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Abstract: In this work, a chaotification technique is proposed that can be used to enhance the
complexity of any one-dimensional map by adding the remainder operator to it. It is shown that
by an appropriate parameter choice, the resulting map can achieve a higher Lyapunov exponent
compared to its seed map, and all periodic orbits of any period will be unstable, leading to robust
chaos. The technique is tested on several maps from the literature, yielding increased chaotic behavior
in all cases, as indicated by comparison of the bifurcation and Lyapunov exponent diagrams of the
original and resulting maps. Moreover, the effect of the proposed technique in the problem of
pseudo-random bit generation is studied. Using a standard bit generation technique, it is shown
that the proposed maps demonstrate increased statistical randomness compared to their seed ones,
when used as a source for the bit generator. This study illustrates that the proposed method is an
efficient chaotification technique for maps that can be used in chaos-based encryption and other
relevant applications.
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1. Introduction

In this section, a short introduction to chaos theory, and the problem under study,
is provided.

1.1. Chaotic Systems in Applications

Along with their emergence as a modelling tool for natural phenomena in physics,
engineering, biology, and other natural sciences [1], chaotic systems are often used as a light,
fast, and reliable source of deterministic randomness, in applications relating to security [2],
authentication [3], surveillance [4], random number and bit generation [5], encryption [6],
communications [7], optimization [8], and more [9]. The effectiveness of chaotic systems as
a source of randomness is attributed to their unpredictable trajectories and sensitivity to
parameter changes, which is a trademark of their nonlinear nature. Moreover, determinism
is a desired property for applications such as watermarking and encryption, as the chaotic
trajectory must be replicated by the receiver to reverse the process.

In the aforementioned applications, both continuous and discrete systems can be
used. However, due to their computational load and heavy dependence on the chosen
numerical method, continuous systems are usually avoided, especially when considering
implementations in devices with computing limitations [10,11]. It is thus more common to
use low-dimensional discrete maps, as they are easy to implement and can achieve chaotic
behavior with a very low number of operations.
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Thus, due to the increasing number of chaos-based applications, there is a continuous
need to develop new chaotic maps. This can be achieved by considering common non-
linearities that are used in well-known maps, such as sinusoidal functions, polynomial
terms, or switching operators, and combining them appropriately, to develop new chaotic
maps [12–15].

Recently, techniques have been developed that can be used on any map to improve its
chaotic behavior, and thus make them more efficient in encryption. The aim is to derive new
maps that showcase higher complexity, which is usually indicated by a higher Lyapunov
exponent (LE) value. The LE is a measure of a map’s sensitivity to small changes in its initial
conditions [16]. A positive LE indicates chaotic behavior, and a higher LE is indicative
of a system with more complex and sensitive dynamics. There is also a fundamental
requirement for the system to be chaotic regardless of the considered parameter range.
Nonlinear systems exhibit chaos, but are also prone to behaving periodically. However,
periodicity should be avoided at all costs in chaos-based encryption.

This procedure of enhancing the complexity of any given map is often termed chao-
tification. One such example is the 1-D chaotic map amplifier that combines two maps
through a cosine and logarithmic function [17]. Another is the composition of any map
with a sine function [18], a cascade sine operation [19], or the composition with a cosine
function [20]. In [21], an internal perturbation model of any map with a nonlinear function
was proposed. In [22], a combination with scaling, division by a sinusoidal term, and the
modulo operator was considered. The use of the modulo operator has been proven efficient
in enhancing chaotic behavior in many works [23–26]. Another recent approach is the use
of delay terms [27], which can also resolve the issue of dynamical degradation. In many
situations, though, the constructed maps may still exhibit wide periodic windows, which is
an undesired property, as will be discussed in the following subsection.

1.2. Chaos-Based Encryption and Key Space Specification

In symmetric chaos-based encryption, a chaotic map is used to produce a stream of
pseudo-random data that are combined with an information signal, through the processes
of confusion and diffusion, in order to mask them. Afterwords, the encrypted signal is
safely transmitted through a public communication channel to a receiver. Then, the receiver
can reconstruct the original information by reversing the encryption process. To do so, they
should have knowledge on the secret keys that were used to encrypt the signal.

The secret keys used for encryption are the seed map’s initial condition and parameter
values. As an illustrative example, if the logistic map [28], described by

xi = kxi−1(1− xi−1), (1)

is used to generate a pseudo-random bitstream to encrypt a message using XOR, then the
key values that the receiver should know in order reconstruct the bitstream and decrypt
the message are K = {x0, k}.

A challenge that naturally arises, though, in chaos-based encryption is the accurate
description of the acceptable key values [29]. For instance, in the example above, the logistic
map can exhibit periodic behavior for a dense subset of parameter values in the interval
k ∈ [0, 4) [30]. Thus, not all parameter pairs {x0, k} are acceptable, since the encryption
will fail if the system falls into periodic orbits, leading to a secret key with zero entropy.
This is the case with many other classic maps, such as the sine map, as well as recent
chaotification techniques [18,20], where the proposed maps showcase higher LE values
compared to their seed maps, but their chaotic behavior may still degrade to periodic
behavior, by an arbitrarily small change in parameters. Thus, despite attaining large LE
values, accurate key space description is still an issue for many maps that can otherwise
showcase characteristics desirable for encryption applications.
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1.3. Contribution to Chaotification

Motivated by the above, there is a clear need to develop chaotification techniques that
result not only in maps that have high LE, but also showcase wide parameter ranges of
uninterrupted chaotic behavior, as indicated by the absence of periodic windows. This
feature is often termed robust chaos [31]. Ideally, chaotification aims in producing maps
for which chaos is found ’almost anywhere’ in the parameter space. Here, a technique
will be proposed that utilizes the remainder operator with a scaling factor on the value
xi−1, which is added back to the original map. The main advantage of this approach is
that, with an appropriate choice of the scalling factor, the modified map can achieve not
only a higher value for its LE, but also compact parameter regions of uninterrupted chaotic
behavior—that is, robust chaos. Moreover, it is shown that this technique is universally
applicable to a wide family of maps for their chaotification—even linear ones—with only
some exceptions.

