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Predrag S. Stanimirović 5 and Theodore E. Simos 6,7,8,*

1 Department of Digital Media Art, School of Art and Design, Fuzhou University of International Studies and
Trade, Fuzhou 350200, China; jiangwendong2022@163.com

2 General Department, National & Kapodistrian University of Athens, GR-34400 Euripus Campus,
15772 Athens, Greece; tronic1983@gmail.com

3 Department of Visual Communications, Huzhou University, Huzhou 313000, China
4 Department of Economics, Division of Mathematics and Informatics, National and Kapodistrian University of

Athens, Sofokleous 1 Street, 10559 Athens, Greece; vaskatsikis@econ.uoa.gr (V.N.K.);
spirosmourtas@gmail.com (S.D.M.)

5 Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia; pecko@pmf.ni.ac.rs
6 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
7 Data Recovery Key Laboratory of Sichun Province, Neijing Normal University, Neijiang 641100, China
8 Section of Mathematics, Department of Civil Engineering, Democritus University of Thrace,

67100 Xanthi, Greece
* Correspondence: tsimos.conf@gmail.com

Abstract: This research introduces three novel zeroing neural network (ZNN) models for addressing
the time-varying Yang–Baxter-like matrix equation (TV-YBLME) with arbitrary (regular or singular)
real time-varying (TV) input matrices in continuous time. One ZNN dynamic utilizes error matrices
directly arising from the equation involved in the TV-YBLME. Moreover, two ZNN models are
proposed using basic properties of the YBLME, such as the splitting of the YBLME and sufficient
conditions for a matrix to solve the YBLME. The Tikhonov regularization principle enables addressing
the TV-YBLME with an arbitrary input real TV matrix. Numerical experiments, including nonsingular
and singular TV input matrices, show that the suggested models deal effectively with the TV-YBLME.

Keywords: Yang–Baxter-like matrix equation (YBLME); zeroing neural network (ZNN); dynamical
system; Tikhonov regularization

MSC: 15A24; 65F20; 68T05

1. Introduction, Motivation, and Preliminaries

The Yang–Baxter equation [1,2] is a consistency equation that is frequently encountered
in physics. The practice has shown that solving a Yang–Baxter equation is a central topic
in braid groups [3], knot theory [4], statistical mechanics [5], and quantum theory [6]. Let
A ∈ Rn×n be the input matrix and X ∈ Rn×n be the unknown matrix of interest in the
following quadratic matrix equation:

XAX = AXA, (1)

which we refer to as a Yang–Baxter-like matrix equation (YBLME) since its form is similar
to the classic parameter-free Yang–Baxter equation [1,2]. Notice that (1) has two apparent
solutions, X = 0 and X = A, but its nonlinearity makes finding non-trivial solutions
generally challenging. In the current research, the zeroing (or Zhang) neural network
(ZNN) method was employed to solve the following time-varying YBLME (TV-YBLME):

Mathematics 2022, 10, 1950. https://doi.org/10.3390/math10111950 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0911-662X
https://orcid.org/0000-0002-8208-9656
https://orcid.org/0000-0002-8299-9916
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0002-9220-6924
https://doi.org/10.3390/math10111950
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111950?type=check_update&version=2


Mathematics 2022, 10, 1950 2 of 13

X(t)A(t)X(t) = A(t)X(t)A(t), (2)

for an arbitrary input real-valued time-varying (TV) matrix A(t) ∈ Rn×n. More precisely,
this research proposes and investigates one ZNN model based on an immediate solution to
the TV-YBLME and two ZNN models based on indirect methods to solve the TV-YBLME,
such as the model proposed in [7]. It is worth mentioning that the two models based on
indirect methods arise from the splitting of the YBLME [8] and from sufficient conditions for
a matrix to solve the YBLME [9]. Furthermore, unlike the models presented in [7], the three
models proposed in this research solve the TV-YBLME for both nonsingular and singular
square input matrices A(t) because they utilize the Tikhonov regularization procedure.

