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Abstract: We consider a queueing inventory with one essential and m optional items for sale. The
system evolves in environments that change randomly. There are n environments that appear in a
random fashion governed by a Marked Markovian Environment change process. Customers demand
the main item plus none, one, or more of the optional items, but were restricted to at most one unit of
each optional item. Service time of the main item is phase type distributed and that of optional items
have exponential distributions with parameters that depend on the type of the item, as well as the
environment under consideration. If the essential item is not available, service will not be provided.
The lead times of optional and main items have exponential distributions having parameters that
depend on the type of the item. The condition for stability of the system is analyzed by considering a
multi-dimensional continuous time Markov chain that represent the evolution of the system. Under
this condition, various performance characteristics of the system are derived. In terms of these, a
cost function is constructed and optimal control policies of the different types of commodities are
investigated. Numerical results are provided to give a glimpse of the system performance.

Keywords: essential item; optional item(s); random environment; Markovian arrival process; phase-
type distribution; marked Markovian environment change process

1. Introduction

Queueing inventory models have been extensively analyzed since 1992. Very few of
these discuss multi-commodity systems in randomly changing environments. Queueing
systems which evolve under influences from external sources have, for a long time, inspired
interest. In real life situations, inventory systems are often subject to randomly changing
exogenous environment conditions that affect the demand for the product, the supply, and
the cost structure. The area of queues in random environments is today a field of active
research in applied probability. Queueing systems with correlated arrival flow of customers
give adequate mathematical models for different real world systems including computer
and telecommunication systems, and network protocols [1]. The following papers are
relevant to the present paper only in that the authors consider multi-commodity inventory
systems without any specified main and optional items. FaizAl-Khayyal et al. [2] consider
a multi-commodity network model in maritime routing and scheduling. They tried to
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optimize the cost and the quantity of each commodity with constrained production rates,
consumption rates, and storage capacities in each port. This paper addresses the common
problem faced in the maritime transportation of petrochemical products. The problem is
formulated as a mixed-integer non-linear programming problem.

Two-echelon, multi-commodity supply chain network design problem is considered
by Hannan et al. [3]. The authors formulate the problem as a mixed-integer programming
model in deterministic, single-period, and multi-commodity contexts. They develop a
heuristic solution procedure based on Lagrangian relaxation due to the complexity of the
problem. The problem deals with developing an optimum strategy in locating and sizing
factories and warehouses and minimizing the total cost of the system which includes the
costs associated with production, storage, transportation, and lead-times of commodities.

Jin QIN et al. [4] discuss an optimization problem in multi-commodity logistic network
design. The problem is formulated as a non-linear mixed-integer programming model
based on assumed normally distributed stochastic demands of the retailers. In this work,
the strategic decisions regarding inventory controls and facility locations are incorporated
simultaneously. The authors also developed a combined simulated annealing (CSA) algo-
rithm to solve the problem. Optimization of the cost function involving costs associated
with location, inventory, and transportation is also done.

Ronald et al. [5] examine a multi-commodity logistics network design problem with
simultaneous emphasis on establishing ideal location facilities and distribution of com-
modities to ensure minimization of costs together with improved services. Factors such
as the location of facilities and warehouses, storage capacity of the warehouses, and trans-
portation routes involving all these are considered in the optimization problem. They later
designed, tested, and compared a genetic algorithm and a specific problem heuristic on
several realistic scenarios.

Claudio et al. [6] discuss multi-commodity inventory location models where inventory
control policies are reviewed periodically and continuously under modular stochastic
capacity constraints. The model is formulated as a mixed-integer non-linear programming
model. The logistic problem of supplying certain commodities to the warehouses, which
acts as customer service centers, from a single factory is under consideration. An objective
function with factors associated with the selection of warehouses, type, and quantity of
commodities to be assigned, type of customers to be served, etc., is optimized. They have
developed a Lagrangian heuristic to obtain a feasible integer solution at each iteration of
the subgradient method.

Ali et al. [7] examine a dynamic multi-commodity inventory and facility location
problem in steel supply chain networks. Demand is assumed to be stochastic with normal
distribution. In this model, the authors suggested a potential production capacity with
emergency and shared safety stocks. The authors have presented a mixed-integer non-
linear programming model and a mixed-integer linear programming model in this paper.
The paper focuses on the strategic and tactical design of steel supply chain networks.

