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Abstract: To deal with the estimation of the locally unique solutions of nonlinear systems in Banach
spaces, the local as well as semilocal convergence analysis is established for two higher order
iterative methods. The given methods do not involve the computation of derivatives of an order
higher than one. However, the convergence analysis was carried out in earlier studies by using the
assumptions on the higher order derivatives as well. Such types of assumptions limit the applicability
of techniques. In this regard, the convergence analysis is developed in the present study by imposing
the conditions on first order derivatives only. The central idea for the local analysis is to estimate the
bounds on convergence domain as well as the error approximations of the iterates along with the
formulation of sufficient conditions for the uniqueness of the solution. Based on the choice of initial
estimate in the given domain, the semilocal analysis is established, which ensures the convergence of
iterates to a unique solution in that domain. Further, some applied problems are tested to certify the
theoretical deductions.
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1. Introduction

Solving the problems in many branches of science and engineering, through the
process of mathematical modeling, is one of the major challenges in the field of applied
mathematics. Under some assumptions, a particular problem is modeled into a nonlinear
equation, or more general, a system of nonlinear equations, which can be expressed
mathematically as

F(x) = 0, (1)

where F : D ⊂ B → B1 is a nonlinear mapping, B and B1 are Banach spaces, and D is an
open convex subset of B. It should be noted, however, that obtaining the analytical or closed
form solutions of nonlinear systems is a challenging task. However, iterative methods
based on the fixed point theory [1–5] provide the approximate solutions in numerical form
up to the desired accuracy. Numerous iterative schemes have been developed in the given
context (for example, see [5–8] and references therein) and further investigated for their
convergence behavior in Banach spaces.

As a conventional approach, the convergence order of an iterative scheme is estimated
by employing the Taylor series expansions, which involve the set of assumptions on higher
order derivatives (F(n), n = 1, 2, ...). Such assumptions certainly limit the applicability of
techniques, since most of these involve derivatives only up to the first order. As a matter of
fact, consider an example of a real valued function F : D ⊆ R→ R, D = [−0.5 , 1.5], which
is defined by

F(x) =
{

x3 ln(x2) + x5 − x4, x 6= 0,
0, x = 0.
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Consequently,

F′(x) = 3x2 ln(x2) + 5x4 − 4x3 + 2x2,

F′′(x) = 6x ln(x2) + 20x3 − 12x2 + 10x,
and

F′′′(x) = 6 ln(x2) + 60x2 − 24x + 22.

Apparently, F′′′(x) is unbounded in the given domain D, and therefore, expanding
F(x) as the Taylor series might not be the suitable approach to analyze the convergence
behavior of an iterative technique.

Apart from the convergence order, the convergence behavior of an iterative method is
significantly affected by the selection of the initial approximation in the neighborhood of
the solution. An iterative scheme is classified as locally convergent if the convergence is
bound to happen only in the case of a sufficient proximity of initial estimate to the desired
solution, whereas the globally convergent schemes are not affected by the selection of a
initial estimate for their convergence. In contrary to the Taylor series approach, in recent
times, many authors have investigated the locally convergent techniques by imposing
assumptions only on the first order derivatives. The most appropriate methodologies
adopted in Banach spaces are local and semilocal convergence analysis [9–18]. Based on the
information around the solution, the local analysis provides the bounds on the convergence
domain and the error approximations of iterates along with the set of conditions for the
uniqueness of solution in the given domain. On the other hand, the semilocal analysis is
concerned about the convergence of an iterative scheme for a given initial estimate, which
particularly involves the study of majorizing sequences [9] that are established to further
formulate the sufficient conditions for the convergence of iterates. It is important to further
discuss the importance as well as the difference between the local and semilocal analysis
by stating:

(i) The local analysis requires information about the solution, whereas the semilocal
analysis utilizes information about the initial guess.

(ii) The local convergence results are crucial to study the convergence behavior, since
these results illustrate the degree of difficulty in choosing the initial guesses. However,
the semilocal results require the initial guess to be close enough to the solution so that
the sequence generated by the given method converges to it.

(iii) The local as well as semilocal analysis provide knowledge in advance about the
number of steps required to achieve the desired error tolerance level. Moreover, these
results provide the information about the uniqueness of the solution in the given
domain.

From this perspective, we shall investigate the local as well as semilocal convergence
of the sixth order iterative techniques, developed by Singh and Sharma [8], which are
denoted by ψ1 and ψ2 as follows.

Method-1 (ψ1): 
y(k) = x(k) − F′(x(k))−1F(x(k)),
z(k) = y(k) − F′(x(k))−1F(y(k)),

x(k+1) = z(k) − (3I − 3Tk + T2
k )F′(x(k))−1F(z(k)).

(2)

Method-2 (ψ2): 
y(k) = x(k) + F′(x(k))−1F(x(k)),
z(k) = y(k) − F′(x(k))−1F(y(k)),

x(k+1) = z(k) − (3I − 3Tk + T2
k )F′(x(k))−1F(z(k)).