Recently [32], a technique has been proposed for constructing chaotic maps composed
by summations of m seed functions (Fj)

xi =
m

∑
j=1
Fj(uj, k jxi−1) (2)

where uj are the seed map parameters, and k j are the control parameters. Thus, in each
iteration, the value xi−1 is scaled by the factors k j and fed into each seed map Fj. The
resulting values are summed to compute the updated value of the composed map xi.
The technique was tested using chaotic seed maps such as the sine and Gauss map, with
the resulting maps showcasing increased complexity, though periodic windows were
still present.

The technique considered in this work can be considered as a special version of the
one in [32], but one which adopts the smallest number of summing terms (m = 2), so as
to render a light encryption, and which employs a single chaotic map with a composed
convenient nonlinear function that is commonly found in software languages and that can
be implemented by hardware for the remainder. Here, two seed maps are considered, with
the first map F1 being an unmodified seed map, without a scaling factor on the input xi−1,
and the second being the remainder operator with a scaling factor on the input xi−1. This
setup can be considered a special setup of (2) for m = 2, k1 = 1, and F2 = rem(k2xi−1, N),
k2 6= 1. However, we believe that this specific setup is worth special attention, since it is
designed based on the principle of mixing the significant digits of a map’s value with its
least significant digits, in addition to having the smallest possible m (light encryption).
Moreover, by not scaling the input to the first map, and utilizing the remainder operator
as the second seed map, we obtain a composed function that is computed using the full
spectrum of information of a chaotic orbit, and a scaling of the least significant digits of this
orbit. As the remainder operator is discontinuous, the resulting map will be non-invertible,
with a controllable number of discontinuities. This approach, as will be shown in the
following sections, results in maps with increased complexity, and can be used to design
maps with wide regions of uninterrupted chaotic behavior, rendering a huge increase in the
key space, which improves on security. Thus, this chaotification setup is highly effective,
especially under the prism of encryption-related applications. Another technique that
considers a similar approach is deep zoom [33,34], which is based only on the use of the
least significant digits.

Moreover, in [35], the addition of a linear term to increase a map’s Lyapunov exponents
was considered. The proposed setup can be considered a generalization of this method,
with the addition of the remainder operation increasing the overall performance, and the
effect on bit generation.

The rest of the work is structured as follows. In Section 2, the proposed chaotification
technique is developed and studied. In Section 4, the technique is tested on a collection
of maps from the literature, and the resulting maps are compared to their original ones.
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In Section 5, the effect of the proposed technique on random bit generation is studied.
Section 6 concludes the work with a discussion on future topics of interest.

2. The Proposed Technique

In this section, the proposed technique will be developed, and its effect on LE and
phase diagrams will be studied.

2.1. Chaotification by Remainder Addition

Given any one-dimensional discrete time map F described by the iterative formula

xi = F (xi−1), (3)

the following additive remainder operation to increase the map’s complexity is proposed,

xi = H(xi−1) = F (xi−1) + rem(axi−1, N), (4)

where a is a scaling factor, and N can be chosen to map the remainder result on the
interval (−N, N). Thus, in each iteration, the map’s value is scaled by a factor a, and then
its remainder by division with N is fed back into F (xi−1) by addition, to generate the next
value of the map. The process is graphically depicted in Figure 1. The addition of the
remainder term is motivated by the use of the Renyi map [36,37]

xi = mod(axi−1, 1), (5)

which showcases constant chaos for a > 1. The Renyi map uses the modulo operator, which
limits the result to a positive value. Here, though, this will be generalized by using the
remainder operation, which will help in the resulting maps having a uniform distribution
on the interval (−N, N).

Figure 1. Graphic representation of the chaotification technique (4).

In the following, it is proven that the technique (4) increases the complexity of the
original map (3).

Theorem 1. The proposed map (4) achieves a higher LE compared to its source map (3), if a is
chosen as

a > 2 sup
x∈D
|Ḟ (x)|, (6)

where D is the domain of the map (4).
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Proof. Let λs be the LE of the source map (3). Assuming that F is almost everywhere
differentiable on (−N, N), the LE is given by

λs = lim
n→∞

1
n

n−1

∑
i=0

ln |Ḟ (xi)|. (7)

Now, assuming that axi−1 ∈ (−N, N), the LE for the proposed map (4) is

λmod = lim
n→∞

1
n

n−1

∑
i=0

ln |Ḟ (xi) + a|

= lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣Ḟ (xi)

(
1 +

a
Ḟ (xi)

)∣∣∣∣
= lim

n→∞

1
n

n−1

∑
i=0

ln
(∣∣Ḟ (xi)

∣∣∣∣∣∣1 + a
Ḟ (xi)

∣∣∣∣) (8)

= lim
n→∞

1
n

n−1

∑
i=0

ln |Ḟ (xi)|+ lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣1 + a

Ḟ (xi)

∣∣∣∣
= λs + lim

n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣1 + a

Ḟ (xi)

