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Abstract: In the traditional approach to differentiability, found in almost all university textbooks,
this notion is considered only for interior points of the domain of function or for functions with
an open domain. This approach leads to the fact that differentiability has usually been considered
only for functions with an open domain in Rn, which severely limits the possibility of applying the
potential techniques and tools of differential calculus to a broader class of functions. Although there
is a great need for generalization of the notion of differentiability of a function in various problems of
mathematical analysis and other mathematical branches, the notion of differentiability of a function
at the non-interior points of its domain has almost not been considered or successfully defined. In
this paper, we have generalized the differentiability of scalar and vector functions of several variables
by defining it at non-interior points of the domain of the function, which include not only boundary
points but also all points at which the notion of linearization is meaningful (points admitting nbd
rays). This generalization allows applications in all areas where standard differentiability can be
applied. With this generalized approach to differentiability, some unexpected phenomena may occur,
such as a function discontinuity at a point where a function is differentiable, the non-uniqueness of
differentials. . . However, if one reduces this theory only to points with some special properties (points
admitting a linearization space with dimension equal to the dimension of the ambient Euclidean space
of the domain and admitting a raylike neighborhood, which includes the interior points of a domain),
then all properties and theorems belonging to the known theory of differentiability remain valid in
this extended theory. For generalized differentiability, the corresponding calculus (differentiation
techniques) is also provided by matrices—representatives of differentials at points. In this calculus
the role of partial derivatives (which in general cannot exist for differentiable functions at some
points) is taken by directional derivatives.

Keywords: differentiability; partial derivatives; derivatives in the direction; set of linear contribution;
linearization space; neighbourhood ray; raylike neighbourhood

MSC: 26B05; 26B12

1. Introduction and Motivation

One of the basic ideas of differential calculus is to better approximate a given function
f : X → Rm, X ⊆ Rn, locally by an affine function, i.e., to linearize it at a point P0 ∈ X. For
this to be possible, the function must be differentiable at this point which means that there
exists a linear operator A : Rn → Rm such that the limit

lim
H→0

f (P0 + H)− f (P0)− A(H)

||H|| (1)

exists and is equal to 0 ∈ Rm. For practical reasons, differentiability in mathematical
analysis has been defined and considered almost only for functions f : Ω→ Rm with an
open domain Ω ⊆ Rn [1–4]. Since every point of an open set Ω ⊆ Rn is an accumulation
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point of Ω [1] then for every point P0 ∈ Ω it holds that 0 ∈ Rn is the accumulation point of
the domain D of the function

H 7→ f (P0 + H)− f (P0)− A(H)

||H||

for a linear operator A : Rn → Rm. Indeed, there exists r > 0 such that the open ball
B(P0, r) is contained in Ω and consequently B(0, r) ⊆ D and the limit from the definition
of differentiability (1) is reasonable to consider. (Recall that the limit of the function can be
considered only at an accumulation point of the domain.)

However, reducing differentiability only to an open domain, i.e., to the interior points
of a domain, has, in addition to many successful applications and advantages, some obvious
deficiencies. For example, for the function f : [0, ∞〉 → R f (x) =

√
x3 it holds

lim
h→0+

√
(0 + h)3 −

√
03 − 0h

|h| = 0,

so this function can be well approximated by the zero operator, i.e., it could be linearized
at the point 0 ∈ R inside the natural domain of f , but due to the conditions from the
definition of differentiability (that a point must belong to the interior of the domain [2]), the
differentiability of the function at this point is usually not considered at all. Even though
this issue can be overcome by extending the definition of differentiability (derivability)
of a real function of a real variable to the endpoints of the given domain using one side
limits [5], for a function of several variables the problem of differentiability at non-interior
points of the domain remains current. For example, the differentiability of the function

f : D → R f (x, y) =
√

y− x3, D =
{
(x, y) ∈ R2 | y ≥ x3

}
cannot be considered in all boundary points (x, x3), x ∈ R, although it can be well linearized
locally by the zero operator in those points. Similarly, because of the reduction to open
sets, the question of the existence of tangents [6] and tangent planes [4] of a function
f : Cl Ω → R, Ω ⊆ R or R2, at points (x, f (x)), x ∈ Fr Ω, remains open. For example,
due to this reduction we cannot obtain the tangent of the function x 7→

√
x3 at the point

O = (0, 0) although it is obvious that for points Tx = (x, f (x)), x ∈ 〈0, ∞〉, the secants
OTx tend to the line y = 0 as x tends to 0, and the line y = 0 should be the tangent of this
function at the point O. Moreover, the study of the local conditional extreme of a scalar
function is reduced to the study of a function whose domain is not necessarily an open set,
so that the problem of finding a conditional extreme cannot be clarified or fully studied if
differentiability is studied only on open sets. Furthermore, a differentiable function would
lose the property of differentiability at many points if differentiability at boundary points
is not considered when switching from one Cartesian coordinate system to other non-affine
coordinate systems (or vice versa).

These are some of the reasons that indicate that the notion of differentiability should be
generalized by observing differentiability not only at interior points of sets, but much more
broadly, at points of any domain X ⊆ Rn of a function f : X → Rm in which the notion of
differentiability and linearization is meaningful. John W. Milnor mentioned this problem in
his famous series of lectures on differential topology which dates back to 1965 [7]. We will
show that this extension is meaningful for all points P0 ∈ X for which there is at least one
point Q ∈ X\{P0} such that the line segment P0Q is contained in X. Indeed, this is the most
general case in which a linear operator can linearize a function at a point (at least on a line
segment to which this point belongs). The linearization space is then a one-dimensional
vector subspace of Rn which is also the smallest vector subspace on which it is interesting
to consider and specify a linear operator.

In the history of modern mathematics one can find some other issues or (overlooked)
problems of mathematical analysis like this one [8], where we take for granted some tradi-
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tional approaches, common requirements and (sometimes wrong) conclusions. Concerning
differentiability, one can find in the literature some generalizations of differentiability
(derivability) such as the fractional derivative [9] or the derivative at the endpoints of
a segment [5]. In this paper, we provide a natural generalization of differentiability of
a function by defining it at some non-interior points of the domain of function. These
points include not only the boundary points of the domain, but also all points in which
the notion of differentiability and linearization is meaningful. For this generalized case, a
corresponding calculus (techniques of differentiation) is also provided.

2. Preliminaries

In this paper we use the notation (|) for the Euclidean scalar product on Rn, the
notation || || for the Euclidean norm and the notation d for the Euclidean metric. We use
the notation O for the point (0, . . . , 0) ∈ Rn or we simply write 0 ∈ Rn.

Let Ω ⊆ Rn be an open set, f : Ω→ Rm a function, and P0 =
(
x0

1, . . . , x0
n
)

an arbitrary
point in Ω. To approximate the function f on the open ball B(P0, r) ⊆ Ω, r > 0, at the point
P0 with the special affine function α : Rn → Rm α(H) = f (P0) + A(H) means to find a
linear operator A : Rn → Rm [10] such that f (P0 + H) ∼ α(H) for any H ∈ B(O, r) ⊆ Rn.
Geometrically interpreted, in the case of m = 1 this means that we want to replace the
part of the graph of the function f at the point (P0, f (P0)) by the part of the graph of the
affine function

α(x1, . . . , xn) = f (P0) + a1x1 + · · ·+ anxn, ai ∈ R, i = 1, . . . n,

i.e., the part of the hyperplane in Rn+1. The desirable property of such an approximation is
that it is as accurate as possible at points closer to the point P0, i.e., that the error

r(H) := f (P0 + H)− α(H) = f (P0 + H)− f (P0)− A(H)

tends to zero as H tends to zero. However, if f is a continuous function, then the error
r(H) always tends to zero as H tends to zero (because every linear operator acting between
finite-dimensional vector spaces is continuous). This would mean that there is an adequate
local replacement by the affine function of any continuous mapping, which is not the case.
For example, if we consider the function f : R2 → R f (x, y) =

√
x2 + y2, it is easy to see

that on the open ball B((0, 0), ε) we cannot approximate this function by an affine function,
i.e., we cannot replace its graph well enough by a part of the plane passing through the
origin O ∈ R3, although this is perfectly possible on all rays starting in O. Thus, it is not
only necessary that the error r(H) can be made arbitrarily small (because every continuous
function has this property), but even more so that the relative error r(H)

||H|| can be made
arbitrarily small, which leads us to the definition of differentiability of the function f at the
point P0, which is as follows [3]:

Let Ω ⊆ Rn be an open set. A function f : Ω→ Rm is differentiable at a point P0 ∈ Ω
if there exists a linear operator A : Rn → Rm such that the limit

lim
H→0

f (P0 + H)− f (P0)− A(H)

||H||

exists and is equal to 0 ∈ Rm. We then call the linear operator A the differential of the
function f at the point P0, it is unique and we denote it by d f (P0).

A linear operator A is the differential of the function f at the point P0 if and only if

f (P0 + H)− f (P0) = A(H) + r(H)

where r : B(0, ε)→ Rm is the error function with the property

lim
H→0

r(H)

||H|| = 0 and B(P0, ε) ⊆ Ω.
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3. Linearization of Function

Definition 1. Let X ⊆ Rn be a set and P0 ∈ X. We say that the point P0 admits a neighborhood
ray (or simply admits a nbd ray) in X if there exists H ∈ Rn\{0} such that the line segment
P0P0 + H is contained in X.

This notion is of particular importance to us because we will consider the linearization
of a function exactly at points in a domain that admit at least one nbd ray in the domain
(and not, as before, only at points from its interior).

Example 1.

(a) No point of a sphere admits a nbd ray in it.
(b) Every point of a non-trivial convex set admits a nbd ray in that set.

Since every line segment is a convex set and every nontrivial convex set contains the
line segment between any two of its points, a point P0 ∈ X ⊆ Rn admits a nbd ray in X if
and only if there exists a nontrivial convex set K ⊆ Rn such that P0 ∈ K ⊆ X.

Definition 2. Let X ⊆ Rn and P0 ∈ X be a point admitting nbd ray in X. The set

∆X,P0 :=
{

H ∈ Rn\{0} | P0P0 + H ⊆ X
}

is called the set of linear contributions at P0 in X, and its linear hull [10]

ΣX,P0 :=
[
∆X,P0

]
is said to be the linearization space at P0 with respect to X.

For a function f : X → Rm and a point P0 ∈ X we say that ΣX,P0 is the linearization space
of the function f at the point P0.

Example 2.

(a) Let the points P, Q, R ∈ Rn be in general position, i.e., let them be the three non-collinear
points. Then it holds

∆PQ,P = {t(Q− P) | t ∈ 〈0, 1]} and

ΣPQ,P = {t(Q− P) | t ∈ R},

∆PQ∪PR,P =
(

O(Q− P) ∪O(R− P)
)
\{O} and

ΣPQ∪PR,P = {α(Q− P) + β(R− P) | α, β ∈ R}.