(3)
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Here, Tk = F′(x(k))−1F′(z(k)). For any x ∈ D ⊆ B, F′(x) ∈ L(B,B1) is the first
Fréchet derivative [19] of the nonlinear operator defined by (1), where L(B,B1) stands for
the set of bounded linear mappings from B to B1. The given methods are investigated
thoroughly in [8] for their convergence behavior and computational efficiency along with
illustrating the benefits over the existing methods by testing on the variety of applied
nonlinear problems. It is evident from the Equations (2) and (3) that both of the methods
utilize the computation of derivatives of order only up to one, however, the sixth order
convergence is proven in [8] by using the hypotheses on the existence of higher order
derivatives. It is worth noticing that the convergence order is determined in [8] only for a
special case of B = B1 = Rm, but it is imperative to study the convergence in a more general
setting of a Banach space to extend their applicability to a wider section of problems.

Keeping in mind the above discussion, our objective here is to weaken the conditions
given in [8], by developing the hypotheses on the first order derivatives only, which
undoubtedly extends the applicability of the considered iterative schemes. In what follows,
the local convergence analysis for both the methods is established in Section 2, and further,
the semilocal analysis is developed in Section 3 by imposing conditions on the operators
involved in the given methods. Some numerical applications are given in Section 4 to
validate the theoretical deductions. Section 5 contains the concluding remarks.

2. Local Convergence Analysis

In this section, the local convergence analysis shall be developed for iterative methods
ψ1 and ψ2, which are defined by Equation (2) and Equation (3), respectively. To establish
the local convergence analysis of ψ1, we first define some real parameters and functions.
For M = [0, ∞), let the following suppositions (i–iv) hold.

(i) There exists a function p0 : M→ M, which is non-decreasing and continuous, such
that the equation

p0(t)− 1 = 0,

has the smallest root ρ0 ∈ M− {0}. Set M0 = [0, ρ0).
(ii) There exists a function p : M0 → M, which is non-decreasing and continuous, such

that the equation
h1(t)− 1 = 0,

has the smallest root ρ1 ∈ M0 − {0}, where h1 : M0 → R is defined as

h1(t) =

∫ 1
0 p((1− θ)t)dθ

1− p0(t)
.

(iii) The equation
h2(t)− 1 = 0,

has the smallest root ρ2 ∈ M0 − {0}, where h2 : M0 → R is defined as

h2(t) =

∫ 1
0 p(t + θh1(t)t)dθ

1− p0(t)
h1(t).

(iv) The equation
h3(t)− 1 = 0,

has the smallest root ρ3 ∈ M0 − {0}, where h3 : M0 → R is defined as

h3(t) =

[∫ 1
0 p(t + θh2(t)t)dθ

1− p0(t)
+

(
p0(h2(t)t) + p0(t)

1− p0(t)
+

(
p0(h2(t)t) + p0(t)

1− p0(t)

)2
)

×
1 +

∫ 1
0 p0(θh2(t)t)dθ

1− p0(t)

]
h2(t).
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We shall aim to prove that

ρ∗ = min{ρ1, ρ2, ρ3}, (4)

is the convergence radius for the method ψ1. Setting M∗ = [0, ρ∗), and by the definition of
ρ∗, we have for all t ∈ M∗,

0 ≤ p0(t) < 1, (5)

0 ≤ hi(t) < 1, (6)

for each i = 1, 2, 3.
For any x ∈ D, let us denote S[x, r] as the closure of an open ball S(x, r), having radius

equal to ‘r’. Before we proceed to the main result, it is required that the following conditions
(C1)–(C4) hold.

(C1) : The equation F(x) = 0 has a solution x∗ ∈ D, such that the inverse operator
F′(x∗)−1 ∈ L(B1,B).

(C2) : For each v ∈ D,

‖F′(x∗)−1(F′(v)− F′(x∗))‖ ≤ p0(‖v− x∗‖).

Let D1 = S(x∗, ρ0) ∩ D.

(C3) : For each v1, v2 ∈ D1,

‖F′(x∗)−1(F′(v1)− F′(v2))‖ ≤ p(‖v1 − v2‖).

(C4) : S[x∗, ρ∗] ⊂ D.

Next, the local convergence analysis is developed for method ψ1 using the conditions
(C1)–(C4).

Theorem 1. Under the conditions (C1)–(C4) and further choosing the initial estimate x(0) ∈
S(x∗, ρ∗)− {x∗} for the iterative method defined by Equation (2), the following assertions hold:

x(k) ∈ S(x∗, ρ∗), ∀ k = 0, 1, 2, . . . , (7)

‖y(k) − x∗‖ ≤ h1(‖x(k) − x∗‖) ‖x(k) − x∗‖ < ‖x(k) − x∗‖ < ρ∗, (8)

‖z(k) − x∗‖ ≤ h2(‖x(k) − x∗‖) ‖x(k) − x∗‖ < ‖x(k) − x∗‖, (9)

‖x(k+1) − x∗‖ ≤ h3(‖x(k) − x∗‖) ‖x(k) − x∗‖ < ‖x(k) − x∗‖, (10)

and

lim
k→∞

x(k) = x∗,

where the functions h1, h2 and h3 are defined previously, and ρ∗ is defined in Equation (4).