∣∣∣∣,
where we assume, as usual, Ḟ (xi) 6= 0 for all points in a chaotic trajectory. From the above,
when

∣∣∣1 + a
Ḟ (xi)

∣∣∣ > 1, ∀xi, it will hold that λmod > λs. For a > 0, this can be achieved

regardless of the sign of Ḟ (xi) if we choose a as in (6).
A suitable choice would be

a = (ek + 1) sup
x∈D
|Ḟ (x)|, k > 0, (9)

for which we obtain∣∣∣∣1 + a
Ḟ (xi)

∣∣∣∣ =

∣∣∣∣∣1 + (ek + 1) sup |x∈DḞ (x)|
Ḟ (xi)

∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣ (ek + 1) supx∈D |Ḟ (x)|

Ḟ (xi)

∣∣∣∣∣− |1|
∣∣∣∣∣

≥ (ek + 1)− 1

= ek. (10)

Thus, for the LE λmod, it holds that

λmod = λs + lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣1 + a

Ḟ (xi)

∣∣∣∣
≥ λs + lim

n→∞

1
n

n−1

∑
i=0

ln ek

= λs + lim
n→∞

1
n

n−1

∑
i=0

k (11)

= λs + lim
n→∞

nk
n

= λs + k.

Hence, the exponent can be increased arbitrarily. For an increase of k units, the control
parameter a needs to increase exponentially with respect to k.
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Remark 1. Note that the assumption Ḟ (xi) 6= 0 does not lead to loss of generality. In the special
case where there exists a point xi in the map’s orbit for which Ḟ (xi) = 0, the original map (3) would
exhibit a superstable orbit with an LE that goes to minus infinity. Superstable periodic orbits are
those for which the product of the map’s derivative along the orbit (whose logarithm of the absolute
value produces the LE) is zero. It is sufficient that a periodic orbit has one point with zero derivative
for it to be a superstable orbit. In this case, though, the LE of the updated map (4) is

λmod = lim
n→∞

1
n

n−1

∑
i=0

ln |a|, (12)

which can be treated in the same way considering (9). Hence, the superstable orbits of the original
map are vanished. Moreover, the proposed map (4) would exhibit superstable orbits for any point xi
such that

Ḣ(xi) = 0⇒ Ḟ (xi) + a = 0 (13)

However, for a chosen as (6), the above condition will not hold for any xi. Hence, the superstable
orbits of the proposed map will also vanish.

Overall, Theorem 1 provides a sufficient condition for the loss of stability of the periodic orbits.
This means that not only the LE is increased, but we also give conditions for which all the superstable
periodic orbits are destroyed, and conditions for which periodic orbits are no longer stable. Periodic
windows appear in the neighborhood of superstable orbits [38]. Thus, their elimination contributes
to making the chaos more robust.

In the following, a result on the stability of the map’s equilibria is provided.

Theorem 2. The equilibria of the map (4) are unstable, for parameter a chosen as in (9), for a
positive k > 0 that satisfies

k > ln
1

|Ḟ (x∗)|
(14)

Proof. The equilibria x∗ of (4) are given by

x∗ = F (x∗) + rem(ax∗, N). (15)

Now, considering the derivative of the map’s functionH(x), assuming again that F is
almost everywhere differentiable on (−N, N), and axi−1 ∈ (−N, N),

Ḣ(x) = Ḟ (x) + a. (16)

For the equilibria (15) to be stable, it should hold that |Ḣ(x∗)| < 1. Let a be chosen as
in (9). This yields

|Ḣ(x∗)| =

∣∣∣∣∣Ḟ (x∗) + (ek + 1) sup
x∈D
|Ḟ (x)|

∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣(ek + 1) sup

x∈D
|Ḟ (x)|

∣∣∣∣∣− |Ḟ (x∗)|
∣∣∣∣∣

= (ek + 1) sup
x∈D
|Ḟ (x)| − |Ḟ (x∗)| (17)

≥ (ek + 1)|Ḟ (x∗)| − |Ḟ (x∗)|
≥ ek|Ḟ (x∗)|,
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for k > 0. By choosing a positive k that satisfies (14), we obtain

|Ḣ(x∗)| > e
ln 1
|Ḟ (x∗)| |Ḟ (x∗)|

=
1

|Ḟ (x∗)|
|Ḟ (x∗)| (18)

= 1

Thus, the equilibria (15) will be unstable.

2.2. Geometric Interpretation

A second approach to study the effect of the addition of the remainder term rem(axi−1, N)
on a map is by considering its phase diagram. For discrete maps, the phase diagram de-
picts pairs of consecutive values (xi−1, xi). The relation between consecutive mappings can
equivalently be depicted by plotting the function F (x) on the interval x ∈ (−N, N). Figure 2
depicts the function rem(ax, N) for different values of the parameter a, and N = 1. The
function consists of discontinuous linear segments, due to the term axi−1 mapping outside
the interval (−1, 1), which increases in number as the parameter a increases. Thus, when
added in the map (4), this piecewise linear function will impose discontinuities in the source
map’s function F (x). As the number of piecewise linear bands increases, the number of
periodic orbits (all unstable assuming the condition set by Theorem 1) increases, as well as the
derivative of the map, the latter leading to an increase in the LE. As topological entropy is
defined by the logarithm of the number of unstable periodic orbits (UPOs) [39], one can see a
direct increase in the entropy as well. The above lead to a system with higher complexity, as
will be illustrated in Section 4.