In Shajin et al. [8], the authors discuss a single server multi-commodity queueing
inventory system with one essential and m optional items. They were the first to introduce
the concept of optional items for sales/service. Customer arrival follows the Markovian
arrival process, service completion with respect to the essential inventory follows Phase-
type distribution and that with respect to optional inventories follows an exponential
distribution. In this model, immediately after the service of an essential item, the customer
either leaves the system with probability p or with probability 1− p the customer goes
for optional item(s). The system is assumed to be idle either in the absence of an essential
item or when there is no customer in the system. Each customer is allowed to purchase
only one unit of the essential item, whereas more than one type of optional items can be
purchased with an imposed restriction of, at most, one unit per item. The stability condition
is obtained by using the well-known fact that the left drift rate should be less than that of
the right drift. Optimization of the control variables with respect to the cost function is also
done numerically.
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The following papers deal with queueing inventory systems influenced by randomly
changing environments. In Song et al. [9], the authors consider an inventory model where
the rate of demand is dependent on the environment variables. These variables can be
anything, such as different stages in the life cycle of the particular inventory or changes in
various factors linked with the economy, etc. They not only derived basic characteristics of
the optimal policies but also observed the influence of various patterns in problem data on
optimal policies and developed algorithms for computing optimal policies

Özekici et al. [10] describe inventory models with unreliable suppliers in randomly
changing environments. The environment change follows a Markov chain. The dependence
of the stock-flow equations of the system on random environments is represented by a
two-dimensional stochastic process. Under specified conditions, they have derived an
optimality condition for the base-stock policy and (s, S) policy. Computational issues and
some extensions are also determined.

A single item inventory model which is observed periodically in a randomly changing
environment is considered in Erdem et al. [11]. All the model parameters are dependent
on a time-homogenous Markov chain environment. The replenishment quantity is min-
imum{Order quantity, Vendors capacity}. The problem is analyzed in single, multiple,
and infinite periods. In all these cases, the authors prove that the optimal base-stock level
depends on the state of the environment. Comparisons of the results with the case when
the replenishment quantity equals the quantity ordered is also done.

Perry et al. [12] discuss production-inventory models with an unreliable facility
operating in a two-state random environment. The system is characterized by a production
machine. The production can even be stopped purposefully when there is a limited
stocking capacity. When the machine is in ON period, the input into the buffer is assumed
to be continuous and uniform until the threshold is reached, whereas the output from the
buffer follows a compound Poisson process during OFF periods. Two different models are
discussed and the factors controlling OFF periods are determined.

A continuous review (s, S) inventory system in a randomly changing environment is
discussed in Feldman et al. [13] and its steady-state distribution obtained. The demand
process is an environment dependent compound Poisson process when the environment is
in a fixed state during an interval of time. The environmental process follows a continuous-
time Markov process.

Kalpakam et al. [14] consider a lost sales (s, S) inventory system in a random envi-
ronment. No backlog is allowed. The demand and supply rates are influenced by the
environment process which is a finite irreducible Markov chain in continuous time. They
have obtained the transform solution of the inventory level distribution and also an effi-
cient algorithm to evaluate the long run system state is provided. Moreover, transient and
limiting values of the mean reorder and shortage rates are also obtained. Goh et al. [15]
discuss price-dependent inventory models with discount offers at random times. The offer
is accepted when the inventory position is lower than a threshold level. Three different
pricing policies are considered in which demand is induced by the retailer’s price variation.
They have obtained expressions for optimal order quantities, prices, and profits under the
assumptions of constant demand rates.

Highlights of this paper are:

• It considers multi-commodity inventory with positive service time [16] in finite num-
ber of randomly changing environments;

• The first paper to introduce optional items for service in random environments;
• Except for one item (essential), all others are optional;
• The customer demand process follows Markovian arrival process (MAP);
• The environment change process follows marked Markovian environment arrival

process (MMEAP)[n] of order n;
• Service time of customers, being served with the essential inventory follows phase type

distribution and that w.r.t optional item(s) follows exponential distribution (depending
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on the environment). The latter has a parameter, depending on the specific item(s)
demanded by the customer.

The rest of the paper is organized as follows. The mathematical formulation of the
model including the stability condition and the steady-state probability vector is described
in detail in Section 2. Section 3 deals with some system performance measures and in
Section 4, the construction of the cost function for optimizing the system control variables
is discussed. Numerical illustrations and the numerical analysis of the cost function are
discussed in Section 5. Section 6 gives the conclusion followed by references.