Proof. Assertions (7)–(10) shall be shown using the mathematical induction on ‘k’. Let us
choose an arbitrary point u ∈ S(x∗, ρ∗)− {x∗}. In view of (4) and (5), and the condition
(C1), we have in turn that

‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ p0(‖u− x∗‖) ≤ p0(ρ∗) < 1. (11)

The Banach lemma [19] on the invertible linear operators, together with Equation (11),
imply that F′(u)−1 ∈ L(B1,B) and
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||F′(u)−1F′(x∗)|| ≤
1

1− p0(||u− x∗||)
. (12)

Therefore , the iterates y(0), z(0) and x(1), of the technique ψ1, are well defined by (12)
for u = x(0). Then, we obtain

y(0) − x∗ = x(0) − x∗ − F′(x(0))−1F(x(0))

= F′(x(0))−1F′(x∗)
∫ 1

0
F′(x∗)−1

[
F′(x(0))− F′(x∗ + θ(x(0) − x∗))

]
(x(0) − x∗)dθ. (13)

Using Equations (4), (6) and (12) (for u = x(0)), and condition (C2), the following
estimate is obtained from Equation (13),

‖y(0) − x∗‖ ≤
∫ 1

0 p((1− θ)‖x(0) − x∗‖) dθ

1− p0(‖x(0) − x∗‖)
‖x(0) − x∗‖

≤ h1(‖x(0) − x∗‖)‖x(0) − x∗‖ < ‖x(0) − x∗‖ < ρ∗, (14)

which proves that the iterate y(0) ∈ S(x∗, ρ∗), and therefore, assertion (8) holds for k = 0.
Further, using the second sub-step of method ψ1 for k = 0, we can write

z(0) − x∗ = y(0) − x∗ − F′(x(0))−1F(y(0))

= F′(x(0))−1
[

F′(x(0))−
∫ 1

0
F′(x∗ + θ(y(0) − x∗))dθ

]
(y(0) − x∗). (15)

Then, by Equations (4), (6) and (14), and condition (C2), the Equation (15) yields the
following estimate,

‖z(0) − x∗‖ ≤
∫ 1

0 p(‖x(0) − x∗‖+ θ‖y(0) − x∗‖)dθ

1− p0(‖x(0) − x∗‖)
‖y(0) − x∗‖

≤ h2(‖x(0) − x∗‖)‖x(0) − x∗‖

< ‖x(0) − x∗‖, (16)

which means that the iterate z(0) ∈ S(x∗, ρ∗) and the assertion (9) is true for k = 0.
Furthermore, by the third sub-step of ψ1 for k = 0, we have

x(1) − x∗ = z(0) − x∗ − F′(x(0))−1F(z(0))− F′(x(0))−1(F′(x(0))− F′(z(0)))

×
[

I + F′(x(0))−1(F′(x(0))− F′(z(0)))
]

F′(x(0))−1F(z(0)), (17)

and then using the approximation

‖F′(x∗)−1F(z(0))‖ ≤
∫ 1

0
‖F′(x∗)−1F′(x∗ + θ(z(0) − x∗))‖‖z(0) − x∗‖dθ

≤
∫ 1

0
‖I + F′(x∗)−1(F′(x∗ + θ(z(0) − x∗))− F′(x∗))‖‖z(0) − x∗‖dθ

≤
[

1 +
∫ 1

0
p0(θ‖z(0) − x∗‖)dθ

]
‖z(0) − x∗‖, (18)

the following estimate is obtained,
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‖x(1) − x∗‖ ≤
[∫ 1

0 p(‖x(0) − x∗‖+ θ‖z(0) − x∗‖)dθ

1− p0(‖x(0) − x∗‖)
+

p0(‖x(0) − x∗‖) + p0(‖z(0) − x∗‖)
1− p0(‖x(0) − x∗‖)

×
(

1 +
p0(‖x(0) − x∗‖) + p0(‖z(0) − x∗‖)

1− p0(‖x(0) − x∗‖)

)
1 +

∫ 1
0 p0(θ‖z(0) − x∗‖)dθ

1− p0(‖x(0) − x∗‖)

]
× ‖z(0) − x∗‖

≤ h3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < ρ∗,

which proves that the iterate x(1) ∈ S(x∗, ρ∗), and the assertion (10) holds for k = 0. The
induction process on ‘k’, for the estimates (8), (9) and (10), is terminated if x(0), y(0) and x(1)

are replaced by x(k), y(k) and x(k+1), respectively. Moreover, in view of the estimate

‖x(k+1) − x∗‖ < β‖x(k) − x∗‖ < ρ∗,

where β = h3(||x(0)− x∗||) ∈ [0, 1), we eventually have that x(k+1) ∈ S(x∗, ρ∗) for all k ∈ N,
and limk→∞ x(k) = x∗.

Further, we claim the uniqueness of solution through the following proposition.

Proposition 1. Assume that:

(i) The equation F(x) = 0 has a solution x∗ ∈ S(x∗, ρ̄) ⊂ D for some ρ̄ > 0.
(ii) The conditions (C1) and (C2) hold on S(x∗, ρ̄).
(iii) There exists ρ̃ ≥ ρ̄, such that ∫ 1

0
p0(θρ̃)dθ < 1.

Let D2 = S[x∗, ρ̃] ∩ D. Then, the equation F(x) = 0 is uniquely solvable by x∗ in the region
D2.