(b) Let D = {P ∈ Rn | ||P− P0|| ≤ r} and Q ∈ D. Then it holds

∆D,Q = {P−Q | P ∈ D\{Q}} and

ΣD,Q = Rn.

Let us now generalize the notion of differentiability of a function to points admitting
nbd ray in the domain. This will allow us to consider differentiability at points where this
was not possible so far.

Definition 3. Let X ⊆ Rn and P0 ∈ X be a point admitting nbd ray in X. We say that a function
f : X → Rm is differentiable at P0 if there exists a linear operator A : Rn → Rm such that
the limit

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− A(H)

||H|| (2)
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exists and is equal to 0 ∈ Rm. If such a linear operator exists, we call it the differential of the
function f at the point P0.

The function f is differentiable on X if f is differentiable at every point of X.

Notice that if a point P0 ∈ X admits nbd ray in X, then P0 is an accumulation point of
the set X and then 0 ∈ Rn is an accumulation point of the set ∆X,P0 . Indeed, if P0P0 + H ⊆ X
then every nbd of P0 contains some points of the line segment P0P0 + H ⊆ X and conse-
quently every nbd of 0 intersects ∆X,P0 . Therefore, the limit from the previous definition
makes sense to consider. Furthermore, the natural domain D ⊆ Rn of the function

H 7→ f (P0 + H)− f (P0)− A(H)

||H|| (3)

could be in general a superset of ∆X,P0 , so it is necessary to emphasize that the limit (2) is
considered only on the set ∆X,P0 (this is the limit of the restriction of the function (3) to the
set ∆X,P0 at 0). Otherwise, the values of the above function at points that do not belong to
∆X,P0 but are in D and near 0 may affect the existence of the limit of the function (3) at 0,
which we do not want to allow. But, if P0 ∈ Int X then it holds

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− A(H)

||H|| = lim
H→0

f (P0 + H)− f (P0)− A(H)

||H|| ,

which is a consequence of the following theorem:

Theorem 1. Let f : X → Rm, X ⊆ Rn, Y ⊆ X and P0 be an accumulation point of the set Y. Let
U be an open neighborhood of the point P0 in Rn such that (U\{P0}) ∩ X ⊆ Y. If the restriction
f |Y : Y → Rm has the limit at the point P0, then f has the limit at P0 and they are equal, i.e.,
lim
P0

( f |Y) = lim
P0

f .

Proof. Let Q0 := lim
P0

( f |Y) and let B(Q0, ε) be an open ball inRm. Then there exists an open

neighborhood V of P0 in Rn such that V ⊆ U and f |Y(V ∩ (Y\{P0})) ⊆ B(Q0, ε) . Hence,

f (V ∩ (X\{P0})) = f (V ∩ (Y\{P0})) = f |Y(V ∩ (Y\{P0})) ⊆ B(Q0, ε)

which implies that lim
P0

f = Q0.

Therefore, in the above definition of differentiability of a function at a point, we can
omit the notation of the restriction in the limit if this point belongs to the interior of the
domain. In this case, the above definition coincides with the previously known definition of
this notion. Thus, the Definition 3 is a natural generalization of the notion of differentiability
and this generalization brings many advantages and solves many contentious issues and
problems (e.g., at the boundary points of a domain. . . ), which we will explain hereinafter
with several various examples.

From the definition of differentiability, it follows that the linear operator A : Rn → Rm

is the differential of a function f : X → Rm at a point P0 ∈ X ⊆ Rn if and only if

f (P0 + H)− f (P0) = A(H) + r(H),

where r : ∆X,P0 → Rm is the error function with the property lim
H→0

r(H)
||H|| = 0. Notice that the

above equation makes sense only on ∆X,P0 , i.e., only for a sufficiently small neighborhood
U of the point 0 ∈ Rn [2] we can write

f (P0 + H)− f (P0) ∼ A(H)
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for H ∈ U ∩ ∆X,P0 . Likewise, the linear operator A, although defined on Rn, has its true
meaning from the point of view of approximating the function f only on the linearization
space ΣX,P0 ⊆ Rn.

It is important to notice that the differential of a function at a point need not be unique
(which could not be the case so far). Indeed, if the linearization space ΣX,P0 is a proper
subset of Rn and if there exists a differential A : Rn → Rm of the function f at P0, then
every linear operator B : Rn → Rm that coincides with A on the subspace ΣX,P0 (and there
are infinitely many of them) is the differential of the function f at P0 because it satisfies the
conditions of the definition of differentiability. Let us formalize this consideration by the
following statement:

Proposition 1. Let f : X → Rm, X ⊆ Rn and P0 ∈ X be a point admitting a nbd ray in X. If the
function f is differentiable at P0 and A : Rn → Rm is the differential of the function f at the point
P0 then every linear operator B : Rn → Rm which agrees with A on the vector space ΣX,P0 is also
the differential of the function f at the point P0.

Proof. Using equality
A|ΣX,P0

= B|ΣX,P0

it is easy to check that

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− A(H)

||H|| = 0 = lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− B(H)

||H||

holds.

Now, we will show that all differentials of f at P0 are equal on the linearization space
ΣX,P0 .

Theorem 2. Let f : X → Rm, X ⊆ Rn and P0 ∈ X be a point admitting a nbd ray in X. If the
differential of the function f exists at the point P0 then it is unique on the vector space ΣX,P0 .

Proof. Suppose that A, B : Rn → Rm are two linear operators for which

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− A(H)

||H|| = 0 = lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− B(H)

||H|| .

Then it holds

lim
H→0

H∈∆X,P0

B(H)− A(H)

||H|| = 0.

Every vector H ∈ ΣX,P0 can be written as a linear combination of vectors from ∆X,P0 .
Therefore, A|ΣX,P0

= B|ΣX,P0
if and only if A(H) = B(H) for every H ∈ ∆X,P0 . If H ∈ ∆X,P0

then tH ∈ ∆X,P0 for every t ∈ 〈0, 1] and

lim
t→0+

B(tH)− A(tH)

||tH|| = 0,

so it follows

0 = lim
t→0+

(B− A)(tH)

||tH|| = lim
t→0+

t(B− A)(H)

|t|||H|| =
(B− A)(H)

||H|| .

Therefore, A(H) = B(H) for every H ∈ ∆X,P0 and it holds

A|ΣX,P0
= B|ΣX,P0

.
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Remark 1. One might think that the cases where the linearization space ΣX,P0 is a proper subset of
Rn and the differential of the function f exists at the point P0 cause certain difficulties because the
differential is not unique, but it is unique where it should be, i.e., on the linearization space ΣX,P0 .
According to the previous theorem, all differentials of the function f at the point P0 coincide in the
space ΣX,P0 and this is the only thing that is important for us because only in this space we can use
the differential to approximate the function f at the point P0.

Corollary 1. Let f : X → Rm, X ⊆ Rn, P0 ∈ X be a point admitting nbd ray in X and
ΣX,P0 = Rn. If the differential of the function f exists at the point P0, then it is unique.

Proof. This follows from Theorem 2 and Proposition 1.

If the differential of a function f : X → Rm, X ⊆ Rn, exists at a point P0 ∈ X and is
unique, we denote it by d f (P0).

If f : Rn → Rm is a linear operator then f is differentiable on Rn and d f (P) = f at
any point P ∈ Rn. In particular, the projection map pi : Rn → R, i = 1, . . . , n, is a linear
operator and dpi(P) = pi for every P ∈ Rn. Usually dpi(P) is denoted by dxi.

An affine mapping f : Rn → Rm f (P) = P0 + A(P), where P0 ∈ Rm and A : Rn → Rm

is a linear operator, is differentiable on Rn and d f (P) = A for every point P ∈ Rn.

Example 3. Let H = (1, 0) ∈ R2 and f : OH → R f (x, y) = 3x. Since f is the restriction of
the linear operator A : R2 → R A(x, y) = 3x on the convex set OH, f is differentiable at any
point of the domain and the differential at any point is equal to A. The linearization space of the
function f at any point of the domain is Σ = R×{0} and since it is a 1-dimensional subspace of R2,
the differential of f is not unique. Moreover, all linear operators R2 → R, represented by a matrix[
3 p

]
, p ∈ R, are all its different differentials. However, according to the previous theorem, the

restriction of all these differentials on Σ is the same.
Notice that according to the traditional definition of differentiability, this function would not

be differentiable at any point in its domain. On the other hand, the function f is perfectly linearized
since its graph is OT ⊆ R3, T = (1, 0, 3), and it would be incorrect to say that it cannot be
linearized (since its graph is perfectly linearized by the part of the line OT). However, since for
functions whose domain is a subset of R2 the graph is linearized by part of the plane, we can do
that in infinitely many ways, since the entire pencil of planes passes through the line OT, so its
linearization is not unique. However, if we take the set OH ∪OH1, H1 = (0, 1) ∈ R2 for the
domain of the function f , then ΣOH∪OH1,O = R2, and by the previous theorem the differential of the
function f at O ∈ R2 is unique, i.e., its linearization is the part of the unique plane passing through
the line OT and OT1, T1 = (0, 1, 0), O ∈ R3 (the graph of the function f is the set OT ∪OT1,
which is a part of this plane).

Corollary 2. Let f : X → Rm, X ⊆ R and x0 ∈ X be a point admitting nbd ray in X. If a
differential of the function f exists at the point x0, then it is unique.

Proof. Since ΣX,x0 = R, the statement follows from the previous corollary.

Example 4. Let us consider the function f : D → R f (x) =
√

y− x3, D =
{
(x, y) ∈ R2 | y ≥ x3}

from the introduction. Since for (0, 0) ∈ R2 it holds

∆D,(0,0) =
({

(x, y) ∈ R2 | x ≤ 0, y ≥ 0
}
∪
{
(x, y) ∈ R2 | y ≥ x3, x > 0

})
�{(0, 0)}

and

lim
(h1,h2)→(0,0)
(h1,h2)∈∆D,(0,0)

√
h2 − h3

1 −
√

0−O(h1, h2)

‖(h1, h2)‖
= 0,
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where O : R2→R denotes the zero operator, f is differentiable at the point 0. Moreover, it follows
from ΣD,0 = R2 that the zero operator is the unique differential of f at the point (0, 0), i.e.,
d f (0, 0) = 0.

Definition 4. Let P0 ∈ X ⊆ Rn and V ∈ Rn\{0}. We say that a point P0 admits a neighbor-
hood ray in X in the direction of V if there exists λ0 ∈ R+ such that P0P0 + λ0V ⊆ X.

Proposition 2. Let Ω ⊆ Rn be an open set. Every point P0 ∈ Ω admits a nbd ray in Ω in the
direction of all vectors H ∈ Rn\{0} and ΣΩ,P0 = Rn.