Notations and abbreviations used:

• (s, S) ordering policy: An inventory policy which says that when the inventory level
falls below a certain minimum number s, the order for replenishment is made to
restore the inventory to a maximum number S;

• e = Column vector of appropriate order with all its entries as 1′s;
• 0̄ = Matrix of appropriate order with all its entries as 0;
• Ik = Identity matrix of order k;
• [G]pq = (p, q)th element of the matrix G;
• CTMC : Continuous time Markov chain;
• LIQBD : Level Independent Quasi-Birth and Death process;
• MAP = Markovian arrival process;
• (MMEAP)[n] = Marked Markovian environment arrival process (with n distinct

environments);
• C ⊗ D = The Kronecker product of two given matrices Cm×n and Dp×q, given by

([C]pqD) of order mp× nq;
• C ⊕ D = The Kronecker sum of two square matrices B and C of orders m and n,

respectively, given by C⊗ In + Im ⊗ D;
• Ccor = The Correlation coefficient;
• MAPp = Markovian arrival process with positive Ccor;
• MAPn = Markovian arrival process with negative Ccor;
• PH(γ, T) : Phase type distribution with the initial probability vector γ and the transi-

tion generator matrix T.

2. Mathematical Formulation

Consider a single server multi-commodity queueing inventory system with one essen-
tial and m optional inventories in n random environments. Only one environment will be
in operation at any given time. The arrival of customers follows Markovian arrival process
(MAP) with representation (H0, H1), where each Hi for 0 ≤ i ≤ 1 is of order m3. The
generator matrix of the underlying CTMC (δ(t), t ≥ 0) on the state space {1, 2, 3, . . . , m3} is
given by H = H0 + H1. These matrices, H0 and H1, are of the form

H0 =


h(0)11 h(0)12 . . . h(0)1m3

h(0)21 h(0)22 . . . h(0)2m3
...

...
. . .

...
h(0)m31 h(0)m32 . . . h(0)m3m3

, H1 =


h(1)11 h(1)12 . . . h(1)1m3

h(1)21 h(1)22 . . . h(1)2m3
...

...
. . .

...
h(1)m31 h(1)m32 . . . h(1)m3m3


where, h(0)ii = −

(
∑m3

j=1,j 6=i h(0)ij + ∑m3
j=1 h(1)ij

)
for 1 ≤ i ≤ m3. Thus, h(1)ij , 1 ≤ i, j ≤ m3 gives

the transition rate from ith state to jth state through an arrival, while h(0)ij , 1 ≤ i, j ≤ m3,
gives the transition from ith state to jth state without an arrival. Note that the transition
rate between the ith states, given by h(1)ii , 1 ≤ i ≤ m3 occurs only with an arrival. Let
η be the steady-state probability vector of H. Then, η satisfy ηH = 0 and ηe = 1. The
fundamental rate λA of this MAP is given by λA = ηH1e which gives the expected number
of arrivals per unit of time. The coefficient of variation Cvar of intervals between arrivals
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is calculated as Cvar = 2λAη(−H0)
−1e− 1 and coefficient of correlation Ccor of intervals

between successive arrivals is given as Ccor = (λAη(−H0)
−1H1(−H0)

−1e− 1)/Cvar.
There are n environments that occur randomly and the occurrence of the environments

follows marked Markovian environment arrival process (MMEAP[n]) with representation
(D0,D1,D2,. . . ,Dn), where each Di for 0 ≤ i ≤ n is of order m2. As stated earlier, only
one environment will be in operation at any given time. The change in environment is
directed by the stochastic process {V(t); t ≥ 0} which is an irreducible continuous time
Markov chain with the state space {1, 2, . . . , m2}. The sojourn time of this chain in the state
v, 1 ≤ v ≤ m2, is exponentially distributed with parameter λ(v). When the sojourn time
in the state v expires,the process {V(t); t ≥ 0} jumps to the state v′ without any change in
the environment with probability p(0)

(v,v′) where v, v′ ∈ {1, 2, . . . , m2}, v 6= v′. On the other
hand, the process {V(t); t ≥ 0} jumps to the state v′ with the arrival of lth environment
with probability p(l)

(v,v′) where v, v′ ∈ {1, 2, . . . , m2}, v 6= v′ and l ∈ {1, 2, . . . , n}.
The behavior of the MMEAP is completely characterized by the matrices Dl ,

l = 0, 1, 2, . . . n defined by

D0 =


−λ(1) λ(1)p(0)1,2 . . . λ(1)p(0)1,m2

λ(2)p(0)2,1 −λ(2) . . . λ(2)p(0)2,m2
...