The ZNN method originated from the Hopfield neural network and was developed by
Zhang et al. in [10] for producing online solutions to TV problems. Notice that the majority
of ZNN-designed dynamical systems are classified as recurrent neural networks (RNNs)
used to find the zeros of equations. The ZNN method, as a result of its in-depth examination,
has been broadly utilized to solve a variety of TV problems; the main applications include
problems of generalized inversions [11–13], matrix equations systems [14,15], problems of
tensor and matrix inversions [16], problems of quadratic optimizations [17], linear equations
systems [15,18], and various matrix function approximations [19,20].

The first step in creating the ZNN evolution is to create an appropriate error function
Z(t) ∈ Rn×n (or Zhang function [21], or error matrix equation (EME)) that is suited to the
underlying problem. The second step exploits the subsequent dynamical flow:

Ż(t) =
dZ(t)

dt
= −λF (Z(t)), (3)

where (̇) denotes the time derivative, the scaling parameter λ > 0 is used to accelerate the
convergence, whereas F (·) : Rn×n → Rn×n signifies element-wise usage of an increasing
and odd activation function (AF) on Z(t). The time derivative of the time-varying matrix

Z(t) = [zij(t)] is the matrix dZ(t)
dt = Ż(t) = [

dzij(t)
dt ]. More precisely, the time derivative Ż(t) of

Z(t) represents the derivative of Z(t) by the scalar t. Further, a matrix Z(t) = [zij(t)] ∈ Rn×m

is differentiable if the derivative
dzij(t)

dt of each element zij(t) exists at each point in its domain.
Our research will explore the linear ZNN dynamics (3) that satisfy F = I, which yield
the following:

Ż(t) = −λZ(t). (4)

The following are the main points of this work:

• Two novel ZNN models (ZNN2 and ZNN3) are introduced based on principles to find
indirect numerical solutions to the TV-YBLME for an arbitrary input real TV matrix.

• Application of the Tikhonov regularization enables usability of the proposed dynami-
cal systems in solving the TV-YBLME with the arbitrary (regular or singular) input real
TV matrix.

• In particular, the ZNN model from [7] (ZNN1), based on a straightforward error
matrix corresponding to the TV-YBLME, is extended to an arbitrary input real TV
matrix using the Tikhonov principle.

• Four numerical experiments, including nonsingular and singular input matrices,
are presented to confirm the efficiency of the proposed dynamics in addressing the
TV-YBLME solving.

Some of the generic notations are also worth mentioning: In signifies the unit matrix
with dimensions n× n; On and 1n signify the matrix consisting of zeros and ones, respec-
tively, with dimensions n× n; vec(·) signifies the vectorization procedure; ⊗ signifies the
Kronecker product; ‖·‖F signifies the matrix Frobenius norm; � signifies the Hadamard (or
element-wise) product.
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This paper is organized as follows. The ZNN1 model is defined and analyzed in
Section 2. Further, ZNN2 and ZNN3 models are defined and analyzed in Section 3. The
findings of four numerical experiments for solving the TV-YBLME with nonsingular and
singular input matrices are presented and discussed in Section 4. Finally, Section 5 contains
the final thoughts and conclusions.

2. ZNN Model Based on Direct Solution to the TV-YBLME

In this section, we introduce and analyze a ZNN model, called ZNN1, based on a
direct numerical solution to the TV-YBLME for a random real TV matrix. Assuming a TV
smooth matrix A(t) ∈ Rn×n (2) is utilized in deploying the ZNN dynamics. That is, the
ZNN1 model considers the EME used in [7]:

Z(t) = X(t)A(t)X(t)− A(t)X(t)A(t), (5)

where X(t) is the desirable direct solution of the TV-YBLME. Additionally, the following is
the time derivative of (5), i.e., dZ(t)

dt = Ż(t):

Ż(t) =Ẋ(t)A(t)X(t) + X(t)Ȧ(t)X(t) + X(t)A(t)Ẋ(t)

− Ȧ(t)X(t)A(t)− A(t)Ẋ(t)A(t)− A(t)X(t)Ȧ(t).
(6)

After that, the following can be obtained by merging (5) and (6) with the ZNN method
using the linear AF (4):

Ẋ(t)A(t)X(t) + X(t)Ȧ(t)X(t) + X(t)A(t)Ẋ(t)− Ȧ(t)X(t)A(t)− A(t)Ẋ(t)A(t)

− A(t)X(t)Ȧ(t) = −λ(X(t)A(t)X(t)− A(t)X(t)A(t)),
(7)

or equivalently:

Ẋ(t)A(t)X(t) + X(t)A(t)Ẋ(t)− A(t)Ẋ(t)A(t) = −λ(X(t)A(t)X(t)

− A(t)X(t)A(t))− X(t)Ȧ(t)X(t) + Ȧ(t)X(t)A(t) + A(t)X(t)Ȧ(t).
(8)

The dynamics (8) are adjusted using the Kronecker product and vectorization [7]:

((A(t)X(t))T ⊗ In + In ⊗ X(t)A(t)− A(t)⊗ A(t))vec(Ẋ(t)) = vec(−λ(X(t)A(t)X(t)
−A(t)X(t)A(t))− X(t)Ȧ(t)X(t) + Ȧ(t)X(t)A(t) + A(t)X(t)Ȧ(t)).

(9)

As a result, setting:

M(t)=(A(t)X(t))T⊗ In+ In⊗X(t)A(t)−A(t)⊗A(t),

b(t)=vec(−λ(X(t)A(t)X(t)−A(t)X(t)A(t))−X(t)Ȧ(t)X(t)

+Ȧ(t)X(t)A(t)+A(t)X(t)Ȧ(t)),

x(t)=vec(X(t)), ẋ(t)=vec(Ẋ(t)),

(10)

the following ZNN model from [7] is derived:

M(t)ẋ(t) = b(t). (11)

It is observable that M(t) is a singular or nonsingular mass matrix when A(t) is
singular or nonsingular, respectively. In order to extend the results from [7], the Tikhonov
regularization [22] is employed to address the singularity problem in (11). If a constant
diagonal matrix is chosen as the regularization matrix, (11) is changed into:

(M(t) + β1 In2)ẋ(t) = b(t), (12)

such that β1 ≥ 0 denotes the parameter of regularization. The ZNN model (12) is referred
to as the ZNN1 model, and it may be handled effectively using a suitable ode MATLAB
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solver. Theorem 1 proves that the ZNN1 model exponentially converges to the theoretical
solution of the TV-YBLME based on the input matrix A(t).

Theorem 1. Let A(t) ∈ Rn×n be differentiable. Starting from any initial condition x(0), the
ZNN1 model (12) exponentially converges to the exact solution x∗(t) = vec(X∗(t)), where X∗(t)
is the exact solution of the TV-YBLME (2) based on the input matrix A(t).

Proof. We define the following Lyapunov energy function:

l(t) :=
1
2
‖Z(t)‖2

F

where Z(t) refers to (5), to prove the global asymptotic convergence of the ZNN model (7).
Considering the (i, j)th element zij(t) of Z(t), i, j ∈ {1, . . . , n}, we have the following:

l(t) =
1
2
‖Z(t)‖2

F =
1
2
[z2

11(t) + z2
12(t) + · · ·+ z2

1n(t) + · · ·+ z2
nn(t)]

=
1
2

tr[ZT(t)Z(t)].

Replacement of the ZNN rule (4) into the derivative of the energy function l(t):

l̇(t) = [z11(t)ż11(t) + z12(t)ż12(t) + · · ·+ z1n(t)ż1n(t) + · · ·+ znn(t)żnn(t)]

= tr[ZT(t)Ż(t)],

gives:

l̇(t) = tr[ZT(t)Ż(t)] = −λtr[ZT(t)Z(t)] = −λ
n

∑
i,j=1

zij(t)zij(t)

= −λ
n

∑
i,j=1

z2
ij(t) < 0,

which guarantees the final negative-definiteness of l̇ij(t). That is to say, l̇ij(t) < 0 for
any zij(t) 6= 0, and l̇ij(t) = 0 for zij(t) = 0. In addition, as zij(t) → ∞, lij(t) → ∞. By
the Lyapunov theory, the equilibrium point zij(t) = 0 globally converges to zero for any
i, j ∈ {1, . . . , n}. Therefore, we have Z(t) → On as t → ∞. So, if ‖Z(t)‖F = 0, then the
neural state matrix X(t) is the exact solution X∗(t) to (2). If ‖Z(t)‖F > 0 then l̇(t) < 0 and
it will converge to the global asymptotic stable point; that is, we have ‖Z(t)‖2

F = 0 or the
neural state matrix X(t) will converge to X∗(t).