Proof. Let P0 ∈ Ω and let H ∈ Rn\{0} be arbitrary. Since Ω is open, there exists a ball
B(P0, r) ⊆ Ω, and since a ball is a convex set, P0P0 +

r
2

H
||H|| ⊆ B(P0, r) holds. Therefore, P0

admits nbd ray in B(P0, r) in the direction of H and then admits it in Ω. Furthermore, from
∆B(P0,r),P0

⊆ ∆Ω,P0 it follows that

ΣB(P0,r),P0
⊆ ΣΩ,P0

and r
2

H
||H|| ∈ ∆B(P0,r),P0

implies H ∈ ΣB(P0,r),P0
for every H ∈ Rn\{0}. So,

ΣB(P0,r),P0
= Rn

and then ΣΩ,P0 = Rn.

Corollary 3. If Ω ⊆ Rn is an open set and f : Ω→ Rm is differentiable at a point P0 ∈ Ω, then
the differential of the function f at the point P is unique.

Proof. This follows from the previous proposition and corollary 1.

Remark 2. We have already mentioned that the new definition of differentiability (Definition 3)
coincides with the well-known definition of this notion when the domain of a function is an open
set. It follows that in this particular case all previously known properties of differentials hold,
including the property of uniqueness. However, the new theory induced by the extended definition
of differentiability provides the proof of the uniqueness of the differential of an open domain function
without relying on prior general knowledge of it.

Proposition 3. Let f : X → Rm, X ⊆ Rn, Y ⊆ X and P0 ∈ Y be a point admitting nbd ray in Y.
If f is differentiable at P0 then f |Y is differentiable at P0 and the differentials of the functions f and
f |Y at P0 coincide on ΣY,P0 .

Proof. Since the function f is differentiable at P0, there exists a linear operator A : Rn → Rm

such that lim
H→0

H∈∆X,P0

f (P0+H)− f (P0)−A(H)
||H|| = 0. Now, ∆Y,P0 ⊆ ∆X,P0 implies

0 = lim
H→0

H∈∆Y,P0

f (P0 + H)− f (P0)− A(H)

||H|| = lim
H→0

H∈∆Y,P0

f |Y(P0 + H)− f |Y(P0)− A(H)

||H||

from which it follows that the function f |Y is differentiable at P0 and that the linear operator
A is its differential at P0. Now, by the Theorem 2, we conclude that every other differential
at P0 coincides with A on ΣY,P0 .

The converse does not hold, i.e., if the restriction of a function f : X → Rm, X ⊆ Rn,
to a subset Y ⊆ X is differentiable at a point P0 ∈ Y, then in general the function f need not
be differentiable at that point. This will be shown by the following counterexample. But we
will prove that if Y is open in X, then differentiability on Y implies differentiability on X.
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Example 5. Let f : R2 → R f (x, y) =
√

x2 + y2. Let us consider the restrictions of the function
f to sets

X1 = {(0, y) | y ∈ [0, ∞〉} and X2 = {(0, y) | y ∈ 〈−∞, 0]}.

For functions
f1 := f |X1 f1(0, y) = y and f2 := f |X2 f2(0, y) = −y,

the linearization space at each point in their domains is Σ = {(0, y) | y ∈ R}. The function f1 is
the restriction of the linear operator p2 to the convex set X1, so p2 is the differential of the function
f1 at any point in X1 (not unique because the dimension of Σ is less than 2, but they all coincide
on Σ). Similarly, the differential of the function f2 at every point in X2 is −p2. If the function f
were differentiable at the point 0 ∈ R2, then, by Proposition 3 and Theorem 2, the differentials of the
functions f1 and f2 at the point 0 would coincide on Σ which is obviously not the case.

Theorem 3. Let f : X → Rm, X ⊆ Rn, P0 ∈ X and U be a neighborhood of the point P0 in Rn. If
P0 admits a nbd ray in U ∩ X and if f |U∩X is differentiable at P0 then f is also differentiable at P0.

Proof. Since U is a neighborhood of the point P0 in Rn, there exists r ∈ R+ such that
B(P0, r) ⊆ U and then B(P0, r) ∩ X ⊆ U ∩ X. Therefore, B(0, r) ∩ ∆X,P0 ⊆ ∆U∩X,P0 . Due to
differentiability of the function f |U∩X , there exists a linear operator A : Rn → Rm such that

0 = lim
H→0

H∈∆U∩X,P0

f |U∩X(P0 + H)− f |U∩X(P0)− A(H)

||H|| = lim
H→0

H∈∆U∩X,P0

f (P0 + H)− f (P0)− A(H)

||H|| .

Since ∆U∩X,P0 ⊆ ∆X,P0 and B(0, r) ∩ ∆X,P0 ⊆ ∆X,P0 , by Theorem 1, it follows

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− A(H)

||H|| = 0,

which implies that f is differentiable at P0.

The following statement follows from the previous theorem.

Corollary 4. Let f : X → Rm, X ⊆ Rn, Ω ⊆ X be an open set in Rn and P0 ∈ Ω. If f |Ω is
differentiable at P0 then f is also differentiable at P0 and d f (P0) = d f |Ω(P0).

We will show now that differentiability does not imply continuity in general (which
cannot be the case for a function with an open domain).

Example 6. Let Pn =
(

0, 1
n

)
, Qn =

(
1, 1

n

)
∈ R2, n ∈ N, and

X =
⋃

n∈N
PnQn ∪ (0, 0)(1, 0) ⊆ R2.

Let us consider the function f : X → R

f (P) =
{

n, P ∈ PnQn

0, P ∈ (0, 0)(1, 0).

For the point O = (0, 0) ∈ X it holds

∆X,O = 〈0, 1]× {0} and ΣX,O = R×{0}.

The function f is differentiable at the point O (it is differentiable at every point of its domain and
the zero operator is one of its differentials), but f is discontinuous at all points of the line segment
(0, 0)(1, 0), so it is discontinuous at O.
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In this example, the dimension of the linearization space ΣX,O is less than the dimen-
sion of the whole space R2. However, even if the dimension of a linearization space is equal
to the dimension of the whole space Rn, a function need not be continuous. This is shown
by the following counterexample.

Example 7. Let S1 ⊆ R2 be the 1-sphere and P0, Q, R ∈ S1 three distinct points on it. Consider
the union of two circular arcs and their corresponding chords X = P̂0Q ∪ P̂0R ∪ P0Q ∪ P0R. The
function f : X → R

f (x, y) =

{
0, (x, y) ∈ P0Q ∪ P0R

1, (x, y) ∈
(

P̂0Q ∪ P̂0R
)
\{Q, R, P0}

is differentiable at P0. Namely, ∆X,P0 =
(

O(Q− P0) ∪O(R− P0)
)
\{O} and

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)

||H|| = 0.

Since ΣX,P0 = R2, the differential is unique and d f (P0) is the zero operator. But the function f is
discontinuous at P0 because lim

P→P0
P∈P0Q∪P0R

f (P) = 0 and lim
P→P0

P∈P̂0Q∪P̂0R

f (P) = 1 hold.

To ensure that differentiability of a function at a point implies continuity at that point,
we need an additional condition, which is introduced in the following definition.

Definition 5. Let X ⊆ Rn and P0 ∈ X be a point admitting nbd ray in X. A neighborhood U
of the point P0 in X is said to be raylike neighborhood of the point P0 in X provided P0P ⊆ U
holds for every P ∈ U. If there exists at least one raylike nbd in X of the point P0, we say that the
point P0 admits raylike nbd in X.

It is easy to see that every point of a non-trivial convex set admits raylike nbd in that
set, and then every point of the open set Ω ⊆ Rn admits raylike nbd in Ω.

Theorem 4. Let a point P0 ∈ X ⊆ Rn admits raylike nbd in X. If f : X → Rm is differentiable at
P0 then it is also continuous at P0.

Proof. Let U be a raylike nbd of the point P0 in X. Then U − P0 = {P− P0 : P ∈ U} is a
neighborhood of the point O ∈ Rn in ∆X,P0 ∪ {O}. To prove that f is continuous at P0 it
suffices to prove that f |U is continuous at P0, i.e., that lim

H→0
H∈U−P0

f (P0 + H) = f (P0). By the

assumed differentiability, there exists a linear operator A : Rn → Rm such that

f (P0 + H)− f (P0) = A(H) + r(H) (4)

where r : ∆X,P0 → Rm is an error function with the property lim
H→0

r(H)
||H|| = 0. Then

lim
H→0

r(H) = 0. Since U − P0 ⊆ ∆X,P0 ∪ {0},

lim
H→0

H∈U−P0

r(H) = lim
H→0

r(H) = 0.

Every linear operator operating between finite dimensional vectorial spaces is continuous,
therefore

0 = A(0) = lim
H→0

A(H) = lim
H→0

H∈U−P0

A(H).
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Hence, by (4), it follows
lim
H→0

H∈U−P0

f (P0 + H) = f (P0).

Obviously, if Ω ⊆ Rn is an open set, f : Ω → Rm, P0 ∈ Ω and f is differentiable
at P0, then f is also continuous at P0. Thus, if the domain of a function is an open set,
differentiability implies continuity. The same is true for any convex domain.

4. Partial and Directional Derivatives

Definition 6. Let X ⊆ Rn, n ≥ 2, V ∈ Rn\{0} and P0 ∈ X be a point admitting nbd ray in X
in the direction of the vector V. The set

∆V(X,P0) := {tV | t ∈ R} ∩ ∆X,P0

is called the set of linear contributions at P0 in the direction of V into X.

Let us denote

h1 := inf
{

t ∈ R | tV ∈ ∆X,P0

}
, (5)

h2 := sup
{

t ∈ R | tV ∈ ∆X,P0

}
,

where h1 = −∞ (h2 = ∞), provided the set
{

t ∈ R | tV ∈ ∆X,P0

}
is not bounded from

below (above). Let XV,P0 denotes the largest convex subset of the set X ∩ P0P0 + V contain-
ing the point P0 (P0P0 + V denotes the line passing through the points P0 and P0 + V). If
h1, h2 ∈ R then XV,P0 = X ∩ (P0 + h1V)(P0 + h2V) (it is the line segment with or without
boundary points), otherwise XV,P0 is the half-line or the line P0P0 + V.

Definition 7. Let a point P0 ∈ X ⊆ Rn admit nbd ray in X in the direction of V ∈ Rn\{0}. We
say that a function f : X → R has the derivative at P0 in the direction of V if there exists

lim
h→0

hV∈∆V(X,P0)

f (P0 + hV)− f (P0)

h
.

This limit, if it exists, is denoted by ∂V f (P0) and is called the derivative of f at P0 in the direction
of V.

The derivative at P0 in the direction of ei (ei is the i-th basis vector of the standard ordered
basis for Rn) is called i-th partial derivative of f at P0 and is denoted by ∂i f (P0).

Notice that, for P0 =
(
x0

1, . . . , x0
n
)
,

∂i f (P0) = lim
h→0

h∈〈h1,h2〉\{0}

f
(
x0

1, . . . , x0
i−1, x0

i + h, x0
i+1, . . . , x0

n
)
− f

(
x0

1, . . . , x0
i , . . . , x0

n
)

h

holds. If h1 < 0, by Theorem 1, it follows

∂i f (P0) = lim
h→0

f
(
x0

1, . . . , x0
i−1, x0

i + h, x0
i+1, . . . , x0

n
)
− f

(
x0

1, . . . , x0
i , . . . , x0

n
)

h
.

