form (31). Substituting
(31) and (12) with M = 8 into Equation (40), one derives the following algebraic equations,

4c2H8
1 + 27(a− bv + γ)H2

1r8 = 0,

21(a− bv + γ)
(

H2
1r6 + H1H0r7

)
+ 112c2H2

0 H6
1 = 0,

32c2H0H7
1 + 24(a− bv + γ)

(
H1H0r8 + H2

1r7
)
= 0,

18(a− bv + γ)
(

H2
1r5 + H1H0r6

)
+ 224c2H3

0 H5
1 + 4c1H5

1 = 0,

20c1H0H4
1 + 280c2H4

0 H4
1 + 15(a− bv + γ)

(
H1H0r5 + H2

1r4
)
= 0,

40c1H2
0 H3

1 + 224c2H5
0 H3

1 + 12(a− bv + γ)
(

H2
1r3 + 12H1H0r4

)
= 0,

6(a− bv + γ)
(

H2
1r1 + H1H0r2

)
+ 20c1H4

0 H1 + 8
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
H0H1 + 32c2H7

0 H1 = 0,

40c1H3
0 H2

1 + 4
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
H2

1 + 112c2H6
0 H2

1 + 9
(

H2
1r2 + H1H0r3

)
(a− bv + γ) = 0,

3(a− bv + γ)
(

H1H0r1 + H2
1r0
)
+ 4
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
H2

0 + 4c1H5
0 + 4c2H8

0 = 0



(41)

Thus, we utilize the following types of solutions:
Type-1. Set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (41) and solving them by

using the Maple, one obtains

H0 = 0, H1 =
[
− 27(a−bv+γ)r8

4c2

] 1
6 , r2 = − 4[(ω−σ2)(bκ−1)−aκ2−δκ]

9(a−bv+γ)
, r5 = − c1

(a−bv+γ)

√
− (a−bv+γ)r8

3c2
, r8 = r8, (42)

provided c2(a− bv + γ)r8 < 0. Consequently, inserting (42) along with (14) and (15) into
Equation (31), one deduces the solutions of Equation (37) as
(I) Bright soliton solutions

Φ(x, t) =


12[(ω−σ2)(bκ−1)−aκ2−δκ]

±
√

9c2
1−48c2[(ω−σ2)(bκ−1)−aκ2−δκ] cosh

[
2

√
− (ω−σ2)(bκ−1)−aκ2−δκ

(a−bv+γ)
(x−vt)

]
−3c1


1
2

ei[−κx+ωt+σW(t)−σ2t], (43)

provided 9c2
1− 48c2[(ω− σ2)(bκ− 1)− aκ2− δκ] > 0 and (a− bv + γ)[(ω− σ2)(bκ− 1)−

aκ2 − δκ] < 0.
(II) Singular soliton solutions

Φ(x, t) =


12[(ω−σ2)(bκ−1)−aκ2−δκ]

±
√
−(9c2

1−48c2[(ω−σ2)(bκ−1)−aκ2−δκ]) sinh

[
2

√
− (ω−σ2)(bκ−1)−aκ2−δκ

(a−bv+γ)
(x−vt)

]
−3c1


1
2

ei[−κx+ωt+σW(t)−σ2t], (44)
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provided 9c2
1− 48c2[(ω− σ2)(bκ− 1)− aκ2− δκ] < 0 and (a− bv + γ)[(ω− σ2)(bκ− 1)−

aκ2 − δκ] < 0.

Type-2. Set r0 = r1 = r3 = r4 = r6 = r7 = 0 and r8 =
r2

5
4r2

, in Equation (41) and solving
them by using the Maple, one obtains

H0 = 0, H1 =

[
243(a−bv+γ)2r2

5
64c2[(ω−σ2)(bκ−1)−aκ2−δκ]

] 1
6
, r2 = − 4[(ω−σ2)(bκ−1)−aκ2−δκ]

9(a−bv+γ)
, r5 = r5, (45)

and

c1 = −4c2

√
(ω− σ2)(bκ − 1)− aκ2 − δκ

3c2
, (46)

provided c2
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
> 0 and (a− bv + γ) 6= 0. Consequently, in-

serting (45) along with (16) and (17) into Equation (31), one deduces the solutions of
Equation (37) as:
(I) Dark soliton solution

Φ(x, t) =

{
1
2

√
3[(ω−σ2)(bκ−1)−aκ2−δκ]

c2

(
1 + tanh

[√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

])} 1
2

ei[−κx+ωt+σW(t)−σ2t], (47)

(II) Singular soliton solution

Φ(x, t) =

{
1
2

√
3[(ω−σ2)(bκ−1)−aκ2−δκ]

c2

(
1 + coth

[√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

])} 1
2

ei[−κx+ωt+σW(t)−σ2t], (48)

provided c2[(ω− σ2)(bκ − 1)− aκ2 − δκ] > 0 and (a− bv + γ)[(ω− σ2)(bκ − 1)− aκ2 −
δκ] < 0.