Furthermore, solving the linear first-order differential equation żij(t) = −λzij(t),
yields readily zij(t) = exp(−λt)zij(0). In other words, the matrix-valued error function
Z(t) is expressed explicitly as:

Z(t) = Z(0) exp(−λt),

which indicates that X(t) exponentially converges to X∗(t) with the convergence rate λ > 0.
That is, starting from an initial state X(0), the state matrix X(t) of (7) derived from (5)
exponentially converges to X∗(t).

In summary, the state matrix X(t) of (7) converges to X∗(t) globally and exponentially,
starting from an initial state X(0). Furthermore, because of the derivation process, we
know that (12) is an equivalent vectored form of (7) so that (12) converges exponentially to
x∗(t) = vec(X∗(t)). The proof has been completed.

3. ZNN Models Based on Indirect Methods for Solving the TV-YBLME

This section presents and analyzes ZNN models, ZNN2 and ZNN3, based on
indirect numerical methods for solving the TV-YBLME for an arbitrary real TV matrix. It
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is worth mentioning that the utilized indirect numerical methods are based on splitting
the YBLME [8] and the sufficient conditions for a matrix to solve the YBLME [9].

3.1. ZNN Model Based on Splitting the TV-YBLME

The YBLME splitting, as presented in [8] (Lemma 3.1), enables us to solve two
matrix equations instead of one equation in (2). As a result, if A ∈ Rn×n is singular
(in general) and W ∈ Rn×n is taken as AX = W, it gives a guarantee that W satisfies
the conditions in [8] (Lemma 3.1). That is, a matrix W that is taken as AX = W and
satisfies W2 = AWA makes (1) consistent. More precisely, assuming a TV smooth matrix
A(t) ∈ Rn×n, we multiply (2) on the left by A(t) and then set W(t) = A(t)X(t), we
obtain the following system of matrix equations:{

W(t)W(t) = A(t)W(t)A(t)

W(t) = A(t)X(t),
(13)

where X(t) is the desirable solution to the problem. According to (13), the ZNN2 model
assumes the next EME group for solving the TV-YBLME for an arbitrary A(t):{

Z1(t) = W(t)W(t)− A(t)W(t)A(t)

Z2(t) = A(t)X(t)−W(t).
(14)

Furthermore, the following are the time derivatives of EMEs included in (14):{
Ż1(t)=Ẇ(t)W(t)+W(t)Ẇ(t)−Ȧ(t)W(t)A(t)−A(t)Ẇ(t)A(t)−A(t)W(t)Ȧ(t)

Ż2(t)=Ȧ(t)X(t)+A(t)Ẋ(t)−Ẇ(t).
(15)

Thereafter, the following can be obtained by merging (14) and (15) with the ZNN
method based on the linear model (4):

Ẇ(t) W(t)+W(t)Ẇ(t)−Ȧ(t)W(t)A(t)−A(t)Ẇ(t)A(t)−A(t)W(t)Ȧ(t)

=−λ(W(t)W(t)−A(t)W(t)A(t))Ȧ(t)X(t)+A(t)Ẋ(t)−Ẇ(t)
=−λ(A(t)X(t)−W(t)).

(16)

The design (16) is equivalent to:
Ẇ(t)W(t)+W(t)Ẇ(t)−A(t)Ẇ(t)A(t)=

−λ(W(t)W(t)−A(t)W(t)A(t))−Ȧ(t)W(t)A(t)−A(t)W(t)Ȧ(t)A(t)Ẋ(t)−Ẇ(t)
=−λ(A(t)X(t)−W(t))−Ȧ(t)X(t).

(17)

The dynamical systems involved in (17) are adjusted as follows using the Kronecker
product and vectorization:

(WT(t)⊗ In+ In⊗W(t)−AT(t)⊗A(t))vec(Ẇ(t))=

vec
(
−λ(W(t)W(t)−A(t)W(t)A(t))−Ȧ(t)W(t)A(t)−A(t)W(t)Ȧ(t)

)
(In⊗A(t))vec(Ẋ(t))−vec(Ẇ(t))=

vec
(
−λ(A(t)X(t)−W(t))−Ȧ(t)X(t)

)
.