Proof. Suppose y∗ ∈ D2 solves F(x) = 0. Define the linear operator

H =
∫ 1

0
F′(x∗ + θ(y∗ − x∗))dθ.

By applying the given conditions (i)–(iii), we obtain in turn that

‖F′(x∗)−1(H − F′(x∗))‖ ≤
∫ 1

0
p0(θ‖y∗ − x∗‖)dθ

≤
∫ 1

0
p0(θρ̃)dθ < 1.

Hence x∗ = y∗ follows from H−1 ∈ L(B1,B) and H(y∗ − x∗) = F(y∗) − F(x∗) =
0.

Remark 1. The conditions (C3) and (C4) are not used in Proposition 1, otherwise we can set
ρ̄ = ρ∗.

In what follows, the local convergence analysis of iterative technique ψ2, which is
defined by Equation (3), and is shown along the same lines of the analysis of method ψ1
but with a couple of modifications in the definitions of function h1 and convergence radius.
The function h1 is re-defined as

h̄1(t) =

∫ 1
0 p((1− θ)t)dθ + 2

(
1 +

∫ 1
0 p0(θt)dθ

)
1− p0(t)

. (19)
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Set r∗ = min{r2, r3} and R = max{r∗, h̄1(r∗)r∗}, where r2 and r3 are defined as the
smallest zeros of functions h2 and h3, respectively. Moreover, instead of (C4), we also
assume the following condition,
(C4)

′ : S[x∗, r∗] ⊂ D.

Finally, we arrive at the corresponding result for the local convergence of ψ2.

Theorem 2. Under the conditions (C1)–(C3) and (C4)
′, choose x(0) ∈ S(x∗, r∗) − x∗. Then,

limk→∞ x(k) = x∗, where the sequence {x(k)}k≥1 is generated by the method defined by
Equation (3). Moreover, the following assertions hold:

x(k) ∈ S(x∗, r∗) ∀ k = 0, 1, 2, . . . ,

‖y(k) − x∗‖ ≤ h̄1(‖x(k) − x∗‖) ‖x(k) − x∗‖ ≤ R,

‖z(k) − x∗‖ ≤ h2(‖x(k) − x∗‖) ‖x(k) − x∗‖ < ‖x(k) − x∗‖,

‖x(k+1) − x∗‖ ≤ h3(‖x(k) − x∗‖) ‖x(k) − x∗‖ < ‖x(k) − x∗‖.

Further, the uniqueness result of Proposition 1 holds for the given method.

Proof. We simply need to provide the derivation of the estimate involving the new function
h̄1(t). With the definition given by Equation (19), the following estimate is obtained for the
first sub-step of method ψ2,

‖y(0) − x∗‖ =‖x(0) − x∗ − F′(x(0))−1F(x(0)) + 2F′(x(0))−1F(x(0))‖

≤

∫ 1
0 p((1− θ)‖x(0) − x∗‖)dθ + 2

(
1 +

∫ 1
0 p0(θ‖x(0) − x∗‖)dθ

)
1− p0(‖x(0) − x∗‖)

‖x(0) − x∗‖

≤ h̄1(‖x(0) − x∗‖)‖x(0) − x∗‖ ≤ h̄1(r∗)r∗ ≤ R.

The derivation for the rest of assertions, being identical as presented in Theorem 1,
are omitted.

Remark 2. It is worth noticing that the methodology in this section provides the computable error
estimates on ‖x(k) − x∗‖ and the uniqueness results for both the techniques, which are not given in
the previous studies [8].

3. Semilocal Convergence Analysis

In this section, the semilocal convergence analysis is established for the iterative
methods ψ1 and ψ2. To start with, let M = [0, ∞) and assume that the following condi-
tions hold.

(i) There exists a function q0 : M → M, which is non-decreasing and continuous such
that the function q0(t)− 1 has the smallest zero r0 ∈ M− {0}. Let M1 = [0, r0).

(ii) There exists a function q : M1 → M, which is continuous and non-decreasing.

Then, define the scalar sequences {t(k)}, {s(k)} and {u(k)} for all k = 0, 1, 2, . . ., such
that t(0) = 0, s(0) = d for some d ≥ 0, and
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u(k) = s(k) +

∫ 1
0 q(θ(s(k) − t(k)))dθ

1− q0(t(k))
(s(k) − t(k)), (20)

t(k+1) = u(k) +

[
3(q0(t(k)) + q0(u(k)))

(1− q0(t(k)))2
+

(1 + q0(u(k)))2

(1− q0(t(k)))3

]

×
[∫ 1

0
q(s(k) − t(k) + θ(u(k) − s(k)))dθ

]
(u(k) − s(k)), (21)

s(k+1) = t(k+1) +
1

1− q0(t(k+1))

[(
1 + q0(u(k)) +

∫ 1

0
q(θ(t(k+1) − u(k)))dθ

)
(t(k+1) − u(k))

+

(∫ 1

0
q(s(k) − t(k) + θ(u(k) − s(k)))dθ

)
(u(k) − s(k))

]
. (22)

In what follows, the sequences defined by Equations (20)–(22) are shown to be the
majorizing for the sequence of iterates generated by technique ψ1. Let us recall the definition
of the majorizing sequence [9].

Definition 1. Let {x(k)}k≥0 be a sequence in a normed linear space and {γ(k)}k≥0 be a non-
negative scalar sequence, then {γ(k)} is called the majorizing sequence of {x(k)}, if

‖x(k+1) − x(k)‖ ≤ γ(k+1) − γ(k), for each k = 0, 1, 2, . . . .

