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Abstract: In this paper, the adaptive control problem of a type of uncertain nonlinear system is
addressed. The system discussed includes unknown nonlinear functions, uncertain nonlinear dy-
namics, and unknown actuator faults. Based on the fuzzy logic systems and dynamic surface control
technique, an adaptive fuzzy control law is designed to solve the tracking control problem. In control
law design, fuzzy logic systems are utilized to approximate uncertain nonlinear functions, and with
the help of the dynamic surface control technique, the problem of the “explosion of complexity” can
be overcome. Through stability analysis, it is confirmed that all of the signals in the closed-loop
system are semi-global bounded, and the convergence of the tracking error to the specified small
neighborhood of the origin can be ensured by adjusting the control law parameters. Finally, the
effectiveness of the proposed control law is verified by simulation examples.
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1. Introduction

In the past decades, the adaptive control problems of nonlinear systems have received
extensive attention in unmanned aerial vehicle systems, robotic systems, manipulator sys-
tems, and industrial control systems; see [1–5] and the references therein. To obtain better
control performance, model predictive control [1], sliding mode control [4], state feedback
control [6], and adaptive backstepping control [3,7] have been proposed. However, in sev-
eral practical systems, there are usually complex nonlinear characteristics, such as uncertain
nonlinear dynamics [2,8], strict-feedback nonlinear dynamics [7,9], nonaffine nonlinear
dynamics [10], and pure-feedback nonlinear dynamics [11]. In the face of these complex
nonlinear dynamics, how to design control laws and carry out the related theoretical
analysis has always been a hot topic.

Due to the existence of nonlinear dynamics, some analysis approaches, such as the
linearization method [12], the mean value theorem [13], the satisfaction of the Lipschitz
condition [14], and the neural networks/fuzzy logic systems approximator [4,6,15–17]
have been widely utilized. However, the methods considered in [12–14] usually need to
meet some assumptions, such as the differentiable condition, the matching condition, or
the growth condition, which are too strict for the analysis of practical nonlinear systems.
Hence, the backstepping control technique is considered by some researchers for the control
problem of nonlinear systems.

As an effective analytical method, the backstepping control technique is usually com-
bined with various control methods to solve the control problems of various uncertain
nonlinear systems. In [18,19], the adaptive backstepping control law was developed for
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the fractional-order nonlinear system and the strict-feedback nonlinear system, respec-
tively. Owing to the application of design control laws, perfect tracking results can be
achieved. In [20–22], the adaptive finite-time command filtered backstepping control law
was designed to solve the tracking problem of uncertain nonlinear systems. In view of
the approximation characteristics of neural networks and fuzzy logic systems, adaptive
backstepping control approaches with neural networks or fuzzy logic systems are widely
applied. In [23], the adaptive backstepping control schemes with fuzzy logic systems are
proposed to solve the fault-tolerant control problem of nonlinear systems. In addition, by
using the adaptive backstepping control law with neural networks, the tracking control
problem of nonlinear systems with time-delay and unknown input saturation was achieved
in [24], and the fault-tolerant control for a class of fractional-order nonlinear systems with
actuator faults is discussed in [25].

In spite of the many control strategies with the backstepping control method that
have been proposed and adopted in the existing literature, the problem of the “explosion
of complexity” needs to be considered when using the backstepping control technique
to design control laws. Given that virtual control laws and nonlinear functions need to
be repeatedly differentiated in the backstepping recursive design, the complexity of the
controller increases significantly with the increase of the order of the systems, especially for
high-order nonlinear systems. For this purpose, the dynamic surface control approach has
been considered by several researchers and does not require obtaining the derivative of
virtual control laws in the previous step. Based on the advantage of the dynamic surface
control method, the control problems of nonlinear systems with all kinds of constraints
were designed in [26–28]. In [29,30], dynamic surface control laws with fuzzy logic systems
were studied for the tracking problems of nonlinear systems with input saturation and
time-varying output constraints and output delay, respectively. For the control problem
of nonlinear large-scale systems with time delay, a better control effect was obtained by
using the designed adaptive decentralized fuzzy dynamic surface control law in [31,32],
and in [33,34], the dynamic surface control laws with neural networks for the control
problems of interconnected systems and uncertain nonlinear systems were considered,
respectively. Moreover, the neuro-fuzzy-based adaptive dynamic surface control strategy
was investigated in [35].

In several practical systems, due to the influence and limitation of various factors,
actuators may suffer from failure. For this, in [16,36], the adaptive fuzzy control laws
for the nonlinear interconnected systems and stochastic nonlinear high-order multiagent
systems were designed, where the coupled denial-of-service attacks and actuator faults
and nonaffine nonlinear faults were considered. In [37], a set-invariance adaptive dynamic
surface control scheme was designed for uncertain large-scale nonlinear input-saturated
systems. Under the designed adaptive fuzzy tracking control scheme, the tracking problems
of uncertain nonlinear systems with dead-zone input were analyzed in [9,10,38]. Moreover,
the backlash failure [20], the stuck failure [39], and input quantization [40] were also
considered by researchers. Nevertheless, it is worth noting that the occurrence of actuator
faults is accidental, which makes the parameters of actuator faults unknown. Therefore, it
is worth studying the control problems of systems with actuator faults.