(18)

As a result, setting:
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M(t)=
[

WT(t)⊗ In+ In⊗W(t)Ẇ(t)−AT(t)⊗A(t) On
−In2 In⊗A(t)

]
,

b(t)=
[

vec
(
−λ(W(t)W(t)−A(t)W(t)A(t))−Ȧ(t)W(t)A(t)−A(t)W(t)Ȧ(t)

)
vec(−λ(A(t)X(t)−W(t))−Ȧ(t)X(t))

]
,

x(t)=
[

vec(W(t))
vec(X(t))

]
, ẋ(t)=

[
vec(Ẇ(t))
vec(Ẋ(t))

]
,

(19)

the following ZNN model is derived:

M(t)ẋ(t) = b(t). (20)

The mass matrix M(t) is singular or nonsingular if A(t) is singular or nonsingular,
respectively. The Tikhonov regularization is employed to address the singularity problem,
and (20) is changed into:

(M(t) + β2 I2n2)ẋ(t) = b(t), (21)

where β2 ≥ 0 denotes the parameter of regularization. The ZNN flow (21) is referred to as
the ZNN2 model, and it may be handled effectively using a suitable ode MATLAB solver.
Theorem 2 proves that the ZNN2 model exponentially converges to the theoretical solution
of the TV-YBLME based on the input matrix A(t).

Theorem 2. Let A(t) ∈ Rn×n be differentiable. Starting from any initial condition x(0), the
ZNN2 model (21) converges exponentially to the exact solution x∗(t) = vec(X∗(t)), where X∗(t)
is the exact solution of the TV-YBLME (2) based on the input matrix A(t).

Proof. From [8] (Lemma 3.1), solving the matrix equation group defined in (13) results in a
TV solution of the TV-YBLME. The EME is constructed as in (14), in keeping with the ZNN
method and the matrix equation group (13), to produce the solution X∗(t) that correlates
with the TV solution of the TV-YBLME based on the input matrix A(t). Thereafter, the
model (16) is derived by using the linear design formula for zeroing (14). Setting Z(t) as
the EME of (14) and following the same procedure as in Theorem 1, it is proved that the
state matrix X(t) of (16), starting from any initial state X(0), globally and exponentially
converges to X∗(t). Consequently, when t → ∞, the solution of (16) converges to X∗(t).
Because of the derivation process, it is clear that (21) is just an equivalent vector form
of (16), and it converges to x∗(t) = vec(X∗(t)). The proof has been completed.

3.2. ZNN Model Based on Sufficient Conditions for a Solution

From [9] (Theorem 2.1), we know that if B is a matrix that satisfies AB = BA = B2,
then B is a solution of (1). As a result, assuming a TV smooth matrix A(t) ∈ Rn×n, we
obtain the following system of matrix equations with respect to the unknown matrix X(t):{

A(t)X(t) = X(t)A(t)

X(t)X(t) = X(t)A(t).
(22)

According to (22), the ZNN3 model assumes the next EME group for solving the
TV-YBLME for an arbitrary A(t):{

Z1(t) = X(t)A(t)− A(t)X(t)

Z2(t) = X(t)A(t)− X(t)X(t).
(23)

Furthermore, the following is the time derivative of EMEs involved in (23):{
Ż1(t)=Ẋ(t)A(t)+X(t)Ȧ(t)−Ȧ(t)X(t)−A(t)Ẋ(t)

Ż2(t)=Ẋ(t)A(t)+X(t)Ȧ(t)−Ẋ(t)X(t)−X(t)Ẋ(t).
(24)
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Thereafter, the following can be obtained by merging (23) and (24) with the ZNN
method using the linear AF (4):{

Ẋ(t)A(t)+X(t)Ȧ(t)−Ȧ(t)X(t)−A(t)Ẋ(t)=−λ(X(t)A(t)−A(t)X(t))

Ẋ(t)A(t)+X(t)Ȧ(t)−Ẋ(t)X(t)−X(t)Ẋ(t)=−λ(X(t)A(t)−X(t)X(t)),
(25)

which is equivalent to:{
Ẋ(t)A(t)−A(t)Ẋ(t)=−λ(X(t)A(t)−A(t)X(t))−X(t)Ȧ(t)+Ȧ(t)X(t)