6. Dual Power Law

To this aim, the nonlinearity form of the dual power law is specified by

F
(

g2n
)
= c1g2n + c2g4n, (49)

where c1 and c2 are constants and c2 6= 0. Equation (1) using (49) becomes

iΦt + aΦxx + bΦxt +
(

c1|Φ|2n + c2|Φ|4n
)

Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (50)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + c1g2n+1 + c2g4n+1 = 0. (51)

By using (13), we balancing g′′ and g4n+1 in Equation (51), to derive N = 3
2n . Since N is not

integer, then one takes

g(z) = [ϕ(z)]
3

2n , (52)

as long as ϕ(z) > 0. Inserting (52) into Equation (51) yields

3(a− bv + γ)
[
2nϕϕ′′ + (3− 2n)ϕ′2

]
+ 4n2

[(
ω− σ2

)
(bκ − 1)− aκ2 − δκ

]
ϕ2 + 4n2c1 ϕ5 + 4n2c2 ϕ8 = 0. (53)

Next, we will employ the following method to solve Equation (53).
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New Auxiliary Equation Approach

As a result, by using (13), we balance ϕϕ′′ and ϕ8 in Equation (53), to get N = 1.
Consequently, from (11), the solution of Equation (53) has the same form (31). Substituting
(31) and (12) with M = 8 into Equation (53), one derives the following algebraic equations,

9(a− bv + γ)(2n + 1)H2
1r8 + 4c2n2H8

1 = 0,

3(a− bv + γ)
[
H2

1r6(4n + 3) + 7nH1H0r7
]
+ 112c2n2H2

0 H6
1 = 0,

3(a− bv + γ)
[
H2

1r7(5n + 3) + 8nH1H0r8
]
+ 32c2n2H0H7

1 = 0,

4
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
n2H2

1 + (a− bv + γ)
(
9H2

1r2 + 9H1nH0r3
)

+8
(
14c2H3

0 + 5c1
)
n2H3

0 H2
1 = 0,

4n2H5
1
(
c1 + 56c2H3

0
)
+
(
9H2

1r5 + 9H2
1 nr5 + 18H1nH0r6

)
(a− bv + γ) = 0,

20n2H0H4
1
(
14c2H3

0 + c1
)
+ (a− bv + γ)

[
3(2n + 3)H2

1r4 + 15nH1H0r5
]
= 0,

224c2n2H5
0 H3

1 + 40c1n2H2
0 H3

1 +
(
3H2

1 nr3 + 12H1nH0r4 + 9H2
1r3
)
(a− bv + γ) = 0,

+4c1n2H5
0 + 4c2n2H8

0 + (a− bv + γ)
(
3H1nH0r1 − 6H2

1 nr0 + 9H2
1r0
)

+4
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
n2H2

0 = 0,[
6H1nH0r2 + 3(3− n)H2

1r1
]
(a− bv + γ) + 20c1n2H4

0 H1 + 32c2n2H7
0 H1

+8
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
n2H0H1 = 0.



(54)

Thus, we utilize the following types of solutions:
Type-1. Set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (54) and solving it by using

the Maple, one obtains

H0 = 0, H1 =
[
− 9(2n+1)(a−bv+γ)r8

4n2c2

] 1
6 , r2 = − 4n2[(ω−σ2)(bκ−1)−aκ2−δκ]

9(a−bv+γ)
,

r5 = − 2nc1
3(1+n)(a−bv+γ)

√
− (2n+1)(a−bv+γ)r8

c2
, r8 = r8,

(55)

provided c2(a− bv + γ)r8 < 0. Consequently, inserting (55) along with (14) and (15) into
Equation (31), one deduces the solutions of Equation (50) as
(I) Bright soliton solutions

Φ(x, t) =


2(1+n)(2n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

±
√

(2n+1)2c2
1−4(1+n)2(2n+1)c2[(ω−σ2)(bκ−1)−aκ2−δκ] cosh

[
2n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x−vt)