Motivated by the above-mentioned research, this paper discusses the adaptive tracking
control problem of a type of uncertain nonlinear system with unknown actuator faults. The
main contributions of this paper are summarized as follows:

(1) The adaptive fuzzy dynamic surface control scheme is designed for the uncertain
nonlinear system in the presence of actuator faults, where the fault occurring in the
system is assumed to be unknown. Compared with the references [41,42], the fault
model considered in this paper is more general;

(2) Different from references [18,19], the problem of the “explosion of complexity” can be
overcome owing to the introduction of the dynamic surface control technique, and
the derivation of nonlinear terms in the backstepping recursive design is eliminated.
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In addition, fuzzy logic systems are used to approximate the unknown nonlinear
dynamics, which effectively reduces the difficulty of the control law design;

(3) The effectiveness of the control law designed in this paper is proved by theoretical
analysis. By adjusting the design parameters, it is also proved that all of the signals in
the closed-loop system are semi-global bounded, and the tracking error converges to
the specified small neighborhood of the origin.

The rest of this paper is organized as follows. In Section 2, the problem descrip-
tion and preliminaries are provided. In Section 3, the main results for the adaptive
fuzzy dynamic surface control for the uncertain nonlinear system with unknown actuator
faults are discussed. Thereafter, the stability analysis and simulation analysis are given in
Sections 4 and 5, respectively. Finally, the conclusions are briefly drawn in Section 6.

Notation 1. Throughout this paper, | · | denotes the absolute value of real number or the distance
of real space R. (·)T denotes the transposition of a vector. tan h(·) denotes the hyperbolic tangent
function. λmax(X) represents the largest eigenvalue of the matrix X. HiM stands for the maximum
value of function Hi(·). diag(·) is the diagonal matrix. xi(t) = [x1(t), x2(t), . . . , xi(t)]

T repre-
sents the states vector. θ̂ represents the estimation of the ideal parameter vector θ∗. ψid represents
the ith virtual control law.

2. Problem Description and Preliminaries
2.1. System Description

Consider a class of uncertain nonlinear system with unknown actuator faults as the
following form: 

.
xi(t) = xi+1(t) + fi(xi(t)), i = 1, 2, . . . , n− 1
.
xn(t) = υ(t) + fn(xn(t)) + ∆n(xn(t))
y = x1

(1)

where xi(t) = [x1(t), x2(t), · · · , xi(t)]
T(i = 1, 2, · · · , n), x1(t), · · · , xn(t) and υ(t) represents

the states of system and actual control input, respectively; fi(xi(t))(i = 1, 2, · · · , n) is an
unknown smooth nonlinear function; ∆n(xn(t)) is an uncertain nonlinear dynamic.

In this paper, the model of the actuator fault is considered as the actuator’s loss of
effectiveness and bias signal, which is described as:

υ(t) = ρu(t) + f0(t), ∀t > t1 (2)

where ρ denotes the actuator health condition and satisfies 0 < ρ0 ≤ ρ ≤ 1, ρ0 is an
unknown positive constant; u(t) is the control input to be designed; f0(t) denotes the
bounded time-varying bias signal and occurs at any unknown instant t1, then there exists
an unknown positive constant f ∗0 and satisfies | f0(t)| ≤ f ∗0 , for ∀t ≥ t1. Clearly, ρ = 1
indicates that the system is fault-free, and ρ0 ≤ ρ < 1 indicates that the actuator’s partial
loss of effort.

The control objective of this paper is to develop an adaptive control law u(t) for the
system (1) by combing the fuzzy logic systems and dynamic surface control technique
such that the system output y tracks the desired reference trajectory yd under the unknown
actuator fault, and all of the signals in the closed-loop system are bounded.

Note 1: For practical complex systems, there are usually complex nonlinear dynamics,
and their accurate mathematical model is often difficult to obtain. Thus, the smooth
nonlinear functions fi(xi(t))(i = 1, 2, · · · , n) in system (1) are considered as the unknown
nonlinear dynamics. In addition, in terms of possible external disturbances, unmolded
dynamics, and modeling errors, they are uniformly considered and defined as the uncertain
nonlinear dynamic ∆n(xn(t)) in system (1).

Note 2: For the fault model of the system, the main consideration in this paper is the ac-
tuator loss of effectiveness and bias signal. Based on the change of actuator health condition
ρ and time-varying bias signal f0(t), the fault types in different situations can be realized.
Compared with these single fault types, such as input saturation fault [37], dead-zone
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input [10,38], the backlash failure [20], the stuck failure [39], and input quantization [40],
the fault model considered in this paper is more general.

2.2. Fuzzy Logic Systems

A fuzzy logic system usually consists of four parts, that is, the fuzzifier, the fuzzy rule
base, the fuzzy inference engine, and the defuzzifier [38]. The fuzzy rule base consists of
the following of “if-then” rules:

Rl : If x1 is Fl
1, . . . , and xn is Fl

n, thenh is Gl , l = 1, 2, · · · , M.

where x = [x1, x2, · · · , xn]
T and h are the fuzzy logic system’s input and output, respec-

tively; M is the number of “if-then” rules; Fl
1, Fl

2, · · · , Fl
n and Gl are fuzzy sets for linguistic

variables x1, x2, · · · , xn, and h, respectively.
According to the description in reference [38], the fuzzy logic system can be expressed as:

h(x) =
∑M

l=1 hlΠn
i=1µFl

i
(xi)

∑M
l=1

[
Πn

i=1µFl
i
(xi)