Theorem 5. Let f : X → R, X ⊆ Rn, V ∈ Rn\{0} and P0 ∈ X be a point admitting nbd ray in
X in the direction of V. The function f has the derivative at P0 in the direction of V if and only if its
restriction f |XV,P0

is differentiable at P0. The value of each differential of the function f |XV,P0
at P0,

at V is ∂V f (P0).
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Proof. Suppose f has the derivative at P0 in the direction of V. If {V, v1, . . . , vn−1} is some
basis for Rn, then any linear operator A : Rn → R, given by

A(V) = ∂V f (P0), A(vi) = ai

for some real numbers ai, i = 1, . . . , n− 1, is a differential of the function f |XV,P0
. Namely,

lim
h→0+

h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)− h∂V f (P0)

|h|

= lim
h→0+

h∈〈h1,h2〉\{0}

f (P0 + hV)− f (P0)− ∂V f (P0)h
h

=

lim
h→0+

h∈〈h1,h2〉\{0}

f (P0 + hV)− f (P0)

h
− ∂V f (P0) =

lim
h→0

h∈〈h1,h2〉\{0}

f (P0 + hV)− f (P0)

h
− ∂V f (P0) = 0.

Similarly,

lim
h→0−

h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)− h∂V f (P0)

|h| = 0

which implies

lim
h→0

h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)− h∂V f (P0)

|h| = 0.

Therefore,

lim
H→0

H∈∆V(X,P0)

f |XV,P0
(P0 + H)− f |XV,P0

(P0)− A(H)

||H|| =

= lim
h→0

h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)− A(hV)

|h|||V|| =

1
||V|| lim

h→0
h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)− h∂V f (P0)

|h| = 0.

Hence, f |XV,P0
is differentiable at the point P0.

Now assume that f |XV,P0
is differentiable at the point P0, i.e., that there exists a linear

operator A : Rn → R such that

lim
H→0

H∈∆V(X,P0)

f |XV,P0
(P0 + H)− f |XV,P0

(P0)− A(H)

||H|| = 0.

Then

0 = lim
h→0

h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)− hA(V)

|h|||V||
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from which follows

A(V) = lim
h→0

h∈〈h1,h2〉\{0}

f |XV,P0
(P0 + hV)− f |XV,P0

(P0)

h

= lim
h→0

h∈〈h1,h2〉\{0}

f (P0 + hV)− f (P0)

h
= ∂V f (P0).

Thus, f has the derivative at P0 in the direction of V and it is equal to A(V).

Corollary 5. Let f : X → R, X ⊆ Rn, V ∈ Rn\{0} and P0 ∈ X be a point admitting nbd ray
in X in the direction of V and let f be differentiable at P0. Then f has the derivative at P0 in the
direction of V and the value of each differential of the function f at P0, at V is equal to ∂V f (P0). If
ΣX,P0 = Rn then ∂V f (P0) = d f (P0)(V).

Proof. The statement follows from the previous theorem and Proposition 3.

The converse of this corollary does not hold, i.e., a function f at a point P0 can have di-
rectional derivatives and need not be differentiable at P0, as shown in the following example.

Example 8. The function

f : R2 → R f (x, y) =

{ xy
x2+y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

has both partial derivatives at the point (0, 0) but f is not continuous at this point, so by Theorem 4
f is not differentiable at (0, 0). It is interesting to note that this function has the derivative at the
point (0, 0) in the direction of any V = (v1, v2) ∈ R2\{0}, and

∂V f (0, 0) = lim
h→0

hv1hv2

h2v2
1 + h2v2

2
=

v1v2

v2
1 + v2

2
.

5. Differentiable Functions
5.1. Properties of Differentials

We will now prove the following important results which hold for differentiable
functions.

Proposition 4. Let X ⊆ Rn, P0 ∈ X be a point admitting nbd ray in X, f , g : X → Rm be
differentiable functions at P0, and A, B : Rn → Rm be differentials of the functions f and g at P0,
respectively. Then the function λ f + µg : X → Rm is differentiable at P0 for any λ, µ ∈ R and
λA + µB is its differential at P0.

Proof. By the differentiability of the functions f and g at P0 it holds

f (P0 + H)− f (P0) = A(H) + r1(H)

and
g(P0 + H)− g(P0) = B(H) + r2(H),

for every H ∈ ∆X,P0 ⊆ Rn, where r1, r2 : ∆X,P0 → Rm are the functions with the property

lim
H→0

r1(H)

||H|| = 0 = lim
H→0

r2(H)

||H|| .

Now, it follows

(λ f + µg)(P0 + H)− (λ f + µg)(P0) = λ( f (P0 + H)− f (P0)) + µ(g(P0 + H)− g(P0))
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= λ(A(H) + r1(H)) + µ(B(H) + r2(H)) =

= λA(H) + µB(H) + λr1(H) + µr2(H) =

= (λA + µB)(H) + λr1(H) + µr2(H),

for every H ∈ ∆X,P0 . Since for the function r(H) = λr1(H) + µr2(H) it holds lim
H→0

r(H)
||H|| = 0,

the function λ f + µg is differentiable at P0 and the linear operator λA+ µB is its differential
at this point.

Proposition 5. Let X ⊆ Rn, P0 ∈ X be a point admitting nbd ray in X, α : X → R and f : X →
Rm be differentiable functions at P0, and A : Rn → R and B : Rn → Rm be differentials of the
functions α and f at P0, respectively. Then the function α · f : X → Rm (α · f )(P) = α(P) f (P) is
differentiable at P0 and α(P0)B + f (P0)A : Rn → Rm (α(P0)B + f (P0)A)(H) = α(P0)B(H) +
A(H) f (P0) is its differential at P0.

Proof. By the differentiability of the functions α and f at P0, it holds

α(P0 + H)− α(P0) = A(H) + r1(H)

and
f (P0 + H)− f (P0) = B(H) + r2(H),

for every H ∈ ∆X,P0 ⊆ Rn, where r1 : ∆X,P0 → R and r2 : ∆X,P0 → Rm are the functions
with the properties

lim
H→0

r1(H)

||H|| = 0 and lim
H→0

r2(H)

||H|| = 0.

Hence lim
H→0

r1(H) = 0 and lim
H→0

r2(H) = 0. Now we infer that

(α · f )(P0 + H)− (α · f )(P0) = α(P0)B(H) + f (P0)A(H)+

α(P0)r2(H) + r1(H) f (P0) + (A(H) + r1(H))(B(H) + r2(H)),

holds, for every H ∈ ∆X,P0 . Therefore, it is sufficient to prove that lim
H→0

r(H)
||H|| = 0 for the

function r : ∆X,P0 → Rm

r(H) = α(P0)r2(H) + r1(H) f (P0) + (A(H) + r1(H))(B(H) + r2(H)).

From the properties of the functions r1 and r2 it follows that

lim
H→0

α(P0)r2(H)

||H|| = 0 = lim
H→0

r1(H) f (P0)

||H|| .

Furthermore, by the boundedness of a linear operator, there exists λ > 0 such that
||A(H)|| ≤ λ||H||, for every H ∈ Rn [11,12]. Therefore, since the linear operator is
continuos and its value at zero is equal to zero, by the properties of the errors functions r1
and r2, it follows

0 ≤
∥∥∥∥ lim

H→0

(A(H) + r1(H))(B(H) + r2(H))

||H||

∥∥∥∥
=

∥∥∥∥ lim
H→0

(
A(H)

||H|| +
r1(H)

||H||

)
(B(H) + r2(H))

∥∥∥∥
≤

∥∥∥∥ lim
H→0

(
λ +

r1(H)

||H||

)
(B(H) + r2(H))

∥∥∥∥ = 0.
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This implies

lim
H→0

(A(H) + r1(H))(B(H) + r2(H))

||H|| = 0.

Therefore, the function α f is differentiable at P0 and the linear operator α(P0)B + f (P0)A is
its differential at this point.

Proposition 6. Let X ⊆ Rn, P0 ∈ X be a point admitting nbd ray in X, f : X → R be a
differentiable function at P0, and A : Rn → R be the differential of the function f . If f is continuous
at P0 and f (P0) 6= 0, then the function 1

f is differentiable at P0 and − 1
( f (P0))

2 A : Rn → R is its

differential at P0.

Proof. By the continuity of the function f at P0, there exists an open neighborhood O of the
point P0 in X such that f (P) 6= 0 for every P ∈ O. Since O = U ∩ X for some neighborhood
U of P0 in Rn, it suffices to prove that the restriction function 1

f |O is differentiable at P0

(Theorem 3). By the assumption,

f (P0 + H)− f (P0) = A(H) + r(H)

holds for every H ∈ ∆O,P0 ⊆ Rn, where r : ∆O,P0 → R is the function with the property

lim
H→0

r(H)

||H|| = 0.

It follows

1
f (P0 + H)

− 1
f (P0)

= − f (P0 + H)− f (P0)

f (P0) f (P0 + H)
= − A(H) + r(H)

f (P0) f (P0 + H)
=

= − A(H)

( f (P0))
2 +

A(H)( f (P0 + H)− f (P0))− f (P0)r(H)

( f (P0))
2 f (P0 + H)

,

for every H ∈ ∆O,P0 . Thus, it is sufficient to prove the equality lim
H→0

r1(H)
||H|| = 0 for the

function r1 : ∆O,P0 → R

r1(H) =
A(H)( f (P0 + H)− f (P0))− f (P0)r(H)

( f (P0))
2 f (P0 + H)

.

Notice that

lim
H→0

(
r(H)

||H||
f (P0)

( f (P0))
2 f (P0 + H)

)
= 0

holds. By the boundedness of a linear operator, there exists λ > 0 such that ||A(H)|| ≤
λ||H||, for every H ∈ Rn [11,12]. It implies

0 ≤
∣∣∣∣∣
∣∣∣∣∣A(H)( f (P0 + H)− f (P0))

||H||( f (P0))
2 f (P0 + H)

∣∣∣∣∣
∣∣∣∣∣ ≤ λ

∣∣∣∣∣
∣∣∣∣∣ f (P0 + H)− f (P0)

( f (P0))
2 f (P0 + H)

∣∣∣∣∣
∣∣∣∣∣.

Since f is continuous at P0 it holds

lim
H→0

∣∣∣∣∣
∣∣∣∣∣ f (P0 + H)− f (P0)

( f (P0))
2 f (P0 + H)

∣∣∣∣∣
∣∣∣∣∣ = 0.

Now, we infer

lim
H→0

∣∣∣∣∣
∣∣∣∣∣A(H)( f (P0 + H)− f (P0))

||H||( f (P0))
2 f (P0 + H)

∣∣∣∣∣
∣∣∣∣∣ = 0
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and finally

lim
H→0

A(H)( f (P0 + H)− f (P0))

||H||( f (P0))
2 f (P0 + H)

= 0.