]
−(2n+1)c1


1

2n

×ei[−κx+ωt+σW(t)−σ2t],

(56)

provided (2n + 1)c2
1− 4(1+ n)2c2[(ω− σ2)(bκ− 1)− aκ2− δκ] > 0 and (a− bv + γ)[(ω−

σ2)(bκ − 1)− aκ2 − δκ] < 0.
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(II) Singular soliton solutions

Φ(x, t) =


2(1+n)(2n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

±
√
−{(2n+1)2b2

1−4(1+n)2(2n+1)b2[(ω−σ2)(bκ−1)−aκ2−δκ]} sinh

[
2n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

(a−bv+γ)
(x−vt)

]
−(2n+1)c1


1

2n

×ei[−κx+ωt+σW(t)−σ2t],

(57)

provided (2n + 1)c2
1− 4(1+ n)2c2[(ω− σ2)(bκ− 1)− aκ2− δκ] < 0 and (a− bv + γ)[(ω−

σ2)(bκ − 1)− aκ2 − δκ] < 0.

Type-2. Set r0 = r1 = r3 = r4 = r6 = r7 = 0 and r8 =
r2

5
4r2

, in Equation (54) and solving
them by using the Maple, one obtains

H0 = 0, H1 =

[
81(2n+1)(a−bv+γ)2r2

5
64n4[(ω−σ2)(bκ−1)−aκ2−δκ]c2

] 1
6
, r2 = − 4n2[(ω−σ2)(bκ−1)−aκ2−δκ]

9(a−bv+γ)
, r5 = r5, (58)

and

c1 = −2(n + 1)c2

√
(ω−σ2)(bκ−1)−aκ2−δκ

(2n+1)c2
, (59)

provided c2
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
> 0 and (a− bv + γ) 6= 0. Now, substituting

(58) along with (16) and (17) into Equation (31), one derives
(I) Dark soliton solution

Φ(x, t) =

{
1
2

√
(2n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

c2

(
1 + tanh

[
n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

])} 1
2n

ei[−κx+ωt+σW(t)−σ2t], (60)

(II) Singular soliton solution

Φ(x, t) =

{
1
2

√
(2n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

c2

(
1 + coth

[
n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

])} 1
2n

ei[−κx+ωt+σW(t)−σ2t], (61)

provided c2[(ω− σ2)(bκ − 1)− aκ2 − δκ] > 0 and (a− bv + γ)[(ω− σ2)(bκ − 1)− aκ2 −
δκ] < 0.

7. Quadratic–Cubic Law

To this end, the nonlinearity form of the quadratic–cubic law is specified by

F
(

g2
)
= c1g + c2g2, (62)

where c1 and c2 are constants. Equation (1) using (62) becomes

iΦt + aΦxx + bΦxt +
(

c1|Φ|+ c2|Φ|2
)

Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (63)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + c1g2 + c2g3 = 0. (64)

Next, we will employ the following method to solve Equation (64).
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New Auxiliary Equation Approach

As a result, by using (13), we balance g′′ and g3 in Equation (64), to get N = 3.
Consequently, from (11), the solution of Equation (64) has the same form (18). Substituting
(18) and (12) with M = 8 into Equation (64), one derives the following algebraic equations,

18(a− bv + γ)H3r8 + c2H3
3 = 0,

(a− bv + γ)(20H2r8 + 33H3r7) + 6c2H2H2
3 = 0,

2H0
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
+ 2c1H2

0 + 2c2H3
0 + (4H2r0 + H1r1)(a− bv + γ) = 0,

3c2H1H2
3 + (15H3r6 + 9H2r7 + 4H1r8)(a− bv + γ) + 3c2H2

2 H3 = 0,

2c1H0H1 +
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
H1 + 3c2H2

0 H1 + (a− bv + γ)(6H3r0 + 3H2r1 + H1r2) = 0,

6c2H0H2H3 + 3c2H1H2
2 + 3c2H2

1 H3 + 2c1H2H3 + (12H3r4 + 3H1r6 + 7H2r5)(a− bv + γ) = 0,

6c2H0H2
3 + 2c2H3

2 + 12c2H1H2H3 + (a− bv + γ)(16H2r6 + 7H1r7 + 27H3r5) + 2c1H2
3 = 0,

(8H2r2 + 3H1r3 + 15H3r1)(a− bv + γ) + 2c1H2
1 + 2H2

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
+6c2H2

0 H2 + 4c1H0H2 + 6c2H0H2
1 = 0,

12c2H0H1H3 + (a− bv + γ)(21H3r3 + 12H2r4 + 5H1r5) + 4c1H1H3 + 6c2H0H2
2

+6c2H2
1 H2 + 2c1H2

2 = 0,

2c1H1H2 + 3c2H2
0 H3 + c2H3

1 + 6c2H0H1H2 +
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
H3

+2c1H0H3 + (2H1r4 + 5H2r3 + 9)(a− bv + γ)H3r2 = 0



(65)