] (3)

where hl = maxh∈RµGl (h), µFl
i
(xi) and µGl (y) are membership functions of fuzzy sets Fl

i

and Gl , respectively.
Defining the fuzzy basis function as:

ξl(x) =
Πn

i=1µFl
i
(xi)

∑M
l=1

[
Πn

i=1µFl
i
(xi)

] , l = 1, 2, · · · , M (4)

Let θT =
[

h1, h2, · · · , hM

]
= [θ1, θ2, · · · , θM] and ξ(x) = [ξ1(x), ξ2(x), · · · , ξM(x)]T ,

then (3) is rewritten as:
h(x) = θTξ(x) (5)

Lemma 1 [38]. For any continuous function f (x) defined on a compact set Ωx and any given
positive constant ε, there exists a fuzzy logic system (5) such that:

sup
x∈Ωx

| f (x)− h(x)| =
∣∣∣ f (x)− θTξ(x)

∣∣∣ ≤ ε (6)

where ε is the approximation accuracy and can be arbitrarily small.

According to [10], let θ∗ be the ideal parameter vector of the fuzzy logic system, then
we have:

θ∗ = argminθ∈Ωθ
sup
x∈Ωx

∣∣∣ f (x)− θTξ(x)
∣∣∣ (7)

where Ωθ and Ωx are the compact set for θ and x.
Note 3: According to Lemma 1, the fuzzy logic systems can uniformly approximate

a real continuous nonlinear function f (x) on the compact set Ω. Hence, there exists an
ideal parameter vector θ∗ and the approximation error ε, which satisfy f (x) = θ∗Tξ(x) + ε
with |ε| ≤ ε∗, ∀x ∈ Ω, where ε∗ is an unknown positive constant. It should be noted that
the ideal parameter vector θ∗ is only utilized for analytical purposes and that the estimate
parameter vector θ̂ is utilized for control law design.

2.3. Preliminaries

Throughout this paper, the following assumptions and lemmas are used to analyze
the main results.
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Assumption 1. The uncertain nonlinear dynamic ∆n(xn(t)) in system (1) is bounded, and there
exists |∆n(xn(t))| ≤ ∆∗n with ∆∗n being a positive constant.

Assumption 2. The desired reference trajectory yd is bounded, and its first-, second-order deriva-
tives exist and belong to compact set Ξ1. Then there exists a positive constant K0 such that
Ξ1 :

{
(yd,

.
yd,

..
yd) : y2

d +
.
y2

d +
..
y2

d ≤ K0

}
.

Lemma 2 [15]. For any b ∈ R and ϑ > 0, the hyperbolic tangent function tanh(·) satisfies:{
0 ≤ |b| − btanh( b

ϑ ) ≤ 0.2785ϑ

0 ≤ btanh( b
ϑ )

(8)

Lemma 3 [15]. For any variables x ∈ R and y ∈ R, the following inequality holds:

xy ≤ νp

p
|x|p + 1

qνq |y|
q (9)

where ν > 0, p > 1, q > 1 and (p− 1)(q− 1) = 1.

Note 4: For Assumption 1, it is the stability condition of the controllability n order
nonlinear system (1), which can ensure the design of the subsequent virtual control laws and
the final control law. It should be noted that the boundedness of ∆n(xn(t)) is considered for
the purpose of theoretical analysis. For Assumption 2, it is a common and fairly standard
condition for the adaptive tracking control under the dynamic surface control design
framework and can be seen in [8,9,13].

For the convenience of discussion in the next section, the time variable t will be ignored
without causing confusion.

3. Adaptive Fuzzy Dynamic Surface Controller Design

In this section, the fuzzy logic systems are introduced to approximate the unknown
smooth nonlinear function, and then an adaptive fuzzy control scheme with dynamic
surface control technique is addressed. The control law design is based on the following
change of coordinates: {

S1 = e1 = x1 − yd
Si = xi − yid, i = 2, 3, · · · , n

(10)

where e1 is the tracking error and yid is the output of a given first-order filter with the virtual
control law ψid as the input; S1, S2, · · · , Sn are the defined sliding mode switching functions.

The design procedure involves n steps. In step i− 1(i = 2, · · · , n), the virtual control
law ψid is proposed to make the corresponding subsystem toward the equilibrium position,
and in step n, the actual control law u(t) will be developed.

Step 1. Considering the subsystem
.
x1 = x2 + f1(x1) and noting (10), the derivative of

S1 is obtained as:
.
S1 = x2 + f1(x1)−

.
yd (11)

According to Lemma 1, the first fuzzy logic system is utilized to approximate the
unknown smooth nonlinear function f1(x1) as follows:

f1(x1) = (θ∗1)
Tξ1(x1) + ε1(x1) (12)

where |ε1(x1)| ≤ ε∗1 with ε∗1 being a positive constant.
Choosing V(S1) = S2

1/2 and differentiating V(S1) along (11) gives:

.
V(S1) = S1x2 + S1 f1(x1)− S1

.
yd (13)
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Substituting (12) into (13) results in:

.
V(S1) ≤ S1x2 + S1(θ

∗
1)

Tξ1(x1) + |S1|ε∗1 − S1
.
yd (14)

By virtue of (14), the virtual control law ψ2d and the adaptation law
.
θ̂1 are hence

designed as:

ψ2d = −(θ̂1)
T

ξ1(x1)− ε∗1tanh(
ε∗1S1

ϑ
)− c1S1 +

.
yd (15)