This proves that the function − A
( f (P0))

2 is the differential of the function 1
f at the point P0.

Corollary 6. Let X ⊆ Rn, P0 ∈ X be a point admitting nbd ray in X, α : X → R and
f : X → Rm be differentiable functions at P0, and A : Rn → R and B : Rn → Rm be differentials
of the functions α and f at P0, respectively. If α is continuous at P0 and α(P0) 6= 0, then the
function 1

α f is differentiable at P0 and

α(P0)B− f (P0)A

(α(P0))
2 : Rn → Rm

Proof. This follows from the two previous propositions.

Let us now prove that the composition of differentiable functions is differentiable.

Theorem 6. Let X ⊆ Rn, Y ⊆ Rm, f : X → Rm, f (X) ⊆ Y, and g : Y → Rp. Let P0 ∈ X
be a point admitting raylike nbd in X, and let Q0 = f (P0) be the point admitting raylike nbd in
Y. If f is differentiable at P0 and g is differentiable at Q0, then the composition g ◦ f : X → Rp

is differentiable at P0 and B ◦ A is its differential at the point P0, where A : Rn → Rm and
B : Rm → Rp are differentials at the points P0 and Q0 of the functions f and g, respectively.

Proof. Since f is differentiable at the point P0, there exists a linear operator A : Rn → Rm

such that
f (P)− f (P0) = A(P− P0) + r1(P− P0)

for each P ∈ X such that P− P0 ∈ ∆X,P0 , and for each r1 : ∆X,P0 → Rm such that

lim
H→0

r1(H)

||H|| = lim
P→P0

r1(P− P0)

||P− P0||
= 0. (6)

Similarly, there exists a linear operator B : Rm → Rp such that

g(Q)− g(Q0) = B(Q−Q0) + r2(Q−Q0)

for each Q ∈ Y such that Q−Q0 ∈ ∆Y,Q0 , and for each r2 : ∆Y,Q0 → Rp such that

lim
H→0

r2(H)

||H|| = lim
Q→Q0

r2(Q−Q0)

||Q−Q0||
= 0.

By the assumption there exists a raylike nbd O of P0 in X. Since O = U ∩ X for some
neighborhood U of the point P0 in Rn, by Theorem 3, it suffices to prove that g ◦ f |O is
differentiable at P0. Now,

(g ◦ f )(P)− (g ◦ f )(P0) = B( f (P)− f (P0)) + r2( f (P)− f (P0))

= B(A(P− P0) + r1(P− P0)) + r2( f (P)− f (P0))

= B ◦ A(P− P0) + B(r1(P− P0)) + r2( f (P)− f (P0))

for every P ∈ O. Therefore, we have to prove that

lim
H→0

r(H)

||H|| = lim
P→P0

r(P− P0)

||P− P0||
= 0 (7)

for the function r : (O− P0)\{0} → Rp defined by

r(H) = B(r1(H)) + r2( f (P0 + H)− f (P0)).
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By the continuity of a linear operator, it follows that

lim
P→P0

B(r1(P− P0))

||P− P0||
= lim

P→P0
B
(

r1(P− P0)

||P− P0||

)
= B

(
lim

P→P0

r1(P− P0)

||P− P0||

)
= B(0) = 0.

It remains to prove

lim
P→P0

r2( f (P)− f (P0))

||P− P0||
= 0. (8)

Since a linear operator is linearly bounded [11,12], there exists λ > 0 such that

||A(P− P0)|| ≤ λ||P− P0||

for every P ∈ Rn. Let ε > 0. By the equality (7) we infer that there exists δ′ > 0 such that
B(Q0, δ′) ∩Y is a raylike nbd of Q0 in Y and

||r2(Q−Q0)|| ≤
ε

2λ
||Q−Q0||

holds for every Q ∈ B(Q0, δ′) ∩ Y. Furthermore, by the condition (6) and the conti-
nuity of the function f at the point P0, there exists δ > 0 such that B(P0, δ) ∩ X ⊆ O,
f (B(P0, δ) ∩ X) ⊆ B(Q0, δ′) ∩Y and

||r1(P− P0)||
||P− P0||

< λ

for every P ∈ (B(P0, δ)\{P0}) ∩ X. Hence,

d
(

r2( f (P)− f (P0))

||P− P0||
, 0
)
=
||r2( f (P)− f (P0))||

||P− P0||
≤

≤
ε

2λ || f (P)− f (P0)||
||P− P0||

≤ ε

2λ

||A(P− P0)||+ ||r1(P− P0)||
||P− P0||

≤ ε

2λ
(λ + λ) = ε

for every P ∈ (B(P0, δ)\{P0}) ∩ X. Thus we have proved (8).

Corollary 7. Let Ω1 ⊆ Rn and Ω2 ⊆ Rm be open sets, and f : Ω1 → Rmand g : Ω2 → Rp such
that f (Ω1) ⊆ Ω2. If f is differentiable at P0 ∈ Ω1 and g is differentiable at f (P0) ∈ Ω2, then the
composition g ◦ f : Ω1 → Rp is differentiable at P0 and d(g ◦ f )(P0) = dg( f (P0)) ◦ d f (P0).

Proof. Since every point of an open set admits raylike nbd in that set, the statement follows
from the previous theorem, the Proposition 2 and the Corollary 1.

Proposition 7. Let X ⊆ Rn, Y ⊆ Rm and f : X → Y be a bijection. Let the points P0 ∈ X
and Q0 = f (P0) ∈ Y admit a raylike nbd in X and Y, respectively, and let ΣX,P0 = Rn and
ΣY,Q0 = Rm. If the function f is differentiable at P0 and if its inverse f−1 : Y → X is differ-
entiable at Q0 ∈ Y, then m = n, the differential d f (P0) : Rn → Rn is a regular operator and
d
(

f−1)(Q0) = (d f (P0))
−1.

Proof. Since f−1 ◦ f = 1X and f ◦ f−1 = 1Y, by the previous theorem, it follows that

d
(

f−1
)
(Q0) ◦ d f (P0) = d(1X)(P0) and d f (P0) ◦ d

(
f−1
)
(Q0) = d(1Y)(Q0).

Furthermore, an identity is a linear operator, so that the differentials of all restrictions of
the identity are equal to that identity. Now from

d
(

f−1
)
(Q0) ◦ d f (P0) = 1Rn and d f (P0) ◦ d

(
f−1
)
(Q0) = 1Rm
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it follows that the linear operators d f (P0) : Rn → Rm and d
(

f−1)(Q0) : Rm → Rn are
bijections, i.e., isomorphisms, so that n = m [10]. Then d

(
f−1)(Q0) = (d f (P0))

−1.

5.2. Differentiability of Real Functions of One Variable

Let f : X → R, X ⊆ R, and x0 ∈ X be a point admitting nbd ray in X. Then ΣX,x0 = R,
and if f is differentiable at x0, then the differential of f at x0 is unique and

lim
h→0

h∈∆X,x0

f (x0 + h)− f (x0)− d f (x0)(h)
|h| = 0.

Moreover, since d f (x0) is a linear operator, there exists a unique a ∈ R such that

lim
h→0

h∈∆X,x0

f (x0 + h)− f (x0)− ah
|h| = 0.

Therefore, it follows that

a = lim
h→0

h∈∆X,x0

f (x0 + h)− f (x0)

h
.

This limit is denoted by f ′(x0) and is called the derivative of the function f at the point x0.
In general, if f ′(x0) exists for a function f : X → R, X ⊆ R, at a point x0 ∈ X, then the

function f is said to be derivable at x0. If the function f is derivable at every point of X,
then we say that f is derivable. If X is an open set then

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

Notice that differentiability of the function f at x0 implies derivability and

d f (x0)(h) = f ′(x0)h.

Also, derivability of the function f at x0 (existence of the number f ′(x0)) implies differen-
tiability at x0, i.e., it holds following theorem:

Theorem 7. Let f : X → R and x0 ∈ X ⊆ R be a point admitting nbd ray in X. The function f
is differentiable at x0 if and only if it is derivable at x0.

Generalizing the notion of derivability (differentiability) of a real function of a real
variable to points admitting an nbd ray in the domain of this function and not belonging
to the interior of this domain allows the phenomenon of derivable (differentiable) but
discontinuous functions at a given point, as shown in the following example.

Example 9. Let X =
⋃

n∈N

[
− 1

2n ,− 1
2n+1

]
∪ [0, 1] and f : X → R be the function defined by

f (x) =

{
n, x ∈

[
− 1

2n ,− 1
2n+1

]
0, x ∈ [0, 1]

.

The function f is derivable (differentiable) at every point of its domain X, and f ′(x) = 0 for every
x ∈ X, but f is discontinuous at 0.

However, if a point x0 ∈ X ⊆ R of a function f : X → R admits raylike nbd in X and
if f is derivable at x0, then f is continuous at x0, which follows from Theorem 4 and the
previous theorem.



Mathematics 2022, 10, 3085 19 of 29

Let us now consider the question of the tangent to the graph of a function f : X → R,
X ⊆ R. Since the number f (x0+h)− f (x0)

h is the slope of the secant passing through the points

(x0, f (x0)) and (x0 + h, f (x0 + h)), the number lim
h→0

f (x0+h)− f (x0)
h = f ′(x0), if it exists, is the

slope of the tangent line (the limiting position of secant) to the graph of the function f at
the point (x0, f (x0)). Hence, we distinguish two cases:

(a) If f is derivable at the point x0, then f ′(x0) exists and we define the tangent to the
graph of the function f at the point (x0, f (x0)) as the line passing through the point
(x0, f (x0)) whose the slope is f ′(x0), so that its equation is

y− f (x0) = f ′(x0)(x− x0).

(b) If the function f at x0 is not derivable, but is continuous and

lim
h→0

f (x0 + h)− f (x0)

h
= ∞ or lim

h→0

f (x0 + h)− f (x0)

h
= −∞,

then the line x = x0 is the limiting position of the secant and we call it tangent at the

point (x0, f (x0)) to the graph of the function f . For example, since lim
h→0

3√h−0
h = ∞,

the line x = 0 is tangent to the graph of the function x 7→ 3
√

x at the point (0, 0).

Likewise, the line x = x0 is called the tangent to the graph of the function f at
(x0, f (x0)) provided that

lim
h→0+

f (x0 + h)− f (x0)

h
= ∞(−∞) and lim

h→0−

f (x0 + h)− f (x0)

h
= −∞(∞).

Thus, for the function x 7→ 3√x2, since lim
h→0+

3√h2−0
h = ∞ and lim

h→0−

3√h2−0
h = −∞, it follows

that the line x = 0 is the tangent to the graph of this function at the point (0, 0).