Figure 2. Plot of the function rem(ax, N) with respect to x, for different values of a and N = 1.
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2.3. Key Space

The key values of a map, as mentioned earlier in Section 1.2, refer to the set of pa-
rameters that are required to reproduce a chaotic trajectory. Based on the key values,
the key space K is the number of all the possible parameter combinations that can be
chosen to compute the map’s trajectory. The addition of the term rem(axi−1, N) intro-
duces two new parameters in the new map, a, N. Hence, the key space of the map is in-
creased. Assuming an accuracy of 16 digits, this amounts to a multiplicative increase of size
102·16 = 1032 ≈ (103)10.6 ≈ (210)10.6 = 2106. Thus, for an initial seed map with key space
K, the modified map will have a key space of K · 2106. In Table 1, a comparison of the key
space increases for different techniques is provided. The proposed technique is among the
most efficient with respect to key space increase. Note that the key space calculations in
this table correspond to all possible parameter pairs, some of which may yield non-chaotic
behavior. However, in the proposed scheme, chaotic behavior can always be guaranteed.

Table 1. Comparison of key space increase for different chaotification techniques.

Reference Seed Map(s) Modified Map

Present work K 2106 · K

[17] K 253 · K

[18] K K

[19] Ki ∏m
i=1Ki

[20] Ki 253 ∏m
i=1Ki

[21] K 253 · K

[22] K 2106 · K

[24] K 253 · K

[23] K 253 · K

[32] Ki 253m ∏m
i=1Ki

2.4. Limitations

One drawback that can be identified for the proposed technique inspired by (2) is that
it cannot be applied to polynomial maps on an interval to improve their behavior. For
example, this technique will fail to improve the behavior of the classic logistic map, as the
new map (4) will have a trajectory that goes to infinity. This drawback, however, can be
circumvented by adding to (4) an amplitude parameter that decreases the values coming
out of the remainder operation, and by choosing a polynomial map parameter that sets the
trajectory within an interval smaller than that permitted to the domain of the chaotic map.
For example, choosing F to be as in (1), one can set k < 4, and the reminder term would be
rewritten as Crem(axi−1, N), with C < 1. This is, however, beyond the scope of this work.

A common issue that emerges when considering digital implementations of chaos-
based cryptography schemes is the reproducibility of chaotic maps on different
devices [29,40,41]. As nonlinear systems are sensitive to operator accuracy, round-off
errors in the least significant digits can quickly blow up over very few iterations, yielding
different trajectories across different devices, despite having the same initial conditions
and parameter values. Thus, in the application of encryption and secure communications
where data are exchanged, to achieve output matching for the same chaotic map that is
simulated on different devices, all devices should be adjusted to match the accuracy of the
device with the lowest processing power.

Moreover, as the proposed technique is based on mixing the most significant bits of
the map with its least significant, it is important to choose the parameter a according to
the device capabilities, to avoid overflows. For example, in a microcontroller capable of
performing floating point operations using a memory of 6 digits, choosing a > 107 will
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result in overflowing. The above are issues that are under study and will be taken into
account for future hardware implementations of the proposed technique.

3. Generalizations

The proposed methodology can be generalized by considering the addition of multiple
remainder operators, each with a different parameter, as follows

xi = H(xi−1) = F (xi−1) +
m

∑
j=1

rem(ajxi−1, N), (19)

where aj > 0 are the control parameters, and m ∈ N. This would result in an even stronger
mixing of the map’s digits in each iteration. This increase in the summation terms would,
however, need to take into consideration the computational cost for its implementation in
order not to impact the efficiency of the method.

Moreover, the proposed methodology can be extended by considering the addition
with the remainder of any nonlinear function G, i.e.,

xi = F (xi−1) + rem(G(xi−1), N). (20)

Here, polynomials, sinusoidal functions, or their combination can be used to improve
performance. In this work, the choice was made for the simplest linear term, so as to
improve complexity but keep the computational load to the minimum. Since the linear
term yielded positive results, it can be assumed with relative certainty that other nonlinear
functions will also work. This will be explored in future works.

A case of particular interest is that of setting G = aF . The results for this case are
described in the following theorem.

Theorem 3. The generalized map (20) with G = aF achieves a higher LE compared to its source
map (3), for a > 0.

Proof. Following a similar procedure to the proof of Theorem 1 yields

λmod = lim
n→∞

1
n

n−1

∑
i=0

ln |Ḟ (xi) + Ġ(xi)|

= λs + lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣1 + Ġ(xi)

Ḟ (xi)

∣∣∣∣
= λs + lim

n→∞

1
n

n−1

∑
i=0

ln|1 + a|. (21)

Thus, we obtain λmod > λs for a = (ek + 1), k > 0.

4. Simulations for Different Source Maps

In this section, the proposed chaotification technique will be tested on different one-
dimensional maps.

4.1. Simplest Linear Map

Initially, a simple linear map is considered, of the form

xi =
1
k

xi−1. (22)

The above map is linear, and hence cannot exhibit chaotic behavior. The map has a
unique solution, the equilibrium point at 0, which is stable if its eigenvalue lies within
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the unit circle, which holds if |k| > 1. The above map is modified based on the proposed
technique, yielding

xi =
1
k

xi−1 + rem(axi−1, N). (23)

Based on Theorem 1, since d
dx

(
1
k x
)
= 1

k , we can set a > 2 to destroy the stability of
the equilibrium point and increase the map’s LE.