...
. . .

...
λ(m2)p(0)m2,1 λ(m2)p(0)m2,2 . . . −λ(m2)

,

Dl =


λ(1)p(l)1,1 λ(1)p(l)1,2 . . . λ(1)p(l)1,m2

λ(2)p(l)2,1 λ(2)p(l)2,2 . . . λ(2)p(l)2,m2
...

...
. . .

...
λ(m2)p(l)m2,1 λ(m2)p(l)m2,2 . . . λ(m2)p(l)m2,m2

,

l = {1, 2, . . . , n} The matrix D = ∑n
l=0 Dl represents the generator of the process {V(t);

t ≥ 0}.
Service time of those customers who are served with the essential item is phase type

distributed with representation PH(γ, T) of order m1. This service time is the time until the
undergoing Markov chain (ζ(t), t ≥ 0) with a finite state space {1, 2, 3, . . . , m1 + 1} reaches
the absorbing state m1 + 1. γ = (γ1, γ2, . . . , γm1) gives the initial probability of starting in
any of the m1 states. T is the generator matrix that gives transition rates within the states
{1, 2, 3, . . . , m1}. The absorption rates from the individual transient states {1, 2, 3, . . . , m1} to
the absorption state m1 + 1 is given by T0 = −Te. µ′ = −γT−1e gives the mean service of
the customer.

Service time of those customers who are served with the optional items are envi-
ronment dependent and they are exponentially distributed with parameter µk

i , where
1 ≤ k ≤ n and i ∈ {i1, (i1i2), (i1i2i3), . . . , (i1i2i3 . . . im)}. It is important to note that no or-
der preference has been given to any element, i.e., (ijil) = (il ij), and so on where each
il ∈ {1, 2, 3, . . . , m} with 1 ≤ j 6= l ≤ m.

In this model, a customer is allowed to demand exactly one unit of the essential
inventory where as more than one type of optional inventory can be demanded by a
customer with an imposed restriction of, at most, one item from each optional inventories.
Service rates of the optional items are assumed to be environment dependent. The ith
optional item is served in the kth environment with probability pk

i , similarly the lth and
rth optional inventories are served in the kth environment with probability pk

lr, and so on.
If the demanded optional inventory is not available, the customer is expected to quit the
system after acquiring the essential item together with those available optional inventories.
The server is assumed to be in the idle state in the absence of customers, as well as essential
inventories. Essential and optional inventories have exponentially distributed positive lead
time with parameters β and β j for 1 ≤ j ≤ m, respectively. The essential inventories are
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under the (s, S) control policy whereas the environment dependent optional inventories
are under the (sk

i ,Si) for i = 1, 2, 3, . . . , m and k = 1, 2, 3, . . . , n control policies in the kth
environment.

At any given time t, let N(t), S(t),E(t), Ol(t),J1(t),J2(t), and J3(t) denote, respectively,
number of customers in the system, status of environment, number of essential inventory
items, number of lth optional inventory items for 1 ≤ l ≤ m, service phase, environment
phase and arrival phase of the customers. The status of the server at any given time t is
defined as,

C(t) =



0∗ Idle server
0 Essential inventory service
l lth optional inventory service
...
lr combined service of lth and rth optional inventories
...
lru combined service of lth, rth and uth optional inventories
...
123, ..., m combined service of all optional inventories

Let ∆ be the collection of all the permitted combinations of different optional invento-
ries and let Cu denotes the server status, in general, for the combined service of u optional
items, for 1 ≤ u ≤ m. Thus, the process Γ = {(N(t), S(t), E(t), C(t), O1(t), O2(t), . . .
. . . , Om(t), J1(t), J2(t), J3(t)), t ≥ 0} is a CTMC which is a level independent quasi-birth
and death process(LIQBD) with state space as follows

{(0, j, i, 0∗, i1, i2, . . . , im, j2, j3), 0 ≤ i ≤ S, 1 ≤ j ≤ n, 0 ≤ ir ≤ Sj
r for 1 ≤ r ≤ m,