It follows by the above definition that the sequence {γ(k)} is non-decreasing. Moreover,
if it is bounded above by some γ̄ ≥ 0, then it is convergent to some γ∗ ∈ [0, γ̄]. Furthermore,
if the normed linear space is complete, it follows that the sequence {x(k)} is also convergent
to some x∗ and

‖x∗ − x(k)‖ ≤ γ∗ − γ(k), for each k = 0, 1, 2, . . . .

This definition plays a crucial part in the convergence analysis of iterative methods.
Before proceeding to the main theorem, let us first show a general convergence result
through the following Lemma.

Lemma 1. For all k = 0, 1, 2, . . ., assume that:

q0(t(k)) < 1, (23)

and

t(k) ≤ r̄0, for some r̄0 ≤ r0. (24)

Then, the sequence {t(k)} is convergent monotonically to its unique least upper bound t∗ ∈
[0, r̄0].

Proof. It follows by the definition of sequence {t(k)} and the conditions given by
Equations (23) and (24) that it is non-decreasing and bounded above by r̄0. Hence, it
will converge to its unique least upper bound t∗.

Remark 3. By the definitions of sequences given in Equations (20)–(22), and as a consequence of
Lemma 1, it follows that t(k) ≤ s(k) ≤ u(k) ≤ t(k+1) ≤ r̄0 for each k = 0, 1, 2, . . ..

The conditions used in the semilocal convergence analysis of method ψ1 are as follows.
Assume that:
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(H1) : There exists a point x(0) ∈ D such that F′(x(0))−1 ∈ L(B1,B) and

‖F′(x(0))−1F(x(0))‖ ≤ d.

(H2) : For each v ∈ D,

‖F′(x(0))−1(F′(v)− F′(x(0)))‖ ≤ q0(‖v− x(0)‖).

Let D3 = S(x(0), r0) ∩ D.

(H3) : For each v1, v2 ∈ D3,

‖F′(x(0))−1(F′(v1)− F′(v2))‖ ≤ q(‖v1 − v2‖).

(H4) : Conditions of Lemma 1 hold.

(H5) : S[x(0), t∗] ⊂ D.

The semilocal convergence of method ψ1 is as follows using the conditions (H1)–(H5)
and the developed notation.

Theorem 3. Assume that the conditions (H1)–(H5) hold. Then, the following assertions hold for
the sequences generated by the method defined by Equation (2).

x(k) ∈ S(x(0), t∗) ∀ k = 0, 1, 2, . . . , (25)

‖y(k) − x(k)‖ ≤ s(k) − t(k), (26)

‖z(k) − y(k)‖ ≤ u(k) − s(k), (27)

‖x(k+1) − z(k)‖ ≤ t(k+1) − u(k), (28)

and further, limk→∞ x(k) = x∗ ∈ S[x(0), t∗], such that F(x∗) = 0.

Proof. To show the assertions (25)–(28), the process of mathematical induction is used. Let
v ∈ S(x(0), t∗) be arbitrary, then by applying the conditions (H1) and (H2), we have

‖F′(x(0))−1(F′(v)− F′(x(0)))‖ ≤ q0(‖v− x(0)‖) ≤ q0(t∗) < 1,

and therefore
||F′(v)−1F′(x(0))|| ≤ 1

1− q0(||v− x(0)||)
. (29)

It follows by condition (H1) and Equation (29) (for v = x(0)) that the iterates y(0), z(0)

and x(1) are well defined for the method ψ1. In view of the first sub-step of ψ1, we have

‖y(0) − x(0)‖ = ‖F′(x(0))−1F(x(0))‖ ≤ d = s(0) − t(0) < t∗.

So, the iterate y(0) ∈ S(x(0), t∗) and the estimate (26) holds for k = 0. Further, the
second sub-step of ψ1 along with the definition of sequence {t(k)} yields

‖z(0) − y(0)‖ = ‖F′(x(0))−1F(y(0))‖

= ‖F′(x(0))−1(F(y(0))− F(x(0))− F′(x(0))(y(0) − x(0)))‖

≤
∫ 1

0 q(θ‖y(0) − x(0)‖)dθ

1− q0(‖x(0) − x(0)‖)
‖y(0) − x(0)‖

≤ u(0) − s(0),
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and therefore

‖z(0) − x(0)‖ = ‖z(0) − y(0)‖+ ‖y(0) − x(0)‖

≤ u(0) − s(0) + s(0) − t(0) < t∗.

Thus, the iterate z(0) ∈ S(x(0), t∗) and the estimate (27) holds for k = 0.
Then, by the third sub-step of ψ1, we obtain in turn that

‖x(1) − z(0)‖ ≤
[
3‖I − F′(x(0))−1F′(z(0))‖+ ‖F′(x(0))−1F′(z(0))‖2

]
‖F′(x(0))−1F(z(0))‖

≤
[
3‖I − F′(x(0))−1F′(z(0))‖+ ‖F′(x(0))−1F′(z(0))‖2

]
× ‖F′(x(0))−1(F(z(0))− F(y(0))− F′(x(0))(z(0) − y(0)))‖

≤
[

3(q0(‖x(0) − x(0)‖) + q0(‖z(0) − x(0)‖))
(1− q0(‖x(0) − x(0)‖))2

+
(1 + q0(‖z(0) − x(0)‖))2

(1− q0(‖x(0) − x(0)‖))3

]

×
[∫ 1

0
q(‖y(0) − x(0)‖+ θ‖z(0) − y(0)‖)dθ

]
‖z(0) − y(0)‖

≤ t(1) − u(0),

and consequently

‖x(1) − x(0)‖ = ‖x(1) − z(0)‖+ ‖z(0) − x(0)‖

≤ t(1) − u(0) + u(0) − t(0) < t∗.