.
θ̂1 = Φ1ξ1(x1)S1 − η1Φ1(θ̂1 − θ̂0

1) (16)

where c1 > 0 and η1 > 0 are the designed parameters; Φ1 is the positive definite symmetric
matrix to be designed; θ̂1 is the estimate of ideal parameter vector θ∗1 of the first fuzzy logic
system; and θ̂0

1 is the initial parameter vector.
In order to avoid differentiating the virtual control law ψ2d in the next step, the

first-order filter with time constant τ2 is introduced to filter the control law ψ2d and then
we have:

τ2
.
y2d + y2d = ψ2d, ψ2d(0) = y2d(0) (17)

where y2d is the output of the first-order filter, ψ2d(0) which is given an initial value.
Furthermore, defining the filter error of the first-order filter as z2 = y2d − ψ2d, it is

obtained from (17) that
.
y2d = −(z2/τ2). Thus, taking the derivative of z2 gives:

.
z2 = − z2

τ2
−
(

∂ψ2d
∂θ̂1

.
θ̂1 +

∂ψ2d
∂x1

.
x1 +

∂ψ2d
∂S1

.
S1 − ∂ψ2d

∂
.
yd

..
yd

)
= − z2

τ2
+ H2

(
S1, S2, z2, θ̂1, yd,

.
yd,

..
yd
) (18)

where H2(·) is the introduced nonnegative continuous function, and it is to be applied for
the stability analysis in the next section.

Choosing V(z2) = z2
2/2, and using Lemma 3, differentiating V(z2) along (18) yields:

.
V(z2) ≤ −

z2
2

τ2
+ |z2|H2 ≤ −

(
1
τ2
− 1

2

)
z2

2 +
H2

2
2

(19)

In addition, note that x2 = S2 + y2d and z2 = y2d − ψ2d, and then:

x2 = S2 + z2 + ψ2d (20)

According to Lemma 2, substituting (15) and (20) into (14) obtains:

.
V(S1) ≤ −c1S2

1 + S1S2 + S1z2 − S1(θ̃1)
T

ξ1(x1) + 0.2785ϑ (21)

where θ̃1 = θ̂1 − θ∗1, θ̃1 represents the estimation error.
Designing the following Lyapunov function candidate:

V1 = V(S1) + V(z2) +
1
2
(θ̃1)

T
Φ−1

1 θ̃1 (22)

Taking the time derivative of V1 and substituting (19) and (21), we obtain:

.
V1 ≤ −c1S2

1 + S1S2 + S1z2 −
(

1
τ2
− 1

2

)
z2

2 − S1(θ̃1)
T

ξ1(x1) + (θ̃1)
T

Φ−1
1

.
θ̃1 +

H2
2

2
+ 0.2785ϑ

(23)

By virtue of
.
θ̃1 =

.
θ̂1 and Lemma 3, we obtain:

(θ̃1)
T
(θ̂1 − θ̂0

1) = (θ̃1)
T
(θ̃1 + θ∗1 − θ̂0

1) ≥
1
2
(θ̃1)

T
(θ̃1)−

1
2
(θ∗1 − θ̂0

1)
T
(θ∗1 − θ̂0

1) (24)
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Then, substituting (16) and (24) into (23) becomes:

.
V1 ≤ −c1S2

1 −
(

1
τ2
− 1

2

)
z2

2 −
η1
2 (θ̃1)

T
(θ̃1) + S1S2 + S1z2 +

H2
2

2

+ η1
2 (θ∗1 − θ̂0

1)
T
(θ∗1 − θ̂0

1) + 0.2785ϑ
(25)

Step i (2 ≤ i ≤ n− 1). Considering the subsystem
.
xi = xi+1 + fi(xi) and noting (10),

the derivative of Si is obtained as:

.
Si = xi + fi(xi)−

.
yid (26)

The ith fuzzy logic system is used to approximate the unknown smooth nonlinear
function fi(xi) as follows:

fi(xi) = (θ∗i )
Tξ i(xi) + εi(xi) (27)

where |εi(xi)| ≤ ε∗i with ε∗i as a positive constant.
Similarly, considering V(Si) = S2

i /2 and differentiating V(Si) along (26) gives:

.
V(Si) ≤ Sixi+1 + Si

(
(θ∗i )

Tξ i(xi)−
.
yid

)
+ |Si|ε∗i (28)

Designing the virtual control law ψ(i+1)d and the adaptation law
.
θ̂i as follows:

ψ(i+1)d = −(θ̂i)
T

ξ i(xi)− ε∗i tanh(
ε∗i Si

ϑ
)− ciSi − Si−1 +

.
yid (29)

.
θ̂i = Φiξ i(xi)Si − ηiΦi(θ̂i − θ̂0

i ) (30)

where ci > 0 and ηi > 0 are the designed parameters, Φi is the positive definite symmetric
matrix to be designed, θ̂i is the estimate of the ideal parameter vector θ∗i of the ith fuzzy
logic system, and θ̂0

i is the initial parameter vector.
Let ψ(i+1)d pass through the first-order filter with time constant τi+1, and then we

obtain y(i+1)d as:

τi+1
.
y(i+1)d + y(i+1)d = ψ(i+1)d, ψ(i+1)d(0) = y(i+1)d(0) (31)

where y(i+1)d is the output of first-order filter, ψ(i+1)d(0) is given an initial value.
Defining the filter error of the first-order filter as zi+1 = y(i+1)d − ψ(i+1)d and consider-

ing
.
y(i+1)d = −(zi+1/τi+1), we obtain:

.
zi+1 = − zi+1

τi+1
−
(

∂ψ(i+1)d

∂θ̂i

.
θ̂i +

∂ψ(i+1)d
∂xi

.
xi +

∂ψ(i+1)d
∂Si

.
Si −

∂ψ(i+1)d

∂
.
y(i+1)d

..
y(i+1)d

)
= − zi+1

τi+1
+ Hi+1

(
S1, S2, · · · , Si+1, z2, z3, · · · , zi+1, θ̂1, θ̂2, · · · , θ̂i, yd,

.
yd,

..
yd
) (32)

where Hi+1(·) is the introduced nonnegative continuous function.
Correspondingly, choosing V(zi+1) = z2

i+1/2 and using Lemma 3, differentiating
V(zi+1) along (32) yields:

.
V(zi+1) ≤ −

(
1

τi+1
− 1

2

)
z2

i+1
+

H2
i+1
2

(33)

Furthermore, considering xi+1 = Si+1 + zi+1 + ψ(i+1)d and (29), (28) can be rewritten as:

.
V(Si) ≤ −ciS2

i − Si−1Si + SiSi+1 + Sizi+1 − Si(θ̃i)
T

ξ i(xi) + 0.2785ϑ (34)
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Designing the Lyapunov function Vi as follows:

Vi = V(Si) + V(Zi+1) +
1
2
(θ̃i)

T
Φ−1

1 θ̃i (35)

where θ̃i = θ̂i − θ∗i , and θ̃i represents the estimation error.
Thus, according to (30), (33), (34), and Lemma 3, we obtain:

.
Vi ≤ −ciS2

i −
(

1
τi+1
− 1

2

)
z2

i+1
− ηi

2 (θ̃i)
T
(θ̃i)− Si−1Si + SiSi+1 + Sizi+1 +

H2
i+1
2 + 0.2785ϑ

+ ηi
2 (θ

∗
i − θ̂0

i )
T
(θ∗i − θ̂0

i )
(36)

Step n. This is the last step. Considering the subsystem
.
xn(t) = υ(t) + fn(xn) + ∆n(xn)

and noting (2) and (10), we obtain:

.
Sn = ρu(t) + f0(t) + fn(xn) + ∆n(xn)−

.
ynd (37)

Considering the nth fuzzy logic system, then we obtain:

fn(xn) = (θ∗n)
Tξn(xn) + εn(xn) (38)

where |εn(xn)| ≤ ε∗n with ε∗n as a positive constant.
Similarly, choosing V(Sn) = S2

n/2, and considering (37) and (38), it is obtained that:

.
V(Sn) ≤ Sn

(
ρu(t) + (θ∗n)

Tξn(xn)−
.
ynd

)
+ |Sn|µ∗n (39)

where µ∗n = f ∗0 + ε∗n + ∆∗n.
Taking,

αn(t) = (θ̂n)
T

ξn(xn) + µ∗ntanh(
µ∗nSn

ϑ
) + cnSn + Sn−1 −

.
ynd (40)

where cn > 0 is the designed parameter.
Due to ρ being an unknown constant, let δn = 1/ρ and δ̂n be the estimate of δn, then

the following control law u(t) and adaptation laws θ̂n and δ̂n are designed as:

u(t) = −δ̂nαn(t) (41)

.
θ̂n = Φnξn(xn)Sn − ηnΦn(θ̂n − θ̂0

n) (42)
.
δ̂n = Snαn(t)− πn δ̂n (43)

where ηn > 0 and πn > 0 are the designed parameters; Φn is the positive definite symmetric
matrix to be designed; θ̂n is the estimate of ideal parameter vector θ∗n of the nth fuzzy logic
system and θ̂0

n is the initial parameter vector.
Choosing the Lyapunov function Vn as:

Vn = V(Sn) +
1
2
(θ̃n)

T
Φ−1

n θ̃n (44)

where θ̃n = θ̂n − θ∗n, and θ̃n represents the estimation error.
Similarly, following the same way of step i and considering (41) and (42), we obtain:

.
Vn ≤ Sn(αn − ρδ̂nαn)− cnS2

n −
ηn
2 (θ̃n)

T
(θ̃n)− Sn−1Sn +

ηn
2 (θ∗n − θ̂0

n)
T
(θ∗n − θ̂0

n) + 0.2785ϑ (45)

So far, the design process of the adaptive fuzzy dynamic surface controller has
been completed.
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Note 5: In this paper, the adaptive fuzzy dynamic surface control law is applied for
the uncertain nonlinear systems with actuator faults. Based on the application of dynamic
surface control technology, the derivation of nonlinear terms in the design of virtual control
laws and the final actual control law is avoided. In addition, we also found that in some
studies, such as references [20–22], the command filter control method is introduced to
improve the traditional backstepping control method. It is found that the implementation
of the command filter control method needs to introduce a compensation signal and then
construct the compensation signal error. Hence, by comparison, the implementation of
the dynamic surface control method is more intuitive and only needs to design a kind of
first-order low-pass filter. Then, the design of the virtual control law and final actual control
law can be well simplified. However, the command filter also has its own advantages,
which can still well avoid the explosion of complexity problems in the design of virtual
control laws and adaptive updating laws.

4. Stability Analysis

In this section, the stability analysis is elaborated and it is proved that all of the signals
in the closed-loop system are semi-global bounded.