1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3}⋃
{(n̄, j, 0, 0∗, i1, i2, . . . , im, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ n, 0 ≤ ir ≤ Sj

r for 1 ≤ r ≤ m, 1 ≤ j2 ≤ m2,
1 ≤ j3 ≤ m3}⋃

{(n̄, j, i, 0, i1, i2, . . . , im, j1, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ n, 1 ≤ i ≤ S, 0 ≤ ir ≤ Sj
r for 1 ≤ r ≤ m,

1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3}⋃
{(n̄, j, i, C1, i1, i2, . . . , im, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ n, 1 ≤ i ≤ S, C1 ∈ ∆, 1 ≤ j2 ≤ m2,

1 ≤ j3 ≤ m3 for if C1 = l where 1 ≤ l ≤ m then 0 ≤ ik ≤ Sj
k for k ∈ {1, 2, . . . , m} − {l} and

1 ≤ il ≤ Sj
l}⋃

{(n̄, j, i, C2, i1, i2, . . . , im, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ n, 1 ≤ i ≤ S, C2 ∈ ∆, 1 ≤ j2 ≤ m2,
1 ≤ j3 ≤ m3 for if C2 = lq where l 6= j, 1 ≤ l, q ≤ m then 0 ≤ ik ≤ Sj

k for k ∈ {1, 2, . . . , m} −
{l, q} and 1 ≤ ik ≤ Sj

k for k ∈ {l, q}}⋃
{(n̄, j, i, C3, i1, i2, . . . , im, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ n, 1 ≤ i ≤ S, C3 ∈ ∆, 1 ≤ j2 ≤ m2,

1 ≤ j3 ≤ m3 for if C3 = hql where h 6= q 6= l, 1 ≤ h, q, l ≤ m then 0 ≤ ik ≤ Sj
k for

k ∈ {1, 2, . . . , m} − {h, q, l} and 1 ≤ ik ≤ Sj
k for k ∈ {h, q, l}} ⋃ . . .

⋃
{(n̄, j, i, 12 . . . m, i1, i2,

. . . , im, j2), n̄ ≥ 1, 1 ≤ j ≤ n, 1 ≤ i ≤ S, 12 . . . m ∈ ∆, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3, 1 ≤ ik ≤ Sj
k

for k ∈ {1, 2, . . . , m}}.
The infinitesimal generator Q of the system is of the form

Q =


A00 A01
A10 A1 A0

A2 A1 A0
. . . . . . . . .


Matrices A01 and A0 are of order a × b and a × a, respectively, their entries are due

to the arrival of customers following MAP with representation (H0, H1). Matrices A10 and
A2 are of order c× a and c× c, respectively, their entries are due to the service of essential
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inventories following phase type distribution with representation PH(γ, T) and also due
to the environment dependent, exponentially distributed service of optional inventories.
Matrices A00 and A1 are square matrices of order a and c, respectively, their entries includes
the replenishment rates of the inventories in addition to the negative sign of sum of other
entries of the same row found in A01, A0, A10, and A2, where a = n(S+ 1)Πm

k=1(Sk + 1)m2m3,
b = n(S + 1)Πm

k=1(Sk + 1)m1m2m3 and c = n(Πm
k=1(Sk + 1)m2m3 + S ∑u∈∆ lu).

When u = 0, then l0 = πm
k=1(Sk + 1)m1m2m3 .

When u = i, then li = πm
k=1,k 6=i(Sk + 1)Sim2m3 for 1 ≤ i ≤ m.

When u = ij, then lij = πm
k=1,k 6=i,j(Sk + 1)Πk∈{i,j}Skm2m3 for 1 ≤ i, j ≤ m

When u = hij, then lhij = πm
k=1,k 6=h,i,j(Sk + 1)Πk∈{h,i,j}Skm2m3 for 1 ≤ h, i, j ≤ m and

so on.
When u = 12 . . . m, then l12...m = πm

k=1Skm2m3.
In order to have a better understanding of the system, a detailed illustration of the

model has been provided in Appendix A by fixing the number of optional items m = 2 and
the number of environments n = 2. All the transitions and resultant component matrices
are shown clearly in the Appendix A.

2.1. Stability Condition

Let π = (π0, π1, π2, . . . , πS) be the steady-state probability vector of A = A0 + A1 + A2,
where πk = (π

(1)
k , π

(2)
k , . . . , π

(n)
k ) for 0 ≤ k ≤ S.