Therefore, the iterate x(1) ∈ S(x(0), t∗) and the estimate (28) holds for k = 0. Now, by
the first sub-step of method ψ1 for k = 1, the following estimate is obtained,

‖y(1) − x(1)‖ ≤ ‖F′(x(1))−1F′(x(0))‖‖F′(x(0))−1F(x(1))‖

≤ ‖F′(x(1))−1F′(x(0))‖‖F′(x(0))−1(F(x(1))− F(z(0)) + F(z(0)))‖

≤ 1
1− q0(‖x(1) − x(0)‖)

[(
1 + q0(‖z(0) − x(0)‖) +

∫ 1

0
q(θ‖x(1) − z(0)‖)dθ

)
×‖x(1) − z(0)‖+

∫ 1

0
q(‖y(0) − x(0)‖+ θ‖z(0) − y(0)‖)dθ ‖z(0) − y(0)‖

]
≤ s(1) − t(1),

and consequently

‖y(1) − x(0)‖ = ‖y(1) − x(1)‖+ ‖x(1) − x(0)‖

≤ s(1) − t(1) + t(1) − t(0) < t∗.

Hence, the iterate y(1) ∈ S(x(0), t∗) and the estimate (26) holds for k = 1. By repeating
the previous calculations but switching x(0), y(0), z(0) and x(1) by x(k), y(k), z(k) and x(k+1),
the induction process is completed for the assertions (25)–(28). In particular, we have the
estimate

‖F′(x(0))−1F(x(k))‖ ≤
(

1 + q0(u(k)) +
∫ 1

0
q(θ(t(k+1) − u(k)))dθ

)
(t(k+1) − u(k))

+

(∫ 1

0
q(s(k) − t(k) + θ(u(k) − s(k)))dθ

)
(u(k) − s(k)). (30)

Since the sequence {t(k)} is convergent by condition (H4), and the sequence {x(k)} is
fundamental in the Banach space, so there exists x∗ ∈ S(x(0), t∗), such that limk→∞ x(k) = x∗.
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Finally, letting k → ∞ in the estimate (30) and using the continuity of operator F, we
conclude that F(x∗) = 0.

The uniqueness result follows from the following proposition.

Proposition 2. Assume that:

(i) The equation F(x) = 0 has a solution x∗ ∈ S(x(0), t̄) ⊆ D for some t̄ > 0 and F′(x(0))−1 ∈
L(B1,B).

(ii) The conditions (H1) and (H2) hold.
(iii) There exists t̃ ≥ t̄, such that

∫ 1

0
q0(θ t̃ + (1− θ)t̄)dθ < 1. (31)

Let D4 = S[x(0), t̃ ] ∩ D. Then, x∗ solves uniquely the equation F(x) = 0 in the region D4.

Proof. Consider y∗ ∈ D4 with F(y∗) = 0, and let the operator H be defined as in Proposi-
tion 1. By applying the conditions (H1), (H2), and using Equation (31), we obtain

‖F′(x(0))−1(H − F′(x(0)))‖ ≤
∫ 1

0
q0(θ‖y∗ − x(0)‖+ (1− θ)‖x∗ − x(0)‖)dθ

≤
∫ 1

0
q0(θ t̃ + (1− θ)t̄)dθ < 1.

Thus, we deduce that x∗ = y∗.

Remark 4. The limit point t∗ can be replaced in the condition (H4) by the point r0.

Remark 5. The semilocal convergence analysis of the iterative technique ψ2 is given analogously
to the analysis of technique ψ1 but re-defining the sequence {u(k)} by

u(k) = t(k) +
1 + q0(t(k)) +

∫ 1
0 q(θ(s(k) − t(k)))dθ

1− q0(t(k))
(s(k) − t(k)). (32)

The definition of sequences {t(k)} and {s(k)} are same as given by Equations (21) and (22),
respectively. The results of Lemma 1, Theorem 3, Proposition 2 and Remark 4 also hold for the
analysis of method ψ2. However, note that the estimate (27) is reformulated as

‖z(k) − x(k)‖ ≤ u(k) − t(k),

wherein z(0) ∈ S(x(0), t∗) by the definition (32) and due to the following estimate,

‖z(0) − x(0)‖ = ‖F′(x(0))−1(F(y(0))− F(x(0)))‖

≤
1 + q0(‖x(0) − x(0)‖) +

∫ 1
0 q(θ‖y(0) − x(0)‖)dθ

1− q0(‖x(0) − x(0)‖)
‖y(0) − x(0)‖

≤ u(0) − t(0) < t∗.

4. Numerical Results

In coherence with the theoretical results, we provide here the parameters and functions,
defined in Sections 2 and 3, for each of the following numerical examples.