Theorem 1. Considering the uncertain nonlinear system with actuator fault (1) under the As-
sumptions 1 and 2, the virtual control laws are designed as (15) and (29) with the adaptation laws
constructed as (16) and (30), and the control law is designed as (41) with (40) and the adaptation
laws constructed as (42) and (43), then there exist ci, ηi, Φi(i = 1, 2, · · · , n), τi(i = 2, · · · , n), πn
and ϑ such that all of the signals in the closed-loop system are semi-global bounded and the tracking
error can be guaranteed to converge to the specified small neighborhood of the origin by adjusting
the control law parameters.

Proof: Consider the Lyapunov function as follows:

V =
n

∑
i=1

Vi +
ρ

2
δ̃2

n (46)

where δ̃n = δ̂n − δn, and δ̃n represents the estimation error.
It follows from (25), (36), and (45) that the time derivative of V yields:

.
V ≤ Sn(αn − ρδ̂nαn)−

n
∑

i=1
ciS2

i −
n
∑

i=2
( 1

τi
− 1

2 )z
2
i
−

n
∑

i=1

ηi
2 (θ̃i)

T
(θ̃i) +

n−1
∑

i=1
Sizi+1 + ρδ̃n

.
δ̃n

+
n
∑

i=1

ηi(θ
∗
i −θ̂0

i )
T
(θ∗i −θ̂0

i )
2 +

n
∑

i=1

H2
i

2 + 0.2785nϑ

(47)
Based on Lemma 3, we obtain:

Sizi+1 ≤
S2

i
2

+
z2

i+1
2

(48)

δ̃n δ̂n = δ̃n(δ̃n + δn) ≥
1
2

δ̃2
n −

1
2

δ2
n (49)

Substituting (43), (48), and (49) into (47), and letting λmax(Φ
−1
i ) be the maximum

eigenvalue of Φ−1
i , then we obtain:

.
V ≤ −

n−1
∑

i=1
(ci − 1

2 )S
2
i − cnS2

n −
n
∑

i=2
( 1

τi
− 1)z2

i
−

n
∑

i=1

ηi
2λmax(Φ

−1
i )

(θ̃i)
T

Φ−1
i (θ̃i)−

πnρ
2 δ̃2

n

+
n
∑

i=1

ηi(θ
∗
i −θ̂0

i )
T
(θ∗i −θ̂0

i )
2 +

n
∑

i=2

H2
i

2 + πnρ
2 δ2

n + 0.2785nϑ

(50)
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Taking,

ci ≥
1
2
+ φ, i = 1, 2, · · · , n− 1 (51)

cn ≥ φ (52)

1
τi
≥ 1 + φ, i = 2, 3, · · · , n (53)

ηi ≥ 2φλmax(Φ
−1
i ), i = 1, 2, · · · , n (54)

πn ≥ 2φ (55)

where φ is a designed constant.
Define the following compact set as:

Ξi =


(S1, · · · , Si, z2, · · · , zi, θ̃1, · · · , θ̃i, δ̃n) :

S2
1 + (θ̃1)

T
Φ−1

1 θ̃1 + δ̃2
n +

i
∑

j=2
(S2

j + z2
j + (θ̃j)

T
Φ−1

j θ̃j) ≤ 2χ

 (56)

where i = 2, · · · , n.
Noting the Assumption 2, the set Ξ1 is compact, and then it is clear to find from (32)

that all of the variables of nonnegative continuous function Hi(·) are in the compact set
Ξ1×Ξi. Therefore, the function |Hi(·)| has a maximum in the compact set Ξ1×Ξi. Without
loss of generality, let the maximum of |Hi(·)| be HiM.

From (51)–(55), obviously, we can obtain:

.
V ≤ −2φ

(
1
2

n

∑
i=1

S2
i +

1
2

n

∑
i=2

z2
i
+

1
2

n

∑
i=1

(θ̃i)
T

Φ−1
i (θ̃i) +

1
2

ρδ̃2
n

)
+ P0 = −2φV + P0 (57)

where P0 =
n
∑

i=1

ηi(θ
∗
i −θ̂0

i )
T
(θ∗i −θ̂0

i )
2 +

n
∑

i=2

H2
iM
2 + πnρ

2 δ2
n + 0.2785nϑ.

Which further implies that:

V(t) ≤ (V(0)− P1)e−2φt + P1 ≤ V(0) + P1 (58)

where P1 = P0/(2φ).
From (57), this signifies that Si, zi, θ̃i and δ̃n are bounded, and θ̂i = θ̃i + θ∗i is bounded

due to the boundedness of θ̃i and θ∗i . Since e1 = S1 = x1 − yd and yd are both bounded,
then x1 is bounded. Considering ψ2d is a function on the bounded signals S1, θ̂1, yd, and

.
yd,

then we can obtain ψ2d is also bounded. Because of x2 = S2 + z2 + ψ2d, then there exists x2,
which is bounded. Similarly, we can obtain that ψid and xi with i = 3, 4, · · · , n are bounded.
Consequently, it can be proved that all of the signals of the closed-loop system are bounded.