Thus, we utilize the following types of solutions:
Type-1. Set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (65) and solving them by

using the Maple, one obtains

H0 = 0, H1 = 0, H2 = 0, H3 = 3
√
− 2(a−bv+γ)r8

c2
, r2 = − (ω−σ2)(bκ−1)−aκ2−δκ

9(a−bv+γ)
, r5 = − 2c1

9

√
− 2r8

(a−bv+γ)c2
, r8 = r8, (66)

provided c2(a− bv + γ)r8 < 0. Consequently, inserting (66) along with (14) and (15) into
Equation (18), one deduces the solutions of Equation (63) as:
(I) Bright soliton solutions

Φ(x, t) =


6[(ω−σ2)(bκ−1)−aκ2−δκ]

±
√

4c2
1−18c2[(ω−σ2)(bκ−1)−aκ2−δκ] cosh

[√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x−vt)

]
−2c1

 ei[−κx+ωt+σW(t)−σ2t], (67)

provided 4c2
1− 18c2[(ω− σ2)(bκ− 1)− aκ2− δκ] > 0 and (a− bv + γ)[(ω− σ2)(bκ− 1)−

aκ2 − δκ] < 0.
(II) Singular soliton solutions

Φ(x, t) =


6[(ω−σ2)(bκ−1)−aκ2−δκ]

±
√
−{4c2

1−18c2[(ω−σ2)(bκ−1)−aκ2−δκ]} sinh

[√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x−vt)

]
−2c1

 ei[−κx+ωt+σW(t)−σ2t], (68)

provided 4c2
1− 18c2[(ω− σ2)(bκ− 1)− aκ2− δκ] < 0 and (a− bv + γ)[(ω− σ2)(bκ− 1)−

aκ2 − δκ] < 0.
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Type-2. Set r0 = r1 = r3 = r4 = r6 = r7 = 0 and r8 =
r2

5
4r2

, in Equation (65) and solving
them by using the Maple, one obtains

H0 = 0, H1 = 0, H2 = 0, H1 = − 27(a−bv+γ)r5
2c1

, r2 = − (ω−σ2)(bκ−1)−aκ2−δκ

9(a−bv+γ)
, r5 = r5, (69)

and

c2 =
2c2

1
9[(ω− σ2)(bκ − 1)− aκ2 − δκ]

, (70)

provided
(
ω− σ2)(bκ − 1)− aκ2 − δκ 6= 0 and (a− bv + γ) 6= 0. Consequently, inserting

(69) along with (16) and (17) into Equation (18), one deduces the solutions of Equation (63)
as
(I) Dark soliton solution

Φ(x, t) = − 3[(ω−σ2)(bκ−1)−aκ2−δκ]
2c1

(
1 + tanh

[
1
2

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

])
ei[−κx+ωt+σW(t)−σ2t], (71)

(II) Singular soliton solution

Φ(x, t) = − 3[(ω−σ2)(bκ−1)−aκ2−δκ]
2c1

(
1 + coth

[
1
2

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

])
ei[−κx+ωt+σW(t)−σ2t], (72)

provided c1 6= 0 and (a− bv + γ)
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
< 0.

8. Polynomial Law

To this end, the nonlinearity form of the polynomial law is specified by

F
(

g2
)
= c1g2 + c2g4 + c3g6, (73)

where c1, c2 and c3 are constants and c3 6= 0. Equation (1) using (73) becomes

iΦt + aΦxx + bΦxt +
(

c1|Φ|2 + c2|Φ|4 + c3|Φ|6
)

Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (74)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + c1g3 + c2g5 + c3g7 = 0. (75)

Next, we will employ the following method to solve Equation (75).