Example 1. Consider the domain Rm, for any integer m ≥ 2, which is equipped with the norm,
‖x‖ = max1≤i≤m |xi| for each x = (x1, . . . , xm)T ∈ Rm and the corresponding matrix norm is
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given by ‖A‖ = max1≤i≤m ∑m
j=1 |aij| for any A = (aij)1≤i,j≤m ∈ L(Rm). Define the two-point

boundary value problem on the closed interval [0, 1] as

x′′(t) = −x(t)2, (33)

x(0) = x(1) = 0.

To transform the given equation into a finite dimensional problem, consider the uniform
partitioning of interval [0, 1] having a sub-interval length h = 1/k as

0 = t0 < t1 < t2 < . . . < tk−1 < tk = 1.

Denoting xi = x(ti) for each i, and using the following divided difference approximations:

x′′i ≈
xi+1 − 2xi + xi−1

h2 , for each i = 1, 2, . . . , k− 1,

the Equation (33) reduces into the system of nonlinear equations, F : D ⊆ Rk−1 → Rk−1, which is
given by

xi+1 − 2xi + h2x2
i + xi−1 = 0, i = 1, 2, . . . , k− 1, (34)

where x0 = xk = 0. The Fréchet derivative at any point x = (x1, . . . , xk−1)
T ∈ D is given by

F′(x) =


2h2x1 − 2 1 0 · · · 0

1 2h2x2 − 2 1 · · · 0
0 1 2h2x3 − 2 · · · 0
...

...
...

...
...

0 0 0 · · · 2h2xk−1 − 2

.

To estimate the parameters defined in the Sections 2 and 3, we take k = 26 in particular so that

the system (34) reduces to a system of 25 equations satisfying the solution x∗ = (0,
25· · · · · ·, 0)T .

Further, considering the domain as an open ball, D = S(x∗, c) for some positive constant c, we select

the initial estimate as x(0) = ( 1
2 ,

25· · · · · ·, 1
2 )

T ∈ D. Then, for any x, y ∈ D, we can obtain that

‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ L0‖x− y‖,

and
‖F′(x(0))−1(F′(x)− F′(y))‖ ≤ L1‖x− y‖,

where L0 = 0.25 and L1 = 0.27903. Moreover,

‖F′(x(0))−1F(x(0))‖ ≤ L2,

where L2 = 0.53488.
In view of the above approximations, the parameters defined in Section 2 under conditions

(C1)–(C4) for the local convergence analysis are chosen as

p0(t) = L0t, p(t) = L0t,

and consequently for the method ψ1,

ρ∗ = min{ρ1, ρ2, ρ3} = min{2.6667, 2.2112, 1.6232} = 1.6232,

whereas for the method ψ2,

r∗ = min{r2, r3} = min{0.57629, 0.60542} = 0.57629.



Mathematics 2022, 10, 3196 13 of 16

Moreover, the parameters defined in Section 3 under conditions (H1)–(H5) for the semilocal
convergence analysis are chosen as

q0(t) = L1t, q(t) = L1t, and d = L2,

and consequently, we obtain the majorizing sequence {t(k)} for method ψ1 as

{tk}k≥1 = {0.58608..., 0.60925..., 0.60925..., · · · · · · },

which converges to t∗ ≈ 0.60926 < r0 = 3.58389, whereas for method ψ2, the sequence is
obtained as

{tk}k≥1 = {0.58608..., 0.61853..., 0.61919..., · · · · · · },

which converges to t∗ ≈ 0.61919 < r0 = 3.58389. It can be easily verified from the above estima-
tions that the conditions of Sections 2 and 3 hold for each of the methods for the considered example.

Example 2. Let C[0, 1] represents the space of continuous functions defined on the domain as
closed unit interval [0, 1] and equipped with the norm ‖x‖ = sup0≤t≤1 |x(t)| for each x ∈ C[0, 1].
Let D = {x ∈ C[0, 1] | ‖x‖ < 1} and define the nonlinear mapping (see [12]) F : D → C[0, 1] as

F(x)(t) = x(t)− µ
∫ 1

0
κ(s, t)x(s)3ds, t ∈ [0, 1], x ∈ D, (35)

where µ ∈ R is a parameter, and the kernel κ(s, t) is defined as

κ(s, t) =

{
(1− s)t, t ≤ s,
(1− t)s, s ≤ t,

which satisfies the following approximation,∥∥∥∥∫ 1

0
κ(s, t)ds

∥∥∥∥ ≤ 1
8

.

Moreover, the Fréchet derivative of the mapping (35) is given by

F′(x)ξ(t) = ξ(t)− 3µ
∫ 1

0
κ(s, t)x(s)2ξ(s)ds, ξ ∈ D.