Ẋ(t)A(t)−Ẋ(t)X(t)−X(t)Ẋ(t)=−λ(X(t)A(t)−X(t)X(t))−X(t)Ȧ(t).
(26)

Two dynamics involved in (26) are adjusted as follows using the Kronecker product
and vectorization:{

(AT(t)⊗ In− In⊗A(t))vec(Ẋ(t))=vec(−λ(X(t)A(t)−A(t)X(t))−X(t)Ȧ(t)+Ȧ(t)X(t))

(AT(t)⊗ In−XT(t)⊗ In− In⊗X(t))vec(Ẋ(t))=vec(−λ(X(t)A(t)−X(t)X(t))−X(t)Ȧ(t)).
(27)

As a result, setting:

M(t)=
[

AT(t)⊗ In− In⊗A(t)
AT(t)⊗ In−XT(t)⊗ In− In⊗X(t)

]
,

b(t)=
[

vec(−λ(X(t)A(t)−A(t)X(t))−X(t)Ȧ(t)+Ȧ(t)X(t))
vec(−λ(X(t)A(t)−X(t)X(t))−X(t)Ȧ(t))

]
,

x(t)=vec(X(t)), ẋ(t)=vec(Ẋ(t)),

(28)

the following ZNN model is derived:

MT(t)M(t)ẋ(t) = MT(t)b(t), (29)

where MT(t)M(t) is a singular or nonsingular mass matrix when A(t) is singular or non-
singular, respectively. The Tikhonov regularization is employed to address the singularity
problem, and (29) is changed into:

(MT(t)M(t) + β3 In2)ẋ(t) = MT(t)b(t), (30)

where β3 ≥ 0 denotes the parameter of regularization. The ZNN model (30) is referred
to as the ZNN3 model, and it may be handled effectively using a suitable ode MATLAB
solver. Theorem 3 proves that the ZNN3 model exponentially converges to the theoretical
solution of the TV-YBLME based on the input matrix A(t).

Theorem 3. Let A(t) ∈ Rn×n be differentiable. Starting from any initial condition x(0), the
ZNN3 model (30) converges exponentially to the exact solution x∗(t) = vec(X∗(t)), where X∗(t)
is the exact solution to the TV-YBLME (2) of the input matrix A(t).

Proof. From [9] (Theorem 2.1), solving the matrix equation group defined in (22) results
in a TV solution of the TV-YBLME. The EME is constructed as in (23), in keeping with
the ZNN method and the matrix equation group (22), to produce the solution X∗(t) that
correlates with the TV solution of the TV-YBLME based on the input matrix A(t). Af-
ter that, the model (25) is derived by using the linear design formula for zeroing (23).
Setting Z(t) as the EME of (23) and following the same procedure as Theorem 1, it is
proved that the state matrix X(t) of (25), starting from an arbitrary initial state X(0),
globally and exponentially converges to X∗(t). Consequently, when t→ ∞, the solution
of (25) converges to the solution X∗(t). In addition, we know that (30) is an equivalent
form of (25) due to the derivation process, and converges to x∗(t) = vec(X∗(t)). The proof
has been completed.
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4. Simulation Results

This section analyzes and compares the performance of the ZNN1 (12), ZNN2 (21), and
ZNN3 (30) models in four numerical experiments, which solve the TV-YBLME with both
nonsingular and singular input matrices A(t). During the computation in all experiments, the
time interval is limited to [0, 10], with the ZNN gain parameter λ = 10 and with successive
values of the Tikhonov regularization parameter equal to β1=1e-3, β2 =1e-1, and β3=1e-8.
Moreover, note that the symbols ZNN1, ZNN2, and ZNN3 in the legends in Figure 1 indicate
the solutions generated by the ZNN1, ZNN2, and ZNN3 models, respectively. Finally, the
MATLAB solver ode45 was employed, with the initial condition of W(t) in the ZNN2 model
assigned to W(0) = A(0)X(0).
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Figure 1. The ZNN error tracking and the convergence and trajectories of the solutions in
Sections 4.1–4.3. (a) Section 4.1: ZNN error tracking. (b) Section 4.1: Solutions convergence.
(c) Section 4.1: Solutions trajectories. (d) Section 4.2: ZNN error tracking. (e) Section 4.2: Solutions
convergence. (f) Section 4.2: Solutions trajectories. (g) Section 4.3: ZNN error tracking. (h) Section 4.3:
Solutions convergence. (i) Section 4.3: Solutions trajectories.
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4.1. Experiment 1

The TV-YBLME with the following nonsingular input matrix is solved in this simulation:

A(t) =

7 + cos(t) 6 + sin(2t) 5− cos(2t)
5 + sin(t) 8 + sin(t) −4− sin(t)
3 + cos(t) −6 + cos(t) 9− sin(2t)

.