Moreover, considering V(Si) = S2
i /2 and (46), we obtain:

n

∑
i=1

S2
i

2
≤ V(t) (59)

and the following inequality from (58) holds:

lim
t→∞
|e1| ≤

√
2P1 (60)

Noting P1 = P0/(2φ) lies on the designed parameters ci, ηi, Φi, τi, πn and ϑ, which
means that the tracking error e1 can be guaranteed to converge to the specified small neigh-
borhood of the origin by properly adjusting these designed parameters. This completes
the proof. �
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Note 6. There are numerous parameters to be designed in this paper, but several
parameters are introduced only for the theoretical analysis, e.g., ρ0 and θ∗. Moreover,
several parameters such as f ∗0 , ε∗1, ε∗i , ε∗n and ∆∗n, only require an appropriate upper bound
without influencing the control performance. The main design parameters in this paper
include ci, ηi, Φi, τi, πn and ϑ. From limt→∞|e1| ≤

√
2P1, where P1 = P0/(2φ), the tracking

error e1 can be made smaller by increasing ηi, τi, πn, and ϑ or decreasing Φi and ci.

5. Simulation Analysis

In this section, the effectiveness of the designed control approach described in Section 3
will be illustrated by two cases.

Case 1. Consider the following third-order uncertain nonlinear system [43]:
.
x1 = x2 + 2x2

1 sin(x1).
x2 = x3 + x2

1 + x1x2 + x2 cos(x1).
x3 = υ(t) + x1x3 + x2

2 + x3 sin(x2) + ∆3(x3(t))
y = x1

(61)

where ∆3(x3(t)) is the uncertain dynamic which is given as ∆3(x3(t)) = 0.1 sin(t). Com-
pared with (1), we obtain:

f1(x1(t)) = 2x2
1 sin(x1)

f2(x2(t)) = x2
1 + x1x2 + x2 cos(x1)

f3(x3(t)) = x1x3 + x2
2 + x3 sin(x2)

(62)

In this paper, it is assumed that the system (61) suffers from the actuator fault,
for which the model of actuator faults is as shown in (2). In simulation analysis, let
ρ = 0.5 + 0.45 sin(t), f0(t) = 0.01 sin(t) that occurs at t = 5 s, respectively.

The control purpose is to design a control law u(t) such that the output of the closed-loop
system (61) can approximate the reference signal yd = sin(t) asymptotically. Based on the
approach of this paper, the intermediate control signals and control laws are shown in Table 1.

Table 1. Intermediate control signals and control laws.

Error Control Law First-Order Filter and Adaptation Law

e1 = x1 − yd
S1 = e1

ψ2d = −(θ̂1)
T

ξ1(x1)− ε∗1tanh( ε∗1S1
ϑ )

−c1S1 +
.
yd

τ2
.
y2d + y2d = ψ2d, ψ2d(0) = y2d(0).

θ̂1 = Φ1ξ1(x1)S1 − η1Φ1(θ̂1 − θ̂0
1)

z2 = y2d − ψ2d
S2 = x2 − y2d

ψ3d = −(θ̂2)
T

ξ2(x2)− ε∗2tanh( ε∗2S2
ϑ )

−c2S2 − S1 +
.
y2d

τ3
.
y3d + y3d = ψ3d, ψ3d(0) = y3d(0).

θ̂2 = Φ2ξ2(x2)S2 − η2Φ2(θ̂2 − θ̂0
2)

z3 = y3d − ψ3d
S3 = x3 − y3d

α3(t) = (θ̂3)
T

ξ3(x3) + µ∗3tanh( µ∗3 S3
ϑ )

+c3S3 + S2 −
.
y3d

u(t) = −δ̂3α3(t)

.
δ̂3 = S3α3(t)− π3δ̂3.

θ̂3 = Φ3ξ3(x3)S3 − η3Φ3(θ̂3 − θ̂0
3)

In the simulation analysis, the fuzzy sets are given as F1
1 = (NM), F2

1 = (NS),
F3

1 = (ZO), F4
1 = (PS), F5

1 = (PM), F1
2 = (NM), F2

2 = (NS), F3
2 = (ZO), F4

2 =
(PS), F5

2 = (PM), F1
3 = (NM), F2

3 = (NS), F3
3 = (ZO), F4

3 = (PS) and F5
3 = (PM),

which are specified in the interval [−4, 4] for variables x1, x2 and x3, respectively. In
addition, NM, NS, ZO, PS, and PM represent negative middle, negative small, zero,
positive small, and positive middle with the center points being pointed as −4, −2,
0, 2, and 4, respectively. Accordingly, the fuzzy membership functions are denoted
as µNM = exp([(xi − 4)/1.5]2), µNS = exp([(xi − 2)/1.5]2), µZO = exp([(xi)/1.5]2),
µPS = exp([(xi + 2)/1.5]2) and µPM = exp([(xi + 4)/1.5]2), i = 1, 2, 3, respectively.
The curves of fuzzy membership functions are shown in Figure 1. Take design pa-
rameters and initial conditions as: ϑ = 0.09, c1 = 2.7, c2 = 1.5, c3 = 1.0, ε∗1 = 1.2,
ε∗2 = 5.5, µ∗3 = 4, η1 = η2 = η3 = 10−3, Φ1 = diag{85}, Φ2 = diag{1}, Φ3 = diag{40},
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τ2 = τ3 = 0.02, π3 = 5.0, [x1(0), x2(0), x3(0)]
T = [1.0, 0.5, 0]T , y2d(0) = y3d(0) = 0,

θ̂0
1(0) = θ̂0

2(0) = θ̂0
3(0) = 0.025, δ̂0

3(0) = 0.01.
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Figure 1. Fuzzy membership functions.