Note that x∗ = 0 is the solution of (35), which also satisfies that F′(x∗) = I. Then, for any
x, y ∈ D, we have the following approximation,

‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ 3|µ|
∥∥∥∥∫ 1

0
κ(s, t)

(
x(s)2 − y(s)2

)
ξ(s)ds

∥∥∥∥
≤ L0‖x− y‖,

where L0 = 3|µ|
4 . Moreover, for the initial approximation x(0) ∈ D which is defined as x(0)(t) = t

2 ,
t ∈ [0, 1], and using the estimation

‖I − F′(x(0))‖ ≤ 3|µ|
∥∥∥∥∫ 1

0
κ(s, t)x(0)(s)2ξ(s)ds

∥∥∥∥ ≤ 3|µ|
32

,

it is obtained that ‖F′(x(0))−1‖ ≤ 32
32−3|µ| , provided |µ| < 32

3 . Therefore, for any x, y ∈ D, we
have obtained that

‖F′(x(0))−1(F′(x)− F′(y))‖ ≤ L1‖x− y‖,
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and

‖F′(x(0))−1F(x(0))‖ ≤ L2,

where L1 = 24|µ|
32−3|µ| and L2 =

(
1 + |µ|

32

)
16

32−3µ .

We particularly set µ = 1
2 , in above approximations, for the estimation of parameters defined

in Sections 2 and 3. The parameters used in the conditions (C1)–(C4) are defined as

p0(t) = L0t, p(t) = L0t,

and therefore, for the convergence of method ψ1, we have

ρ∗ = min{ρ1, ρ2, ρ3} = min{1.7778, 1.4741, 1.0821} = 1.0821,

whereas for the method ψ2,

r∗ = min{r2, r3} = min{0.38419, 0.40362} = 0.38419.

Further, the parameters defined in the conditions (H1)–(H5) are chosen as

q0(t) = L1t, q(t) = L1t, and d = L2,

and consequently, we obtain the majorizing sequence {t(k)} for method ψ1 as

{tk}k≥1 = {0.61587..., 0.67771..., 0.67799..., · · · · · · },

which converges to t∗ ≈ 0.678 < r0 = 2.54167, whereas for method ψ2, the sequence is given by

{tk}k≥1 = {0.61587..., 0.72464..., 0.75542..., · · · · · · },

which converges to t∗ ≈ 0.75913 < r0 = 2.54167. With these estimations, the conditions of
Sections 2 and 3 hold for both the considered methods.

Example 3. Now consider a nonlinear equation due to Kepler [20]:

F(x) = x− β sin(x)− µ = 0, (36)

where 0 ≤ β < 1 and 0 ≤ µ ≤ π. Different choices for the values of β and µ are given in [20]. In
particular, for β = 1

4 and µ = 1
10 , the approximate solution of (36) is given as, x∗ ≈ 0.13320215.

Let D = S(x∗, c), where c is a positive constant, such that the initial approximation x(0) = 3
4 ∈ D.

Moreover, we have
F′(x) = 1− β cos(x).

Thus, for any x, y ∈ D, we have the following approximation,

|F′(x∗)−1(F′(x)− F′(y))| = |β(cos(x)− cos(y))|
|1− β cos(x∗)|

=
2|β|| sin( x+y

2 ) sin( x−y
2 )|

|1− β cos(x∗)|
≤ L0|x− y|,

and similarly

|F′(x(0))−1(F′(x)− F′(y))| ≤ L1|x− y|,
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where L0 = |β|
|1−β cos(x∗)| ≈ 0.332352 and L1 = |β|

|1−β cos(x(0))| ≈ 0.305968. moreover,

|F′(x(0))−1F(x(0))| = |x
(0) − β sin(x(0))− µ|
|1− β cos(x(0))|

= L2,

where L2 ≈ 0.586958.
The above approximations lead to the estimation of parameters used in the conditions of

Section 2 as well as the conditions of Section 3. The parameters used in conditions (C1)–(C4) are
given as

p0(t) = L0t, p(t) = L0t,

and consequently for the method ψ1, we have

ρ∗ = min{ρ1, ρ2, ρ3} = min{2.0059, 1.6633, 1.2210} = 1.2210,

whereas for the convergence of method ψ2,

r∗ = min{r2, r3} = min{0.43350, 0.45541} = 0.43350.

Moreover, the parameters defined in the conditions (H1)–(H5) are chosen as

q0(t) = L1t, q(t) = L1t, and d = L2,

and consequently, the majorizing sequence {t(k)} for method ψ1 is obtained as

{tk}k≥1 = {0.65961..., 0.70232..., 0.70236..., · · · · · · },

which converges to t∗ ≈ 0.70237 < r0 = 3.26831, whereas the sequence for method ψ2 is given by

{tk}k≥1 = {0.65961..., 0.72546..., 0.73050..., · · · · · · },

which converges to t∗ ≈ 0.73054 < r0 = 3.26831.

5. Conclusions

Two sixth-order iterative techniques are analyzed comprehensively for their local as
well semilocal convergence in Banach Spaces. On the contrary to the usual approach using
Taylor series expansions, the generalized results for their convergence are established using
the assumptions only on first order derivatives. The presented analysis provides a new
avenue for the study of the convergence of iterative methods, since it is based only on the
operators involved in the given iterative methods. However, the earlier studies make use
of the higher order derivatives, which are not appearing in the given methods and, in fact,
these higher order derivatives may not even always exist. Thus, the previous results do not
assure the convergence of these methods, although convergence may happen. Effectively,
the applicability of given methods is extended to the wider section of problems. Further,
testing the developed results on some applied problems satisfactorily favor the presented
analysis. An important observation is that the technique, which is utilized in the analysis,
can also be applied in general to the other methods in order to extend their applicability in
a similar way. Furthermore, as a future work, the applicability of given iterative methods
can be investigated for the solution of problems considered in [21–23].
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