5.3. Differentiability of Functions of Several Real Variables

Let X ⊆ Rn, f : X → R be differentiable at a point P0 ∈ X that admits nbd ray in X
in the direction of k linearly independent vectors V1, . . . , Vk, k ≤ n, and let these vectors
form the basis of the space ΣX,P0 . The differential A : Rn → R of the function f at P0
is uniquely determined on ΣX,P0 (Theorem 2) by values ∂Vi f (P0) = A(Vi), i = 1, . . . , k
(Corollary 5), so that, for every H ∈ ΣX,P0 , there exist numbers hi, i = 1, . . . , k, such that

H = h1V1 + · · ·+ hkVk and A(H) =
k
∑

i=1
∂Vi f (P0)hi.

If k = n, then the vectors V1, . . . , Vn form the basis of the space ΣX,P0 = Rn, therefore,
the linear operator d f (P0) is unique (Corollary 1) and is uniquely determined by the
values ∂Vi f (P0) = d f (P0)(Vi), i = 1, . . . , n. For each H ∈ Rn there exist numbers hi,

i = 1, . . . , n, such that H = h1V1 + · · ·+ hnVn and d f (P0)(H) =
n
∑

i=1
∂Vi f (P0)hi. This proves

the following theorem.

Theorem 8. Let X ⊆ Rn and P0 ∈ X be a point admitting nbd ray in X in the direction of n linearly
independent vectors V1, . . . , Vn. If f : X → R is differentiable at P0, then f has the derivatives at
P0 in the direction of Vi, . . . , Vn, and for any choice of vector H = h1V1 + · · ·+ hnVn ∈ Rn holds

d f (P0)(H) =
n
∑

i=1
∂Vi f (P0)hi.
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If Ω ⊆ Rn is an open set and a function f : Ω→ R is differentiable at P0 ∈ Ω then all
of its partial derivatives at P0 exist and

d f (P0)(H) =
n
∑

i=1
∂i f (P0)hi = (grad f (P0)|H)

for every H = (h1, . . . , hn) ∈ Rn.
Notice that the existence of the differential of a function f : X → R, X ⊆ Rn, at P0 ∈ X

now no longer depends on the existence of the partial derivatives at this point (which was
the case so far). If the function f is differentiable at P0 and if the point P0 does not admit nbd
ray in the direction of ei for some i ∈ {1, . . . , n}, but admits nbd rays in X in the direction
of n linearly independent vectors V1, . . . , Vn, then the role of the partial derivatives of f at
P0 is taken over in the differential d f (P0) by derivatives in the direction of V1, . . . , Vn and
d f (P0) is represented by the matrix[

∂V1 f (P0) · · · ∂Vn f (P0)
]

in the pair of ordered bases (V1, . . . , Vn) and (e1), e1 = 1. The converse of the previous
theorem is not true. Namely, at some point derivatives of f in the direction of all vectors
in Rn\{0} can exist and the function f need not be differentiable at that point, as we have
shown in the Example 8.

5.4. Differentiability of Vector Functions

The question of differentiability of a vector function f = ( f1, . . . , fm) : X → Rm

is equivalent to the question of differentiability of its coordinate functions fi = pi ◦ f ,
i = 1, . . . , m.

Theorem 9. Let X ⊆ Rn, f = ( f1, . . . , fm) : X → Rm, and P0 ∈ X be a point admitting nbd
ray in X. The function f is differentiable at P0 if and only if fi is differentiable at P0 for every
i = 1, . . . , m. A linear operator A : Rn → Rm is the differential of the function f at P0 if and only
if pi ◦ A : Rn → R is the differential of the function fi at P0, for i = 1, . . . , m.

Proof. The differential of the function f at P0 is a linear operator A : Rn → Rm with the
property

f (P0 + H)− f (P0) = A(H) + r(H)

for every H ∈ ∆X,P0 , where r = (r1, . . . , rm) : ∆X,P0 → Rm is the function such that

lim
H→0

r(H)
||H|| = 0. It follows that

fi(P0 + H)− fi(P0) = Ai(H) + ri(H),

for every H ∈ ∆X,P0 , and lim
H→0

ri(H)
||H|| = 0, for every i ∈ {1, . . . , m}, where Ai denotes the

i-th coordinate function pi ◦ A : Rn → R, which is also a linear operator as A is. Thus, the
function fi : X → R is differentiable at P0 for every i = 1, . . . , m, i.e., the i-th coordinate
function of the differential of the function f at P0 is the differential of the i-th coordinate
function fi of f .

In the same way it can be shown that the converse statement is also valid, i.e., that
the differentiability of the coordinate functions fi at P0 implies the differentiability of the
function f = ( f1, . . . , fm).

Corollary 8. Let X ⊆ Rn and P0 ∈ X be a point that admits nbd rays in X in the direction of n
linearly independent vectors V1, . . . , Vn. If f = ( f1, . . . , fm) : X → Rm is differentiable at P0 then
there exists ∂Vi f (P0) := (∂Vi f1(P0), . . . , ∂Vi fm(P0)) ∈ Rm for i = 1, . . . , n and

d f (P0)(H) =
n
∑

i=1
∂Vi f (P0)hi, H = h1V1 + · · ·+ hnVn ∈ Rn.
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Proof. The statement follows from the previous theorem, Corollary 1 and Theorem 8.

In particular, if a function f = ( f1, . . . , fm) : X → Rm, X ⊆ Rn, is differentiable
at a point P0 ∈ X and if the point P0 admits nbd ray in X in the direction of e1, . . . , en,
then the numbers ∂j fi(P0), i = 1, . . . , m, j = 1, . . . , n, uniquely determine the differential
d f (P0) : Rn → Rm of f at P0. This linear operator in the pair of standard bases is represented
by the well-known Jacobi matrix. But if the point P0 does not admit nbd ray in X in the
direction of ei for some i ∈ {1, . . . , n}, but admits nbd ray in X in the direction of n linearly
independent vectors V1, . . . , Vn, then the role of partial derivatives of the functions fi,
i = 1, . . . , m, at P0 is taken over in the differential d f (P0) by derivatives in the direction of
V1, . . . , Vn and d f (P0) is represented by the matrix∂V1 f1(P0) . . . ∂Vn f1(P0)

...
∂V1 fm(P0) . . . ∂Vn fm(P0)


in the pair of ordered bases (V1, . . . , Vn) and (e1, . . . , em). Let us show an application of this
generalized calculus by the following simple example.

Example 10. Let V1,V2 ∈ R2\{0} be two linear independent vectors and let P0 ∈ X ⊆ R2

be a point admitting raylike nbd in X and admitting nbd ray in X in the direction of V1 and
V2. Let f (x, y) = (u, v, w) : X → R3 and g(u, v, w) : R3 → R be differentiable functions at
P0 = (x0, y0) and Q0 = f (P0) = (u0, v0, w0), respectively. By Theorem 6 the function g ◦ f is dif-
ferentiable at P0 and by Corollary 5 there exist directional derivatives ∂V1(g ◦ f )(P0), ∂V2(g ◦ f )(P0),
∂V1 f (P0) =

(
∂V1 u(P0), ∂V1 v(P0), ∂V1 w(P0)

)
and ∂V2 f (P0) =

(
∂V2 u(P0), ∂V2 v(P0), ∂V2 w(P0)

)
.

The differential d f (P0) is represented by the matrix∂V1 u(P0) ∂V2 u(P0)
∂V1 v(P0) ∂V2 v(P0)
∂V1 w(P0) ∂V2 w(P0)


in the pair of ordered bases (V1, V2) and (e1, e2, e3). The differential d(g ◦ f )(P0) is represented by
the matrix [

∂V1(g ◦ f )(P0) ∂V2(g ◦ f )(P0)
]

in the pair of ordered basis (V1, V2) and (e1), e1 = 1. Now, the equality

d(g ◦ f )(P0) = dg(Q0) ◦ d f (P0)

induces the matrix equation [
∂V1(g ◦ f )(P0) ∂V2(g ◦ f )(P0)

]
=

=
[
∂1g(Q0) ∂2g(Q0) ∂3g(Q0)

]∂V1 u(P0) ∂V2 u(P0)
∂V1 v(P0) ∂V2 v(P0)
∂V1 w(P0) ∂V2 w(P0)


which implies the following formulas:

∂Vi (g ◦ f )(P0) = ∂Vi u(P0) · ∂1g(Q0) + ∂Vi v(P0) · ∂2g(Q0) + ∂Vi w(P0) · ∂3g(Q0),

i = 1, 2.
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5.5. Differentiability of Vector Functions of One Variable

Let f = ( f1, . . . , fm) : X → Rm, X ⊆ R, be a vector function of one variable. If f is
differentiable at a point x0 ∈ X then the differential is unique (Corollary 2). Moreover, by
Theorem 9, functions fi are differentiable at x0 for i = 1, . . . , n, and

d f (x0)(h) =
(

f ′1(x0)h, . . . , f ′m(x0)h
)
.

The vector
(

f ′1(x0), . . . , f ′m(x0)
)

is called the derivative of the vector function f at the
point x0 and is denoted by f ′(x0). Obviously, d f (x0)(h) = h f ′(x0). From Theorems 7 and 9
it follows that the differentiability of f at x0 is equivalent to the derivability of its coordinate
functions f1, . . . , fm at x0, consequently instead of differentiability of f we often use the
term derivability of f .

Definition 8. Let x0 ∈ X ⊆ R admit raylike nbd in X. We say that f = ( f1, . . . , fm) : X → Rm

is regular at x0 if f is derivable at x0 and f ′(x0) 6= 0.

Definition 9. Let f = ( f1, . . . , fm) : X → Rm be a regular at x0 ∈ X ⊆ R and let any
x ∈ f−1({ f (x0)}) admits raylike nbd in X. We say that f is geometrically smooth at x0
provided f is derivable on f−1({ f (x0)}) and the vectors f ′(x0) and f ′(x) are collinear for every
x ∈ f−1({ f (x0)}). If f is geometrically smooth at all points in its domain, then we say that f is
geometrically smooth.

Let m > 1 and f = ( f1, . . . , fm) : X → Rm be a geometrically smooth at a point x0 ∈ X.
The vector f (x0+h)− f (x0)

h is the direction vector of the secant passing through the points
f (x0) and f (x0 + h), and when h → 0 we obtain the vector f ′(x0) which is the direction
vector of the tangent to the image f (X) ⊆ Rm of the function f at the point f (x0), i.e., the
tangent to the image of the function f at the point f (x0) is the line passing through the
point f (x0) and its direction vector is f ′(x0). Therefore its equation is

y1 − f1(x0)

f ′1(x0)
= · · · = ym − fm(x0)

f ′m(x0)
.

Notice that at the point f (x0) = (x0, g(x0)) the terms tangent to the image of the function
f = (1X , g) : X → R2, X ⊆ R and the tangent to the graph of or a function g : X → R coincide.