Figure 3a shows the bifurcation diagram of (23) with respect to k, for a = 100 and
N = 1. It can be seen that the modified map is indeed chaotic. This can be verified from its
LE, shown in Figure 3b. In Figure 4, the parameter pairs (k, a) that correspond to chaotic
behavior are shown. The parameters are chosen to satisfy the condition in Theorem 1, and,
as such, the parameter space is compact, without holes, guaranteeing robust chaos.

Moreover, Figure 5 shows the cobweb plot of the original (22) and modified map (23)
for k = 10, with a very distinct oscillatory pattern.

(a) (b)

Figure 3. (a) Bifurcation diagrams for the map (23) with respect to parameter k, for a = 100, N = 1.
(b) LE of the sine map (24) (black) and modified sine map (25) (blue).

Figure 4. Diagram depicting the parameter pairs (k, a) of (23) that yield chaotic behavior. Black
regions depict chaos, while white regions are non-chaotic. The lack of white regions indicates robust
chaotic behavior. The simulation stepsize for each parameter range was set to 0.005.
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(a) (b)

Figure 5. Cobweb diagrams for (a) the linear map (22) and (b) modified map (23), for k = 10, a = 100,
N = 1.

4.2. Sine Map

Consider the well-known sine map [42–44]

xi = k sin(πxi−1), (24)

and the new map based on the proposed technique is

xi = k sin(πxi−1) + rem(axi−1, N). (25)

In the following, we fix N = 1. Based on the proof of Theorem 1, since d
dx (k sin(πx)) =

kπ cos(πx), we can set a > 2kπ to destroy the stability of the periodic orbits, increase the
number of UPOs, and increase the map’s LE. Here, we choose a = 100.

Figure 6a,b depict the bifurcation diagrams of the original sine map (24) and modified
sine map (25) with respect to parameter k, for a = 100. It can be seen that while the sine
map exhibits periodic windows, the modified map has uninterrupted chaotic behavior
for a dense and compact set of the given parameter range. This can be verified by the LE
diagram in Figure 6c. Whereas the LE of the original map (black) has negative values and
drops, indicating the location of the superstable periodic orbits, the LE of the modified map
is constant for a dense and compact range of the paremeter b.

Moreover, Figure 7 depicts a diagram that showcases the periodic and chaotic regions
of the modified map (25), for different parameter pairs (k, a) and N = 1. All the parameter
pairs (k, a) result in chaotic behavior.

Finally, Figure 8 depicts two cobweb diagrams for the original and modified maps.
Here, the effect of the remainder term can be observed clearly in the close-up subregion.
While the map attains a diagram similar to the original map, the curve now is discontinuous.
Two phase diagrams are also separately depicted in Figure 9 for clarity. Interestingly, both
in the cobweb and phase diagrams, the modified map appears to inherit a seemingly
stochastic characteristic, where the mapping of a point seems to be mapped at different
places. There is no stochasticity, of course, as this phenomenon is due to the multiple
piecewise lines very close to each other. This also appears for the rest of the maps that
are considered.

4.3. Sine–Sine Map

In [18], a chaotification technique was proposed through the composition of any
chaotic map with a sine function. The authors proposed various enhanced versions of
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existing maps to showcase their results. One of the proposed maps was the sine–sine map
described by

xi = sin(πk sin(πxi−1)). (26)

Here, the above map is modified as

xi = sin(πk sin(πxi−1)) + rem(axi−1, N). (27)

Based on Theorem 1, since d
dx (sin(πk sin(πx))) = kπ2 cos(πx) cos(kπ sin(πx)), we

can set a > 2kπ2. Thus, for the range k ∈ [0, 10], we require a > 197.3921, in order for all
the periodic orbits to be unstable, and the LE to become positive. Here, we set a = 300.

Bifurcation diagrams are shown in Figure 10a,b. Observe that the map (27) proposed
in [18] has periodic regions, but the map (27) exhibits uninterrupted chaotic behavior for
the range of considered parameters, as can be verified by the LE diagram in Figure 10c.
The diagram in Figure 11 verifies that all parameter pairs in the chosen range yield
chaotic behavior.

Moreover, Figure 12 shows two cobweb diagrams for the original (26) and modified
map (27), where the effect of the discontinuities introduced by the remainder addition is
graphically seen.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. Bifurcation diagrams for (a) the sine map (24) and (b) the modified sine map (25) with
respect to parameter k, for a = 100, N = 1. (c) LE of the sine map (24) (black) and modified sine
map (25) (blue).

Figure 7. Diagram depicting the parameter pairs (k, a) of (25) that yield chaotic behavior. Black
regions depict chaos, while white regions are non-chaotic. As there are no white regions to be seen
in the considered parameter range, the modified map has robust chaos. The simulation stepsize for
each parameter was set to 0.005.

(a) (b)

Figure 8. Cobweb diagrams for (a) the sine map (24) and (b) the modified sine map (25), for k = 10,
a = 100, N = 1.
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(a) (b)

Figure 9. Two-dimensional phase diagrams for the sine map (24) and the modified sine map (25), for
k = 10, a = 100, N = 1.

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. Bifurcation diagrams for (a) the sine–sine map (26) and (b) the modified sine–sine map (27)
with respect to parameter k, for a = 300, N = 1. (c) LE of the sine–sine map (26) (black) and modified
sine–sine map (27) (blue).