The initial condition of X(t) employed in all models tested in this example is:

X(0) =

−1 1 1
1 −1 −1
1 −1 −1

.

4.2. Experiment 2

The input of the TV-YBLME in this experiment is the nonsingular matrix:

A(t) =


t + 1 t t t

t t + 1 t t
t t t + 1 t
t t t t + 1

+ (1 + sin(t))� 14.

The initial condition for X(t) used in all models in this experiment is given by:

X(0) =


0.4 −0.1 0.2 −0.5
−0.1 0.7 −0.4 −0.2
0.1 −0.4 0.3 0.1
−0.4 −0.2 0 0.6

.

4.3. Experiment 3

The TV-YBLME, which involves the following singular input matrix of the rank
rank(A(t)) = 1, is solved in this simulation experiment:

A(t) =

2− 1/2 sin(t) 2 + 1/2 sin(t) 0
2− 1/2 sin(t) 2 + 1/2 sin(t) 0
2− 1/2 sin(t) 2 + 1/2 sin(t) 0

.

The following is the initial condition of X(t) that is used in all models tested in
this example:

X(0) =

7 −3 −3
7 −3 −3
7 −3 −3

.

4.4. Experiment 4

This experiment is concerned with the solution of the TV-YBLME with the singular
input matrix of rank(A(t)) = 4:

A(t) =


1 0 0 0 0
0 1 0 0 0
0 1− sin(t) sin(t) 0 0

cos(t) 0 0 2− sin(t) 1
cos(t) 0 0 2− sin(t) 1

.

The initial conditions of X(t) (denoted by IC1: X1(0) and IC2: X2(0)) equally utilized
in all models compared in this example are:
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X1(0) =


1 0 0 0 0
0 1 0 0 0
0 1 0 0.01 −0.01
−0.5 0 0 2 −2
−0.5 0 0 2 −2

, X2(0) =


1 0 0 0 0
1 1 4 0 0
0 1 4 0.01 −0.01
−0.5 0 0 4 −4
−0.5 0 0 4 −4

.

4.5. Numerical Experiments Analysis—Findings and Comparison

The strengths of the ZNN1, ZNN2, and ZNN3 models for solving the TV-YBLME
based on nonsingular and singular matrices A(t) are examined through four experiments
presented in Sections 4.1–4.4. The graphs generated by the ZNN1, ZNN2, and ZNN3
models are presented in Figure 1. Notice that the arrangement of Figures 1 and 2 is as
follows: the figures of the first column depict the tracking errors of the ZNN models, i.e.,
‖Z(t)‖F of the ZNN1 model and ‖Zi(t)‖F, i = 1, 2, of the ZNN2 and ZNN3 models; the
figures of the second column depict the residual errors for solving the TV-YBLME, i.e.,
‖X(t)A(t)X(t)− A(t)X(t)A(t)‖F; the figures in the third column depict the trajectories of
solutions produced by the tested dynamical systems along with the obvious solution A(t).
Values marked with XZNN1, XZNN2, and XZNN3 are appropriate to the solutions generated
by ZNN1, ZNN2, and ZNN3, respectively.
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Figure 2. The ZNN error tracking, convergence, and trajectories of the solutions in Section 4.4 under
IC1 and IC2. (a) Section 4.4 under IC1: ZNN error tracking. (b) Section 4.4 under IC1: Solutions
convergence. (c) Section 4.4 under IC1: Solutions trajectories. (d) Section 4.4 under IC2: ZNN error
tracking. (e) Section 4.4 under IC2: Solutions convergence. (f) Section 4.4 under IC2: Solutions
trajectories.