The tangent to the image of a vector function f of one variable makes sense only
at points where the function f is geometrically smooth. This means, first of all, that we
consider only points at which the function f is derivable. In addition to derivability, the
regularity of f is also required, since the direction vector of each line is different from the
zero vector. Furthermore, the tangent to the image of the function f at the point f (x0)
only makes sense if there exist derivatives of f at all points x ∈ f−1({ f (x0)}) and these
derivatives are collinear vectors. Otherwise, we would get different tangents at f (x0)
depending on which point x ∈ f−1({ f (x0)}) we choose. Therefore, this condition is also
included in the definition of geometrically smooth function f at a point x0, since only at
these points the tangent is uniquely determined. For example the function

f : R→ R2 f (t) = (cos t, sin t)

is a geometrically smooth function, since it is derivable and regular at every point in the
domain. The image of f is the circle S1 and for an arbitrary point f (t0) the derivatives of
f at all points in the set f−1({ f (t0)}) = {t0 + 2kπ, k ∈ Z} are equal. On the other hand,
the function

g :
[
0,

π

3

]
→ R2 g(t) = (sin 3t cos t, sin 3t sin t)
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is not geometrically smooth at the points 0 and π
3 . Namely, g(0) = (0, 0) = g

(
π
3
)
, the

function g is derivable and

g′(t) = (3 cos 3t cos t− sin 3t sin t, 3 cos 3t sin t + sin 3t cos t),

but vectors

g′(0) = (3, 0) and g′
(π

3

)
=

(
−3

2
,−3

√
3

2

)
are not collinear. Therefore, the tangent to the image of the function g at the point (0, 0) is
not defined.

Notation 1. Although the notion of a geometrically smooth function allows the correct definition
of a tangent to the image of the function at a point (a tangent cannot be a line without direction
and must be unique at the point in the image of the function), the problem of the dependence of the
tangent on the observed function remains, i.e., a tangent to the image of a function depends directly
on the observed function and not only on its image. Indeed, two functions f and g may have the
same image Γ and for a point P ∈ Γ the function f need not be geometrically smooth at x and g
geometrically smooth at y for every x ∈ f−1({P}) and every y ∈ g−1({P}), nor need the vectors
f ′(x) and g′(y), if they exist, be collinear. For example, the image of the functions

f , g : [−1, 1]→ R2 f (t) = (t, t), g(t) =
(

t3, t3
)

is the line segment (−1,−1)(1, 1). The function f is geometrically smooth at the point 0,
f ′(0) = (1, 1) and the tangent to the image of f at (0, 0) is the line y = x. On the other hand, the
function g is not regular at the point 0, so the tangent to its image (the same line segment) is not
defined. If we want to define a tangent to a set which is the image of a function of one variable, but
does not depend on the function itself, we should consider curves, i.e., smooth 1-parameterizable
sets, which is beyond the scope of this paper.

6. Tangent Plane

Let X ⊆ Rn, n ≥ 2, and f : X → R. Let

S = {(x1, . . . , xn) ∈ X | f (x1, . . . , xn) = 0}

be a nonempty set, and P0 =
(
x0

1, . . . , x0
n
)
∈ S be a point admitting nbd ray in X in the

direction of e1, . . . , en and admitting raylike nbd in X. Let f be differentiable at P0 and
∇ f (P0) 6= 0. For a continuous function r = (r1, . . . , rn) : [a, b] → S, [a, b] ⊆ R, which is
differentiable and geometrically smooth at a point t0 ∈ [a, b] and for which r(t0) = P0,
the direction vector of the tangent to the image r([a, b]) of r at the point P0 is r′(t0). Since
f ◦ r = 0 then d( f ◦ r)(t0) = 0 and, by Theorem 6,

0 = d( f ◦ r)(t0) = d f (P0) ◦ dr(t0),

i.e.,

0 =
[
∂1 f (P0) · · · ∂n f (P0)

]r′1(t0)
...

r′n(t0)

 =
(
∇ f (P0)|r′(t0)

)
(9)

therefore the vectors ∇ f (P0) and r′(t0) are orthogonal. Thus, the direction vector of the
tangent to the image of any function r : [a, b]→ S with the above properties at the point P0
is orthogonal to ∇ f (P0) which implies that all these tangents lie in the same plane; we call
this hyperplane the tangent plane to the set S at the point P0. Since ∇ f (P0) is its normal
vector, its equation is

∂1 f (P0)(x1 − x0
1) + · · ·+ ∂n f (P0)(xn − x0

n) = 0.
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Let F be defined by F(x1, . . . , xn+1) = xn+1− f (x1, . . . , xn) for (x1, . . . , xn) ∈ X. The tangent
plane to the set

Γ = {(x1, . . . , xn+1) ∈ Rn+1 | F(x1, . . . , xn+1) = 0, (x1, . . . , xn) ∈ X}

=
{
(x1, . . . , xn, f (x1, . . . , xn)) ∈ Rn+1 | (x1, . . . , xn) ∈ X

}
at the point (P0, f (P0)) is called tangent plane to the graph of the function f at the point
(P0, f (P0)). The vector (−∂1 f (P0), . . . ,−∂n f (P0), 1) is a normal vector of this plane, so its
equation is

xn+1 − f (P0) =
n
∑

i=1
∂i f (P0)

(
xi − x0

i

)
= d f (P0)

(
x1 − x0

1, . . . , xn − x0
n

)
.

Let us now define the tangent plane to the graph of a scalar function in an even more
general case, i.e., at points which do not admit nbd ray in X in the direction of some of the
vectors e1, . . . , en but in the direction of some n linearly independent vectors.

Definition 10. Let f : X → R, X ⊆ Rn, be differentiable at a point P0 =
(
x0

1, . . . , x0
n
)
∈ X that

admits raylike nbd in X, and let ΣX,P0 = Rn. The hyperplane

xn+1 − f (P0) = d f (P0)
(

x1 − x0
1, . . . , xn − x0

n

)
is called the tangent plane to the graph of the function f at the point (P0, f (P0)).

Remark 3. Since the coordinates of the vector P− P0 are given in the standard basis of Rn, it is
assumed that the operator d f (P0) is defined in the pair of ordered basis (e1, . . . , en) and (e1 = 1).
The numbers d f (P0)(ei), i = 1, . . . , n, are partial derivatives of the function f only if P0 admits
nbd ray in the direction of ei, for i = 1, . . . , n.

Let us show the justification of the previously defined notion. Let f : X → R ful-
fill conditions of the previous definition and let P0 admits nbd ray in the direction of a
vector V = (v1, . . . , vn) ∈ Rn\{0} in X such that P0P0 + V ⊆ X. Let us consider the
parametrization of the line segment P0P0 + V, i.e., the function r = (r1, . . . , rn) : [0, 1]→ Rn

r(t) = P0 + tV. Due to the assumed differentiability of the function f at P0, there exists
the derivative ∂V f (P0) in the direction of V (Corollary 5) and then the function f ◦ r is
derivable at 0 because

( f ◦ r)′(0) = lim
h→0

h∈〈0,1〉

f (P0 + hV)− f (P0)

h

= lim
h→0

hV∈∆V(X,P0)

f (P0 + hV)− f (P0)

h
= ∂V f (P0).

The image of the function (r1, . . . , rn, f ◦ r) : [0, 1]→ Rn+1 belongs to the graph of f , passes
through the point (P0, f (P0)) and the direction vector of the tangent to the image of the
function (r1, . . . , rn, f ◦ r) at the point (P0, f (P0)) is (v1, . . . , vn, ∂V f (P0)). We will now show
that this tangent lies in the tangent plane to the graph of the function f at (P0, f (P0)), i.e.,
that the point (

x0
1 + v1, . . . , x0

n + vn, f (P0) + ∂ fV(P0)
)

belongs to this plane. According to Corollary 5, d f (P0)(V) = ∂V f (P0) holds. This implies

( f (P0) + ∂V f (P0))− f (P0) = d f (P0)
(

x0
1 + v1 − x0

1, . . . , x0
n + vn − x0

n

)
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which proves that all points of the tangent belong to the tangent plane. This means that
all previously described tangents lie in the same hyperplane and the normal vector of
this hyperplane is orthogonal to the vector (v1, . . . , vn, ∂V f (P0)) where which justifies the
previous definition.

Remark 4. For a scalar function f : D → R of two variables which fulfils conditions of the
previous definition at a point P0 = (x0, y0) ∈ D admitting nbd rays in the direction of two non-
collinear vectors V = (v1, v2) and V′ =

(
v′1, v′2

)
in D, the vector of the direction of the normal

line of the tangent plane to the graph of the function f at (x0, y0, f (P0)) is (v1, v2, ∂V f (P0))×(
v′1, v′2, ∂V′ f (P0)

)
. This vector is orthogonal to the vector

(
v1, v2, ∂(v1,v2) f (P0)

)
where (v1, v2)is

an arbitrary vector such that the point P0 admits nbd ray in D in the direction of (v1, v2). In
particular, at a point P = (x, y) ∈ Int D, i.e., at a point that admits nbd rays in D in the direction
of vectors e1 and e2, the normal vector of the tangent plane in (x, y, f (P)) can be calculated as
(1, 0, ∂x f (P))×

(
0, 1, ∂y f (P)

)
=
(
−∂x f (P),−∂y f (P), 1

)
.

7. Differentiability in Different Coordinate Systems
7.1. Affine Coordinate Systems

Let (O′, (e′)) be an affine coordinate system [10] where O′ ∈ Rn is its origin and
(e′) =

(
e′1, . . . , e′n

)
is an ordered basis for the vector space Rn. For any P ∈ Rn the numbers

x′1, . . . , x′n ∈ R for which P − O′ = x′1e′1 + · · · + x′ne′n are the coordinates of the point
P in that affine system and we write P =

(
x′1, . . . , x′n

)
. Obviously, O′ = (0, . . . , 0). If

(e) = (e1, . . . , en) is the standard ordered basis and O ∈ Rn, (O, (e)) is said to be the
standard affine coordinate system.

Let P ∈ Rn has notation (x1, . . . , xn) in the standard affine coordinate system (O, (e))
and let

(
x′1, . . . , x′n

)
be its notation in the affine coordinate system (O′, (e′)). Then the

linear operator A(e)(e′) : Rn → Rn A(ei) = e′i , i = 1, . . . , n, is an isomorphism and its
corresponding affine isomorphism σ : Rn → Rn give us an analytical relation between the
coordinates in the both coordinate systems according to the rule

(x1, . . . , xn) = σ
(
x′1, . . . , x′n

)
:=
(

x0
1, . . . , x0

n

)
+ A(e)(e′)

(
x′1, . . . , x′n

)
, (10)

where
(

x0
1, . . . , x0

n
)

is the notation of the point O′ in the standard affine coordinate sys-
tem (O, (e)). The affine isomorphism σ is called the function of the transition from the
standard affine coordinate system to the affine coordinate system (O′, (e′)). As an affine
isomorphism, the function σ is differentiable, as well as its inverse σ−1.

Definition 11. Let X ⊆ Rn, f : X → Rm, σ : Rn → Rn be the transition function (10) and
X′ := σ−1(X). The function fσ := f ◦ σ : X′ → Rm is called the representation of the function
f in the affine coordinate system (O′, (e′)).