4.4. Cosine-Logistic Map

Similar to the sine chaotification technique in [18], a cosine chaotification was proposed
in [20]. The authors presented several enhanced versions of classic maps. As an example,
consider the cosine-logistic map

xi = k cos(rxi−1(1− xi−1)). (28)

The proposed modified map is

xi = k cos(rxi−1(1− xi−1)) + rem(axi−1, N). (29)

Since d
dx (k cos(rx(1− x))) = kr(2x− 1) sin(rx(1− x)), the control parameter can be

set as a > 2kr supx∈D(2x− 1). Here, we set r = 4. Thus, for the range k ∈ [0, 10], we can
choose a > 1600, so we set a = 2000.

Figure 11. Diagram depicting the parameter pairs (k, a) of (27) that yield chaotic behavior. Black
regions depict chaos, while white regions are non-chaotic. The modified map has robust chaos, as no
periodic regions appear. The simulation stepsize for each parameter was set to 0.005.
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(a)

(b)

Figure 12. Cobweb diagrams for (a) the sine–sine map (26) and (b) the modified sine–sine map (27),
for k = 10, a = 300, N = 1.

The bifurcation diagrams for the two maps are shown in Figure 13a,b, along with the
LE diagram in Figure 13c. Again, the periodic regions that were present in the original map
have vanished in the proposed one. The double diagram shown in Figure 14 verifies the
existence of chaotic behavior for all parameter pairs.

Cobweb diagrams are also shown in Figure 15. Similar to the previous examples, the
modified map has multiple discontinuities that increase its confusion property.

(a)

Figure 13. Cont.



Mathematics 2022, 10, 2801 17 of 26

(b)

(c)

Figure 13. Bifurcation diagrams for (a) the cosine-logistic map (28) and (b) modified cosine-logistic
map (29) with respect to parameter k, for r = 4, a = 2000, N = 1. (c) LE of the cosine-logistic map (28)
(black) and modified cosine-logistic map (29) (blue).

Figure 14. Diagram depicting the parameter pairs (k, a) of (29) that yield chaotic behavior, r = 4,
N = 1. Black regions depict chaos, while white regions are non-chaotic. Again, no periodic regions
appear. The simulation stepsize for each parameter was set to 0.005.
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(a) (b)

Figure 15. Cobweb diagrams for (a) the cosine-logistic map (28) and (b) modified cosine-logistic
map (29), for k = 5, a = 2000, N = 1, r = 4.

4.5. Renyi Map

Consider the Renyi map [36,37]

xi = mod(kxi−1, 1), (30)

which is modified as
xi = mod(kxi−1, 1) + rem(axi−1, N). (31)

Bifurcation diagrams are shown in Figure 16a,b, along with the LE diagram in
Figure 16c. The modified map again achieves a higher value for its LE. Moreover, for all
parameter pairs in the chosen range, chaotic behavior is observed, as shown in Figure 17.

The cobweb diagrams for the two maps are shown in Figure 18. The shape of the
two cobweb diagrams is similar, as both maps utilize the modulo/remainder operator, but
the modified map introduces a higher amount of discontinuities, which leads to a more
complex diagram.

(a)

Figure 16. Cont.
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(b)

(c)

Figure 16. Bifurcation diagrams for (a) the Renyi map (30) and (b) modified Renyi map (31) with
respect to parameter k, for a = 100, N = 1. (c) LE of the Renyi map (30) (black) and modified Renyi
map (31) (blue).

Figure 17. Diagram depicting the parameter pairs (k, a) of (31) that yield chaotic behavior, N = 1.
Black regions depict chaos, while white regions are non-chaotic. As with previous maps, no periodic
regions appear. The simulation stepsize for each parameter was set to 0.005.
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(a) (b)

Figure 18. Cobweb diagrams for (a) the Renyi map (30) and (b) modified Renyi map (31), for k = 9.99,
a = 100, N = 1.

4.6. Simulations Discussion

Overall, it is clear from the previous simulations that the proposed technique can
be effectively applied to a wide family of chaotic maps, to construct modified versions
that showcase wide regions of chaotic behavior and a higher LE. This is achieved by an
appropriate choice of a based on (6). This bound for the parameter can be easily computed
for most maps, as it depends on the supremum of Ḟ , which is generally known. In general,
higher values of a will always result in increased complexity, as shown in the proof of
Theorem 1.

Moreover, note that the remainder operator was set to N = 1 as the default value, so
that the analysis was performed with respect to two parameters, the parameter of the seed
map k and the control parameter a. Choosing higher values of N will affect the domain D
of the map (4), which should be taken into account when computing a in (6).

5. Effect on Random Bit Generation

In this section, the effect of the proposed chaotification technique on the design of
PRBGs will be studied.

5.1. Bit Generation Using Chaotic Maps

Many techniques exist for pseudo-random bit generation that utilize one or multiple
seed maps, in order to generate either a single bit per iteration, multiple bits per iteration,
or a single integer per iteration in a desired interval.

One of the most common techniques is to compare the values of a seed map with a
threshold value c and generate a bit based on the result [28,45], i.e.,

bi =

{
1, xi ≥ c
0, xi < c

, (32)

where bi is the generated bit and c the threshold value. From a theoretic standpoint,
this technique utilizes a partition of the map’s phase space, and corresponds a bit to each
subspace. The above method is considered efficient due to its low number of operations (a
single comparison is required per bit), but only works under the condition that the seed
map’s values are equally distributed around the threshold value c, which does not hold
for most maps. Moreover, it reveals information about the interval where the map’s value
xi lies. Thus, given enough bits, this information could be used to effectively estimate the
map’s parameter values and unmask the design.
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Thus, to improve performance of the method, the comparison is usually performed on
the less significant digits of xi. Therefore, the technique is modified as follows

bi =

{
1, mod(10r|xi|, 1) ≥ 0.5
0, mod(10r|xi|, 1) < 0.5

, (33)

where r is a positive integer. This way, the randomness of the generator is increased by
considering a comparison of the least significant digits of xi with the threshold of 0.5. In
the following, the above technique is tested for different seed maps presented in Section 4,
and increasing values of r.