Then

πA = 0, πe = 1. (1)

Refer to Appendix A for the component matrix representations From (1),

π0N0 + π1M0 = 0 (2)

πi N1 + πi+1M = 0, 1 ≤ i ≤ s (3)

πi N2 + πi+1M = 0, s + 1 ≤ i ≤ S− 1 (4)

π0Z0 +
s

∑
i=1

πiZ + πSN2 = 0 (5)

where,

N0 = [Zij
0 ]; M0 = [Mij

0 ] for 1 ≤ i, j ≤ n
Nk = [Lij + Zij

k + M̄ij], 1 ≤ k ≤ 2 for 1 ≤ i, j ≤ n
M = [Mij]; Z0 = [Z0ij]; Z = [Zij] for 1 ≤ i, j ≤ n

Solving Equations (2)–(5), we get

πi =


πSW0 i = 0
πSWi 1 ≤ i ≤ s
πSŴi s + 1 ≤ i ≤ S

(6)

where,
W0 = (−1)S(MN−1

2 )S−s−1(MN−1
1 )s(M0N−1

0 ) (7)

Wi = (−1)S−i(MN−1
2 )S−s−1(MN−1

1 )s+1−i (8)

Ŵi = (−1)S−i(MN−1
2 )S−i (9)

The only unknown probability vector πS is obtained from the normalizing condition

πS

(
W0 +

s

∑
i=1
Wi +

S

∑
i=s+1

Ŵi

)
e = 1.
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Theorem 2.1. The necessary and sufficient condition for the stability of queuing inventory system
under study is

πSH0V0 < πS(H1V1 +H2V2)

Proof. The queueing system with the generator Q under study is stable if, and only if,

πA0e < πA2e (10)

Refer to Appendix A for the component matrix representations.
Using Equations (6)–(9) together with the matrices A0 and A2 we get

πA0e = πS

(
s

∑
i=1
Wi +

S

∑
i=s+1

Ŵi

)
L.e

where L = [Lij] for 1 ≤ i, j ≤ n,

πA2e = πS

[
W1(M0 + M̄) +

(
s

∑
i=2
Wi +

S

∑
i=s+1

Ŵi

)
(M̄ + M)

]
.e

where M̄ = [M̄ij] for 1 ≤ i, j ≤ n. Let

H0 =
s

∑
i=1
Wi +

S

∑
i=s+1

Ŵi, V0 = L.e, H1 =W1, V1 = (M0 + M̄).e,

H2 =
s

∑
i=2
Wi +

S

∑
i=s+1

Ŵi & V2 = (M̄ + M).e

Then, by (10) we get the stated result.

2.2. Steady State Probability Vector

Let x denote the steady state probability vector of the generator Q. Then, we have

xQ = 0, xe = 1. (11)

Partitioning x as x = (x0, x1, x2, ...), from (23) we get

x0 A00 + x1 A10 = 0

x0 A01 + x1 A1 + x2 A2 = 0 (12)

xn−1 A0 + xn A1 + xn+1 A2 = 0; n ≥ 2

By assuming the stability condition, we see that x is obtained as (see [17])

xn = x1Rn−1; n ≥ 2, (13)

where R is the minimal non-negative solution of the matrix quadratic equation

R2 A2 + RA1 + A0 = 0 (14)

The boundary conditions are given by

x0 A00 + x1 A10 = 0

x0 A01 + x1[A1 + RA2] = 0 (15)

From Equation (23) we get,
x1 = x0K (16)
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and by the normalizing condition in (23), we get

[x0 + x0K(I − R)−1]e = 1 (17)

where
K = (−A01)(A1 + RA2)

−1 (18)

3. System Performance Measures

1. Expected re-ordering rate of the essential inventory

ERE = µ′
∞

∑
r=1

n

∑
t=1

m

∑
k=1

Sk

∑
ik=1

m1

∑
j1=1

m2

∑
j2=1

m3

∑
j3=1

xr(t, s + 1, 0, i1, . . . , im, j1, j2, j3)

2. Expected re-ordering rate of lth optional item in the ath environment, 1 ≤ l ≤ m,
1 ≤ a ≤ n

ERO(l)a = µa
l

∞

∑
r=1

S

∑
i=1

( ∑
u∈∆
l∈u

Sk

∑
ik=0,
k 6∈u,

1≤k≤m

Sk

∑
ik=1,
k∈u,

1≤k≤m

)
m2

∑
j2=1

m3

∑
j3=1

xr(a, i, u, i1, . . . , ih−1, sa
l + 1, ih+1, . . . , j2, j3)