We will now prove the following important statements which hold for affine coordinate
systems:

Theorem 10. Let X ⊆ Rn, σ : Rn → Rn be the function of the transition from the standard affine
coordinate system to an affine coordinate system (O′, (e′)) and let P0 ∈ X be a point admitting nbd
ray in X. Let f : X → Rm be a function, X′ := σ−1(X) and fσ : X′ → Rm be its representation
in the affine coordinate system (O′, (e′)). Then it holds:

(i) The point P′0 = σ−1(P0) admits nbd ray in X′ and ∆X′ ,P′0
= A−1

(e)(e′)

(
∆X,P0

)
.

(ii) If f is differentiable at P0, then the function fσ is differentiable at σ−1(P0).
(iii) If ΣX,P0 = Rn and f is differentiable at P0, then the function fσ is also differentiable at

P′0 = σ−1(P0) and d fσ(P′0) = d f (P0) ◦ A(e)(e′).
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Proof.

(i) Since an affine function maps a line segment to the line segment whose endpoints are
the image of the endpoints of the original line segment, the transition function σ−1

maps the line segment P0P0 + H to the line segment P′0P′0 + A−1
(e),(e′)(H), from which

follows the statement.
(ii) Let ∆′X,P0

= A−1(∆X,P0

)
. By assumption, there exists a linear operator B : Rn → Rm

such that

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− B(H)

||H|| = 0.

Let us show that the linear operator B ◦ A : Rn → Rm is the differential of the function
fσ at the point P′0 = σ−1(P0). It holds

lim
H′→0

H′∈∆′X,P0

f ◦ σ(P′0 + H′)− f ◦ σ(P′0)− B ◦ A(H′)
||H′|| =

lim
H′→0

H′∈∆′X,P0

f (O′ + A(P′0) + A(H′))− f (P0)− B(A(H′))
||H′|| =

= lim
H′→0

H′∈∆′X,P0

f (P0 + A(H′))− f (P0)− B(A(H′))
||A−1 ◦ A(H′)||

=

lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− B(H)

||A−1(H)||
=

= lim
H→0

H∈∆X,P0

f (P0 + H)− f (P0)− B(H)

||H)|| · ||A
−1(H)||
||H)||

By the Lemma 1, there exists m ∈ R+ such that

0 ≤ || f (P0 + H)− f (P0)− B(H)||

||H|| · ||A
−1(H)||
||H)||

≤ || f (P0 + H)− f (P0)− B(H)||
||H|| ·m ,

for every H ∈ ∆X,P0 , thus from the provious identities it follows

lim
H′→0

H′∈∆′X,P0

fσ(P′0 + H′)− fσ(P′0)− B ◦ A(H′)
||H′|| = 0.

(iii) It follows from the previous two statements.

Lemma 1. Let A : Rn → Rm be an isomorphism. Then there exists m ∈ R+ such that

||A(H)||
||H|| ≥ m, for every H ∈ Rn.

Proof. Assume the contrary that there exists a sequence (Hk) in Rn and a real sequence
(mk) converging to 0 such that

||A(Hk)||
||Hk||

< mk, for every k ∈ N.
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Consider a sequence of points (Pk), Pk = Hk
||Hk ||

, k ∈ N, in Rn. Since the sphere Sn−1 is a

compact set, the sequence (Pk), contained in it, has a certain convergent subsequence
(

Pkl

)
whose limit P0 belongs to the sphere [3]. Therefore, ||P0|| = 1. From

(
Pkl

)
→ P0 follows(∣∣∣∣A(Pkl

)∣∣∣∣)→ ||A(P0)||. By the property of a norm and a linear operator, it holds

∣∣∣∣A(Pkl

)∣∣∣∣ = ∣∣∣∣∣∣∣∣A( Hk
||Hk||

)∣∣∣∣∣∣∣∣ = ||A(Hk)||
||Hk||

< mk, for every k ∈ N.

This implies lim
(∣∣∣∣A(Pkl

)∣∣∣∣) = 0, from which it follows ||A(P0)|| = 0 and consequently
A(P0) = 0. But since A is an isomorphism, this implies P0 = 0 which contradicts the
equality ||P0|| = 1.

This theorem shows us that the notion of differentiability of a function does not depend
on the chosen affine coordinate system. We will now show that it is not true for some other
coordinate systems.

7.2. Polar, Elliptical, Cylindrical and Spherical Coordinate Systems

For each point T = (x, y) ∈ R2 in the standard affine coordinate system we define the
coordinates r, φ in the standard polar coordinate system (so-called polar coordinates) by
the following formulas

r =
√

x2 + y2,

φ := arg(T) =



arctan
( y

x
)
, x > 0, y ≥ 0

arctan
( y

x
)
+ π, x < 0, y ≤ 0 or x < 0, y ≥ 0

arctan
( y

x
)
+ 2π, x > 0, y ≤ 0

π
2 , x = 0, y > 0

3π
2 , x = 0, y < 0
0, x = 0, y = 0.

This defines bijection

ρ : Θ0 → R2, Θ0 := 〈0, ∞〉 × [0, 2π〉 ∪ {(0, 0)}

(x, y) = ρ(r, φ) = (r cos φ, r sin φ).

which we call the transition function from the standard affine coordinate system to the
standard polar coordinate system. The polar coordinate grid consists of “lines” φ = φ0
and “lines” r = r0 for (r0, φ0) ∈ Θ0. This polar coordinate grid is mapped to a “spider web”
in an affine coordinate system consisting of all concentric circles with center 0 and all half
lines with 0 as endpoint.

Notice that the function ρ is not a homeomorphism [2] since its inverse has discontinu-
ity at all points (x, 0), x ∈ [0, ∞〉. For this reason, in applications and transitions from the
polar to the affine coordinate system, the restriction of the transition function is used

ρ|〈0,∞〉×〈0,2π〉 : 〈0, ∞〉 × 〈0, 2π〉 → R2\p0, p0 := {(x, 0) | x ≥ 0},

which is a homeomorphism. With the transition function ρ, the rectangle

{(r, φ) | r1 ≤ r ≤ r2, φ1 ≤ φ ≤ φ2}, 0 < r1 < r2, 0 ≤ φ1 < φ2 < 2π,

is mapped to an area bounded by corresponding circles and half-lines, therefore the polar
coordinate system is more suitable to consider such sections than any other system in the
plane. Every point of the set Θ0 admits nbd ray in it and the function ρ is differentiable at
every point (r, φ) ∈ Θ0, and the differential is represented by a matrix[

cos φ −r sin φ
sin φ r cos φ

]
.
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Let X ⊆ R2, f : X → Rm be a function and X′ = ρ−1(X) ⊆ Θ0. Then, for the function
fρ := f ◦ ρ : X′ → Rm, we say that the representation of the function f is in the polar
coordinate system or in polar coordinates.

Example 11. The representation of a function f : R2 → R f (x, y) =
√

x2 + y2 in the polar
coordinate system is fρ : Θ0 → R fρ(r, φ) = r. Notice that the function f is not differentiable at
the point O (Example 5) but the function fρ is differentiable at the point (0, 0) = ρ−1(O) and it
holds d fρ(0, 0) = p1.

Therefore, we conclude that the notion of differentiability of a function depends on the
chosen coordinate system (affine or polar) in which it is represented. Such a phenomenon
is not possible in the transition from one affine coordinate system to another (Theorem 10).
Thus, in the transition from polar coordinates to affine coordinates (or vice versa), the
differentiability of the function need not be preserved, nor does the notion of admissibility
of nbd rays. To avoid such undesirable phenomena, we will consider only functions f
(in affine coordinates) whose domains are open sets in R2\p0, and functions fρ (in polar
coordinates) whose domains are open sets in 〈0, ∞〉 × 〈0, 2π〉. Since ρ|〈0,∞〉×〈0,2π〉 is a
diffeomorphism (differentiable bijection which inverse is also differentiable), the following
holds according to the Theorem 6.

Corollary 9. Let Ω ⊆ R2\p0 be an open set, f : Ω → Rm a function and fρ : Ω′ → Rm

representation of the function f in polar coordinates, where Ω′ = ρ−1(Ω). If f is differentiable at
a point (x, y) ∈ Ω then the function fρ : Ω′ → Rm, is differentiable at (r, φ) = ρ−1(x, y) and it
holds d

(
fρ

)
(r, φ) = d f (x, y) ◦ dρ(r, φ).

Notation 2. Differentiability of a function represented in polar coordinates should be considered
only on a formal level. Indeed, the idea of linearization of a function, i.e., its local approximation
by an affine function, makes sense only in affine coordinates. For example, for the scalar function
z = fρ(r, φ) in polar coordinates, the differential at the point(r0, φ0) 6= (0, 0) is the linear
operator A, A(r, φ) = ∂r fρ(r0, φ0)r + ∂φ fρ(r0, φ0)φ, which is no longer a linear operator in affine
coordinates. Differentiability of a function represented in polar coordinates in the context of an affine
coordinate system not be understood as a possibility of local approximation by an affine function,
but by a linear combination of the functions z =

√
x2 + y2 and z = arg(x, y) since these can be

considered special in polar coordinates. For functions with a conic graph (like those in the previous
example), such an approximation is more appropriate than linearization, and differentiation of
functions in polar coordinates has exactly this meaning. Thus, the function from the previous
example becomes a linear operator in polar coordinates and its differential is equal to itself at every
point and in this context it is a perfect approximation.

8. Conclusions

In this work we have presented some results obtained in the research conducted during
COVID epidemic. It was motivated by some issues and shortcomings which occur in some
applications of the traditional approach to differentiability. These problems were noticed
by the first author, who has many years of experience in giving classes of various courses
in mathematical analysis to students from University of Split, Croatia. In the traditional
approach to differentiability, which is featured in almost all university textbooks, this notion
is considered only for interior points of domain of function or for functions with an open
domain. We have generalized differentiability of scalar and vector functions of several
variables by defining it at non-interior points of the domain of function, which include
not only boundary points but also all points where a notion of linearization is meaningful
(points admitting nbd rays). This generalization allows applications in many fields of
mathematics and engineering or, in short, in all areas where standard differentiability
can be applied. With this generalized approach to differentiability, some unexpected
phenomena may occur, such as the non-uniqueness of the differential in some special cases,
a function discontinuity at a point where a function is differentiable, which is possible
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only for points that do not admit raylike nbd in a domain of function. But if one reduces
this theory only to points with some special properties (points admitting a linearization
space with dimension equal to the dimension of the ambient Euclidean space of the domain
and admitting a raylike neighborhood, which includes the interior points of a domain),
then all properties and theorems belonging to the known theory of differentiability remain
valid in this extended theory. For generalized differentiability, the corresponding calculus
(differentiation techniques) is also provided by matrices—representatives of differentials
at points. In this calculus, the role of partial derivatives (which generally may not exist
for differentiable functions at some points) is taken by directional derivatives. The results
presented open the possibility for further research and examination of known theorems on
standard differentiability in a new context.
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