5.2. Statistical Testing

The randomness of the generated bitstream is verified through the National Institute
of Standards and Technology (NIST) statistical test package [46]. A set of 100 · 106 bits
is generated and tested each time, for different values of the parameter r. For all of the
displayed results, a pass indicates that the specific test was successful, while a fail indicates
that at least one of the sub-test runs has failed. For the NonOverlappingTemplate test, a
parenthesis is used in some cases to indicate that only 1 or 2 sub-tests out of the 148 have
failed. When not used, it indicates that there were more sub-test failures.

Initially, the sine map (24) and its modified version (25) are considered. The NIST test
results for each map are shown in Tables A1 and A2. The parameter values considered are
k = 10, a = 100, x0 = 0.1, and the value of the power 10r in (33) varies for r = 2, 3, . . . , 12.
It can be seen in Table A1 that when the sine map is used as a seed for the PRBG, there
is always at least one failed test, so the generator fails to produce statistically random
bitstreams for all values of r. Clearly, the sine map for the chosen parameter values is not
random enough for such an application. On the other hand, when the sine map is replaced
by its modified version (25), the results dramatically improve, as seen in Table A2. Here, the
generator passes all tests for r = 5, 6, 9, 10, 12. Even in the failed instances, the results are
improved over the original map, with only a few failures. Thus, the effect of the modified
map on the performance of the bit generator is clear.

As a second example, the sine–sine map (26) and its modified version (27) are also
considered, for parameter values k = 10, a = 300, x0 = 0.1. The results are shown in
Tables A3 and A4. Again, it can be seen in Table A3 that the sine–sine map for the chosen
parameters fails as a seed map for the PRBG, as, in all cases, there are many failed tests.
On the other hand, when the modified sine–sine map (27) is used, the PRBG passes all
tests for r = 6, 7, 9, 10, 12. Similarly to the previous example, in the failed cases, there are
significantly less failed tests compared to the sine–sine map. Thus, again, the modified map
outperforms the original map when used as a seed for the PRBG.

Overall, it is seen that the performance of the bit generator under study is significantly
improved when the proposed modified maps are used as its source of randomness. This
effect is attributed to the remainder term mixing the most and least significant digits in each
iteration, effectively resulting in a time series that, when applied in (33), results in a phase
partition that can generate statistically pseudo-random sequences. Note that the considered
examples are illustrative of the effect of the proposed technique on the randomness
enhancement that is required for bit generation. This is why a simple technique was
considered, and lower values of the parameters k, a were used. As, with higher parameter
values or using more complex techniques, both the original and modified maps may be
able to pass the tests, using this simple technique and lower parameter values showcases
the dramatic randomness improvement between the original and modified maps.

6. Conclusions

In this work, a chaotification technique for one-dimensional maps was proposed that
can be applied to a seed map to improve its complexity. Superstable periodic orbits cease to
exist, and if the parameters are chosen according to the conditions stated in Theorem 1, the
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map will not have a single periodic orbit that is stable, leading to robust chaotic behavior.
Due to the introduction of two control parameters, the new maps also have an increased
key space. The technique was tested on a collection of maps, yielding increased chaotic
behavior each time, as was indicated by the bifurcation and LE diagrams. Moreover, it was
shown that the increased complexity has a strong effect on the application of PRBG design,
as the modified maps showcased an improvement in statistical randomness compared to
their original seed maps, when applied to a simple PRBG technique.

The above results indicate that the proposed technique is efficient in generating
maps with uninterrupted robust chaotic behavior, increased key space, and improved
pseudo-randomness characteristics. These are all desirable features for chaos-based encryp-
tion applications, as they can increase complexity and ensure the security of the design.
Moreover, this was achieved without a significant increase in the number of operations
performed in each iteration, as the added term in (4) performs an addition, a multiplication,
and a remainder operation. The limitations of the technique may include the exclusion of
some families of chaotic maps as seeds, and the emergence of round-off errors in digital
implementations. Overall, due to its efficiency and ease of implementation, this technique
can be considered for other chaos-based applications as well, or be further expanded upon,
in order to develop new chaotification techniques.

Thus, this work can be extended with a collection of different studies. First of all, the
proposed technique can be applied to continuous systems as well, although they are less
used in encryption, due to their computational load. The addition of multiple remainder
operators can be considered, to increase the mixing of the map’s digits. Moreover, the
technique can be modified by considering other nonlinear functions inside the remainder
operator. The remainder operator could also be applied as a coupling term between
one-dimensional maps, by feeding the remainder term of each map to the other one.
The resulting map will be two-dimensional, with increased complexity compared to its
seed maps, as, in each iteration, the values of each individual map will be mixed. The
generalization of the proposed chaotification technique to two-dimensional maps can also
be performed in a straightforward manner, by applying the remainder operator to each
individual state. Finally, the implementation of the new maps to microcontrollers is of
interest, in order to test their performance, as well as the problem of output matching
among different devices. The above constitute topics for future studies.
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Appendix A. NIST Results

Table A1. NIST test results for (33) using map (24) (x0 = 0.1, k = 10).