The simulation results of Case 1 are shown in Figures 2–9. It is found from Figures 2 and 3
that the excellent tracking performance can be achieved after a short transit process. Further-
more, the curves of nonlinear functions f1, f2, f3 and their estimates f̂1, f̂2, f̂3 are shown in
Figures 4–6, respectively. Figure 7 gives the curves of δ3 and its estimate δ̂3, and the control
input u(t) is displayed in Figure 8. Because of the initial values are randomly selected, the
amplitude of the estimated value of functions f2, f3, and δ3 are greatly reduced compared with
the actual value, which also shows that the control laws designed in this paper are effective
from another point of view.
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Case 2. Consider a one-link manipulator actuated by a brush dc [9], the dynamic of the
system is described as: {

C
..
p + A

.
p + L sin(p) = I + dI

Q
.
I = −RI − Km

.
p + U

(63)

where p,
.
p and

..
p are the link angular position, velocity and acceleration, respectively. I is

the motor current, dI is the stochastic disturbance. U is the input voltage. The parameters
of system (62) are given as C = A = Q = 1, R = 0.5, L = 2.2, and Km = 5.

Let x1 = p, x2 =
.
p, x3 =

..
p and υ(t) = U, so system (63) can be rewritten as follows:

.
x1 = x2.
x2 = x3 − 2.2 sin(x1)− x2 + 4 sin(t)
.
x3 = υ(t)− 5x2 − 0.5x3
y = x1

(64)

Compared with system (1), we have f1 = 0, f2 = −2.2 sin(x1) − x2 + 4 sin(t),
f3 = −5x2 − 0.5x3 and ∆3(x3(t)) = 0. Due to the nonlinear function f1 = 0, the adaptation

law
.
θ̂1 will not appear in the control design. The actuator fault model is considered as (2).
The initial conditions are given as [x1(0), x2(0), x3(0)]

T = [0.5, 0.5, 0.5]T , the reference
signal is given as yd = sin(t)(1− e−0.1t2

). Some simulation parameters are set as: ϑ = 0.15,
η2 = η3 = 0.05, τ2 = 0.01, τ3 = 0.15. Other parameters are the same as in Case 1. The
simulation results are depicted in Figures 9–14.
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The tracking results and tracking error are shown in Figures 9 and 10, respectively.
It is obviously found that the one-link manipulator actuated by a brush dc can obtain
good tracking performance based on the application of the adaptive fuzzy dynamic surface
control scheme proposed in this paper. Additionally, the nonlinear functions f2, f3 and
their estimates f̂2, f̂3 are shown in Figures 11 and 12, respectively, and the curves of δ3
and its estimate δ̂3 is shown in Figure 13. The control input u(t) is displayed in Figure 14.
Similar to Case 1, due to the initial values being randomly selected, it can be found that the
amplitude of the estimated value of functions f2, f3, and δ3 are greatly reduced compared
with the actual value, which also implies that the control laws designed in this paper are
effective from another point of view. Moreover, although the system considered is different,
fairly good control performance can still be obtained by using the designed control laws.

Case 3. To further illustrate the effectiveness of the designed control law in practical
system application, the system in [44] is considered. According to the description of [44],
the model of ship can be rewritten as:{ .

x1 = x2.
x2 = Knsω2

nus(t)− 2ξωnx2 −ω2
nx1

(65)
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where x1 = Ψ(t), x2 =
.

Ψ(t), us(t) = o(t), Kns = 9.5× 10−7, ωn = 1.25 and ξ = 0.8.
In addition, the initial states of system (64) are given as x1(0) = 35 and x2(0) = 0, the

desired reference signal is given as yd = 10 sin(t), the simulation t = 30 s, and the other
models are the same as [44]. Based the proposed control law of this paper, the simulation
results are shown in Figures 15–17.
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The tracking results and tracking error are displayed in Figure 15. As it is seen in
Figure 15, the ship system can obtain good performance under the designed control law,
and the tracking error of the system can be very small by selecting appropriate parameters.
Moreover, the curves of states and control input are shown in Figures 16 and 17, respectively.

Note 7: Note that the size of the tracking error e1 is affected by the designed parameters
ci, ηi, Φi, τi, πn and ϑ. Moreover, in the simulation analysis, for other parameters, such as
ε∗1, ε∗2 and µ∗3 , are randomly selected, which increases the conservatism of the results to a
certain extent. In order to reduce conservatism, we can improve the approximation ability
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of fuzzy system to nonlinear dynamics by setting the initial value. We can also find the
optimal parameters by introducing the optimization method.
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6. Conclusions

This paper discusses the tracking control problem of an uncertain nonlinear system
with actuator faults by using the adaptive fuzzy control law. The fuzzy logic systems are
considered to approximate the uncertain nonlinear functions, and then an adaptive fuzzy
dynamic surface control law is proposed. Based on the dynamic surface control technique,
the problem of the “explosion of complexity” can be overcome. The simulation results
illustrate the effectiveness of the proposed control law. It has been proved that: (a) all of
the signals in the closed-loop system are semi-global bounded, (b) the tracking error of the
system can converge to a small neighborhood of the origin by adjusting the control law
parameters, and (c) fairly good control performance is achieved despite the existence of the
actuator fault and uncertain nonlinear dynamics in the system.

The extension of the proposed control law to more complex systems, such as pure-
feedback systems and large-scale systems with input delays, is the direction of our future
work. In addition, we will also focus on the command filter control method to solve the
tracking control problem of system (1) with unknown control directions.
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