New Auxiliary Equation Approach

As a result, by using (13), we balance g′′ and g7 in Equation (75), to get N = 1.
Consequently, from (11), the solution of Equation (75) has the form

g(z) = H0 + H1Q(z), (76)

where Hm(m = 0, 1) are constants and H1 6= 0. Substituting (76) and (12) with M = 8 into
Equation (75), one derives the following algebraic equations,
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c3H7
1 + 4(a− bv + γ)H1r8 = 0,

14c3H0H6
1 + 7(a− bv + γ)H1r7 = 0,

10c2H0H4
1 + 5(a− bv + γ)H1r5 + 70c3H3

0 H4
1 = 0,

21c3H2
0 H5

1 + c2H5
1 + 3(a− bv + γ)H1r6 = 0,

c1H3
1 + 10c2H2

0 H3
1 + 35c3H4

0 H3
1 + 2(a− bv + γ)H1r4 = 0,

20c2H3
0 H2

1 + 3(a− bv + γ)H1r3 + 42c3H5
0 H2

1 + 6c1H0H2
1 = 0,

2c2H5
0 + 2c3H7

0 + (a− bv + γ)H1r1 + 2H0
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
+ 2c1H3

0 = 0,

5c2H4
0 H1 +

[(
ω− σ2)(bκ − 1)− aκ2 − δκ

]
H1 + (a− bv + γ)H1r2 + 7c3H6

0 H1 + 3c1H2
0 H1 = 0



(77)

Thus, set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (77) and solving them by using the
Maple, one obtains

H0 = 0, H1 =

[
−4(a− bv + γ)r8

c3

] 1
6
, r2 = −

(
ω− σ2)(bκ − 1)− aκ2 − δκ

a− bv + γ
, r5 = 0, r8 = r8, (78)

and
c1 = 0, c2 = 0, (79)

provided c3(a− bv + γ)r8 < 0. Consequently, inserting (78) along with (14) and (15) into
Equation (76), one deduces the solutions of Equation (74) as:
(I) Bright soliton solutions

Φ(x, t) =

{
2

√
− (ω−σ2)(bκ−1)−aκ2−δκ

c3
sech

[
3

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

]} 1
3

ei[−κx+ωt+σW(t)−σ2t], (80)

provided c3[(ω− σ2)(bκ − 1)− aκ2 − δκ] < 0 and (a− bv + γ)[(ω− σ2)(bκ − 1)− aκ2 −
δκ] < 0.
(II) Singular soliton solutions

Φ(x, t) =

{
2

√
(ω−σ2)(bκ−1)−aκ2−δκ

c3
csch

[
3

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

]} 1
3

ei[−κx+ωt+σW(t)−σ2t], (81)

provided c3[(ω− σ2)(bκ − 1)− aκ2 − δκ] > 0 and (a− bv + γ)[(ω− σ2)(bκ − 1)− aκ2

− δκ] < 0.

9. Triple-Power Law

To this end, the nonlinearity form of the triple-power law is specified by

F
(

g2
)
= c1g2n + c2g4n + c3g6n, (82)

where c1, c2, and c3 are constants and c3 6= 0. Equation (1) using (82) becomes

iΦt + aΦxx + bΦxt +
(

c1|Φ|2n + c2|Φ|4n + c3|Φ|6n
)

Φ + γ

(
|Φ|xx
|Φ|

)
Φ + σ(Φ− ibΦx)

dW(t)
dt

= iδΦx, (83)

Thus, Equation (4) takes the form

(a− bv + γ)g′′ +
[(

ω− σ2
)
(bκ − 1)− aκ2 − δκ

]
g + c1g2n+1 + c2g4n+1 + c3g6n+1 = 0. (84)
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By using (13), we balancing g′′ and g7n+1 in Equation (84), to derive N = 1
n . Since N is not

integer, one then takes

g(z) = [ϕ(z)]
1
n , (85)

as long as ϕ(z) > 0. Inserting (85) into Equation (84) yields

(a− bv + γ)
[
nϕϕ′′ + (1− n)ϕ′2

]
+ n2

[(
ω− σ2

)
(bκ − 1)− aκ2 − δκ

]
ϕ2 + n2c1 ϕ4 + n2c2 ϕ6 + n2c6 ϕ8 = 0. (86)

Now, we will employ the following method to solve Equation (86).