No. Test Result

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

1 Frequency fail fail fail pass pass fail pass fail pass fail pass
2 BlockFrequency fail pass pass pass pass pass pass pass pass fail fail
3 CumulativeSums fail fail fail pass pass fail pass fail pass fail pass
4 Runs fail fail pass pass pass pass pass pass pass pass pass
5 LongestRun pass pass pass pass pass pass pass pass pass pass fail
6 Rank pass pass pass pass pass pass pass pass pass pass pass
7 FFT pass pass pass pass pass pass pass pass pass pass pass
8 NonOverlappingTemplate fail fail fail fail fail fail fail fail fail fail fail
9 OverlappingTemplate fail pass pass pass pass pass pass pass pass pass pass
10 Universal pass pass pass pass pass pass pass pass pass pass pass
11 ApproximateEntropy fail fail pass pass pass pass pass pass pass pass pass
12 RandomExcursions fail pass pass pass pass pass pass pass pass pass pass
13 RandomExcursionsVariant fail pass pass pass pass pass pass pass pass pass pass
14 Serial pass pass fail pass pass pass fail pass fail pass pass
15 LinearComplexity pass pass pass pass pass pass pass pass pass pass pass

- Passed Tests 6/15 10/15 11/15 14/15 14/15 12/15 13/15 12/15 13/15 11/15 12/15

Table A2. NIST test results for (33) using map (25) (x0 = 0.1, k = 10, a = 100).

No. Test Result

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

1 Frequency pass pass pass pass pass pass pass pass pass pass pass
2 BlockFrequency pass pass pass pass pass fail pass pass pass pass pass
3 CumulativeSums pass fail pass pass pass pass pass pass pass pass pass
4 Runs pass pass pass pass pass pass pass pass pass pass pass
5 LongestRun pass pass pass pass pass pass pass pass pass pass pass
6 Rank pass pass pass pass pass pass pass pass pass pass pass
7 FFT pass pass pass pass pass pass pass pass pass pass pass
8 NonOverlappingTemplate fail (1) fail (1) fail (1) pass pass pass fail (2) pass pass fail (1) pass
9 OverlappingTemplate pass pass pass pass pass pass pass pass pass pass pass

10 Universal pass pass pass pass pass pass pass pass pass pass pass
11 ApproximateEntropy pass pass pass pass pass pass pass pass pass pass pass
12 RandomExcursions pass pass pass pass pass pass pass pass pass pass pass
13 RandomExcursionsVariant pass pass pass pass pass pass pass pass pass pass pass
14 Serial pass pass pass pass pass pass pass pass pass pass pass
15 LinearComplexity pass pass pass pass pass pass pass pass pass pass pass

- Passed Tests 14/15 13/15 14/15 15/15 15/15 14/15 14/15 15/15 15/15 14/15 15/15
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Table A3. NIST test results for (33) using map (26) (x0 = 0.1, k = 10).

No. Test Result

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

1 Frequency fail fail fail fail pass fail fail pass pass fail pass
2 BlockFrequency fail pass fail fail fail pass pass pass pass pass pass
3 CumulativeSums fail fail fail fail pass fail fail pass pass pass fail
4 Runs fail fail pass pass pass fail pass pass fail pass fail
5 LongestRun fail pass pass pass pass pass pass pass pass pass fail
6 Rank pass pass pass pass pass pass pass pass pass pass pass
7 FFT pass fail pass pass pass pass pass pass pass pass pass
8 NonOverlappingTemplate fail fail fail pass fail fail fail fail fail fail fail
9 OverlappingTemplate fail fail pass pass pass pass pass pass pass pass pass
10 Universal fail pass pass pass pass pass pass pass pass pass pass
11 ApproximateEntropy fail fail fail pass fail fail fail fail pass pass fail
12 RandomExcursions fail fail pass pass pass pass pass pass pass pass pass
13 RandomExcursionsVariant fail fail pass pass pass pass pass pass pass pass pass
14 Serial fail fail fail fail fail fail pass pass fail fail fail
15 LinearComplexity pass pass pass pass pass pass pass pass pass pass pass

- Passed Tests 3/15 5/15 9/15 11/15 11/15 9/15 11/15 13/15 12/15 12/15 9/15

Table A4. NIST test results for (33) using map (27) (x0 = 0.1, k = 10, a = 300).

No. Test Result

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

1 Frequency fail pass pass pass pass pass pass pass pass pass pass
2 BlockFrequency pass pass pass pass pass pass pass pass pass pass pass
3 CumulativeSums fail pass pass pass pass pass pass pass pass pass pass
4 Runs fail pass pass pass pass pass pass pass pass pass pass
5 LongestRun pass pass fail pass pass pass pass pass pass pass pass
6 Rank pass pass pass pass pass pass pass pass pass pass pass
7 FFT pass pass pass pass pass pass pass pass pass pass pass
8 NonOverlappingTemplate fail (1) fail (1) pass fail (2) pass pass fail (1) pass pass fail (1) fail (1)
9 OverlappingTemplate pass pass pass pass pass pass pass pass pass pass pass

10 Universal pass pass pass pass pass pass pass pass pass pass pass
11 ApproximateEntropy pass pass pass pass pass pass pass pass pass pass pass
12 RandomExcursions pass pass pass pass pass pass pass pass pass pass pass
13 RandomExcursionsVariant pass pass pass pass pass pass pass pass pass pass pass
14 Serial pass pass pass pass pass pass pass pass pass pass pass
15 LinearComplexity pass pass pass pass pass pass pass pass pass pass pass

- Passed Tests 11/15 14/15 14/15 14/15 15/15 15/15 14/15 15/15 15/15 14/15 14/15
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