From the numerical experience of this section, the following observations may be
noted. Overall, the ZNN3 model’s error functions have lower values than the ZNN1 and
ZNN2 models’ error functions in all experiments, as depicted in Figures 1a,d,g and 2a,d,
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while the ZNN2 model’s error function ‖Z2(t)‖ has the fastest convergence speed in
Sections 4.1–4.3, as depicted in Figure 1a,d,g, respectively. The values of the residual norm
‖X(t)A(t)X(t)− A(t)X(t)A(t)‖F show that the tested models have similar convergence
speeds in Sections 4.1–4.3 as depicted in Figure 1b,e,h, respectively, while the ZNN3 model
has the fastest convergence speed in Section 4.4, as depicted in Figure 2b. In addition, the
residual errors ‖X(t)A(t)X(t)− A(t)X(t)A(t)‖F of the ZNN3 model receive lower values
than the ZNN1 and ZNN2 models in Sections 4.2–4.4, as depicted in Figures 1e and 2b,e, re-
spectively. For the initial conditions used, all the ZNN models produce the same solution in
Section 4.1, the ZNN1 and ZNN2 models produce the same solution in Section 4.2, while
all the ZNN models produce different solutions in Sections 4.3 and 4.4. Furthermore,
all the ZNN models produce different solutions in Section 4.4 under the initial condi-
tions IC1 and IC2. The general conclusion is that the change of the initial value in the
system dynamics initiates a different solution. This is conditioned by the fact that the
closest solution can change with respect to different initial states. It is worth noting—in
Figures 1c,f,i and 2c,f—that all the solutions produced by the ZNN models are different
from the obvious solution A(t).

The following are some general conclusions based on the presented simulation experi-
ments. The ZNN3 model, which is based on an indirect method for solving the TV-YBLME,
performs better than the ZNN1 and ZNN2 models, based on direct and indirect methods for
solving the TV-YBLME, respectively. Furthermore, the ZNN3 model provides the smallest
Frobenius norm for both the residual errors and error functions. However, because all
models usually produce different TV-YBLME solutions for the same initial conditions, we
can conclude that all models are efficient for addressing the TV-YBLME. It is also worth
noting that the bigger the value of the acceleration parameter λ, the quicker the models
will converge.

5. Conclusions

This study addresses the problem of solving the TV-YBLME for a random real TV
matrix by employing the ZNN neural design. As a result, three ZNN models were defined,
analyzed, and compared. The first ZNN model, ZNN1, exploits an immediate method to
solve the TV-YBLME from [7], whereas the other two, ZNN2 and ZNN3, utilize indirect
methods to solve the TV-YBLME based on the fundamental properties of the Yang–Baxter
matrix equation. According to four numerical experiments, all models efficiently address
the TV-YBLME, including nonsingular and singular input matrices. However, the ZNN3
model converges to the TV-YBLME solution quicker than the ZNN1 and ZNN2 models.
One interesting observation is that the dynamics based on the indirect approaches achieve
a quicker convergence (ZNN2) and smallest residuals (ZNN3). Furthermore, because all
three tested models usually produce different TV-YBLME solutions for the same initial
conditions, we can conclude that all models are efficient and valuable for addressing
the TV-YBLME.

The following are possible research topics:

1. Research involving the fuzzy control parameters in the ZNN design. Correspond-
ing results are presented in [23–26]. Future research could use cautiously selected
fuzzy parameters to specify a certain rate of adaptation in the ZNN dynamics and
corresponding improvements.

2. Since all types of noise significantly impact the ZNN model accuracies, noise sensitiv-
ity is a shortcoming of the proposed ZNN1, ZNN2, and ZNN3 models. As a result,
future studies might concentrate on adapting the ZNN1, ZNN2, and ZNN3 models to
a noise-handling ZNN dynamical system class. Such research will be a continuation
of [27] from the constant matrix case to the time-varying case and from the direct
ZNN model to various ZNN models.

3. One could expect that further developments of ZNN evolutions (arising from different
properties of solutions to the Yang–Baxter equation) will be possible.
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16. Ma, H.; Li, N.; Stanimirović, P.S.; Katsikis, V.N. Perturbation theory for Moore–Penrose inverse of tensor via Einstein product.
Comput. Appl. Math. 2019, 38, 111. [CrossRef]
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