New Auxiliary Equation Approach

As a result, by using (13), we balance ϕϕ′′ and ϕ8 in Equation (86), to get N = 1.
Consequently, from (11), the solution of Equation (86) has the same form (31). Substituting
(31) and (12) with M = 8 into Equation (86), one derives the next algebraic equations,

(a− bv + γ)H2
1r8 + n2H8

1 c3 + 3(a− bv + γ)H2
1 nr8 = 0,[

8H1nH0r8 + H2
1r7(1 + 5n)

]
(a− bv + γ) + 16n2H0H7

1 c3 = 0,

2n2H6
1 c2 + 56n2H2

0 c3H6
1 +

[
7H1nH0r7 + 2(2n + 1)H2

1r6
]
(a− bv + γ) = 0,

(a− bv + γ)
[
(3n + 2)H2

1r5 + 6H1nH0r6
]
+ 56n2H3

0 c3H5
1 + 6n2H0H5

1 c2 = 0,

2
(
28H4

0 c3 + 6c1 + 15H2
0 c2
)
n2H2

0 H2
1 +

(
3H1nH0r3 + 2H2

1r2
)
(a− bv + γ)

+2n2H2
1
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
= 0,[

4H1nH0r4 + (n + 2)H2
1r3
]
(a− bv + γ) + 8n2H3

1
(
5H3

0 c2 + H0c1 + 14H5
0 c3
)
= 0,

(a− bv + γ)
[
5H1nH0r5 + 2H2

1r4(n + 2)
]
+ 2n2H4

1
(
c1 + 15H2

0 c2H4
1 + 70H4

0 c3
)
= 0,[

2H2
1r0(1− n) + H1nH0r1

]
(a− bv + γ) + 2n2(H8

0 c3 + H6
0 c2 + H4

0 c1
)

+2n2H2
0
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
= 0,

[2nH0r2 + H1r1(2− n)](a− bv + γ) + 4n2(4H7
0 c3 + 2H3

0 c1 + 3H5
0 c2
)

+4n2H0
[(

ω− σ2)(bκ − 1)− aκ2 − δκ
]
= 0



(87)

Thus, set r0 = r1 = r3 = r4 = r6 = r7 = 0, in Equation (87) and solving them by using the
Maple, one obtains

H0 = 0, H1 =
[
− (1+3n)(a−bv+γ)r8

n2c3

] 1
6 , r2 = − n2[(ω−σ2)(bκ−1)−aκ2−δκ]

a−bv+γ , r5 = 0, r8 = r8, (88)

and
c1 = 0, c2 = 0, (89)

provided c3(a− bv + γ)r8 < 0. Consequently, inserting (88) along with (14) and (15) into
Equation (31), one deduces the solutions of Equation (83) as:
(I) Bright soliton solutions

Φ(x, t) =

{√
− (3n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

c3
sech

[
3n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

]} 1
3n

ei[−κx+ωt+σW(t)−σ2t], (90)

provided c3[(ω− σ2)(bκ − 1)− aκ2 − δκ] < 0 and (a− bv + γ)[(ω− σ2)(bκ − 1)− aκ2 −
δκ] < 0.
(II) Singular soliton solutions



Mathematics 2022, 10, 3197 17 of 18

Φ(x, t) =

{√
(3n+1)[(ω−σ2)(bκ−1)−aκ2−δκ]

c3
csch

[
3n

√
− (ω−σ2)(bκ−1)−aκ2−δκ

a−bv+γ (x− vt)

]} 1
3n

ei[−κx+ωt+σW(t)−σ2t], (91)

provided c3[(ω− σ2)(bκ − 1)− aκ2 − δκ] > 0 and (a− bv + γ)[(ω− σ2)(bκ − 1)− aκ2 −
δκ] < 0.

10. Conclusions

In this article, we found soliton solutions for the stochastic resonant NLSE (1) with the
spatio-temporal dispersion and inter-modal dispersion having multiplicative white noise
in the Itô sense. Our study is concentrated on the functional F

(
|Φ|2

)
, which takes seven

nonlinear forms, via Kerr law, power law, parabolic law, dual-power law, quadratic–cubic
law, polynomial law, and triple-power law. We have applied the new auxiliary equation
method to find the bright, dark, and singular soliton solutions of Equation (1) for these
seven nonlinear forms. Certain parameter constraints are involved to ensure the existence
of such solutions. The stochastic soliton solutions obtained in this article are accurate and
important in understanding physical phenomena. The effect of multiplicative noise on
these solutions has been illustrated using some graphical representations (see Figures 1–4).
Finally, our work is new and has a lot of openings that would lead to an abundance of new
results which are yet to be explored.
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