3. Expected number of customers in the system EC = ∑∞
i=1 i.xi.e.

4. Expected number of essential inventories in the system

EEI =
n

∑
t=1

S

∑
i=1

m

∑
k=1

Sk

∑
ik=1

m2

∑
j2=1

m3

∑
j3=1

i.x0(t, i, 0∗, i1, . . . , im, j2, j3)

+
∞

∑
r=1

n

∑
t=1

S

∑
i=1

m

∑
k=1

Sk

∑
ik=1

m1

∑
j1=1

m2

∑
j2=1

m3

∑
j3=1

i.xr(t, i, 0, i1, . . . , im, j1, j2, j3)

+
∞

∑
r=1

n

∑
t=1

S

∑
i=1

( ∑
u∈Λ

Sk

∑
ik=0,
k 6∈u,

1≤k≤m

Sk

∑
ik=1,
k∈u,

1≤k≤m

)
m2

∑
j2=1

m3

∑
j3=1

i.xr(t, i, u, i1, . . . , im, j2, j3)

5. Expected number of lth optional inventories in the system for 1 ≤ l ≤ m.

EOI(l) =
n

∑
t=1

S

∑
i=1

m

∑
k=1

Sk

∑
ik=1

m2

∑
j2=1

m3

∑
j3=1

il .x0(t, i, 0∗, i1, . . . , im, j2, j3)

+
∞

∑
r=1

n

∑
t=1

S

∑
i=1

m

∑
k=1

Sk

∑
ik=1

m1

∑
j1=1

m2

∑
j2=1

m3

∑
j3=1

il .xr(t, i, 0, i1, . . . , im, j1, j2, j3)

+
∞

∑
r=1

n

∑
t=1

S

∑
i=1

( ∑
u∈Λ

Sk

∑
ik=0,

k 6=l,k 6∈u,
1≤k≤m

Sk

∑
ik=1,

k=l,k∈u,
1≤k≤m

)
m2

∑
j2=1

m3

∑
j3=1

il .xr(t, i, u, i1, . . . , im, j2, j3)

6. Expected loss rate of customers in the absence of essential item

EL = λA
∞

∑
r=1

n

∑
t=1

m

∑
k=1

Sk

∑
ik=1

m2

∑
j2=1

m3

∑
j3=1

xr(t, 0, 0∗, i1, . . . , im, j2, j3)
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4. Cost Function

In-order to optimize the inventory levels s, S, sk
i , and Si for 1 ≤ i ≤ m, 1 ≤ k ≤ n, we

construct the following cost function,

K(s, s1
1, . . . , sn

1 , . . . , s1
m, . . . , sn

m, S, S1, . . . , Sm) = C0ERE +
m

∑
i=1

n

∑
j=1

Cj
i ERO(i)j

+ CEI EEI +
m

∑
i=1

COI(i)EOI(i) + C1EC + C2EL,

where

1. C0 = Fixed set up cost per unit of the essential item;

2. Cj
i = Fixed set up cost per unit of the ith optional item in the jth environment;

3. CEI = Carrying cost per unit of the essential item;
4. COI(i) = Carrying cost per unit of the ith optional item;
5. C1 = Customer holding cost per unit time;
6. C2 = Cost due to loss of goodwill per unit time, in the absence of the essential item.

5. Numerical Illustration

In this section, we provide the numerical illustration of the system performance
measures with varied values of the underlying parameters. The model with one essential
and two optional inventories is considered here.

The phase-type service process of the customer is characterized by

T =

(
−8 4
1 −4

)
, T0 =

(
4
3

)
, γ =

(
0.3 0.7

)
where the mean service time is obtained as µ

′
= 0.3107.

To exhibit the correlation effect, we introduce two MAP arrival of customers coded
ass MAPp and MAPn for the customer arrivals with positive correlation coefficient and
negative correlation coefficient, respectively.

• MAPp is defined by

H0 =

(
−3.45 0.7
0.85 −5

)
, H1 =

(
2.3 0.45
0.5 3.65

)
The coefficient of correlation Ccor = +0.13.

• MAPn is defined by

H0 =

(
−3.35 0.6
0.85 −4.105

)
, H1 =

(
2.3 0.45

0.005 3.25

)
The coefficient of correlation Ccor = −0.23.

Tables 1 and 2 show the effect of µ1
1 and µ2

1, respectively, the environment dependent
and exponentially distributed service completion rates of the first optional inventory on dif-
ferent performance measures. From the table, it is clear that the values of the performance
measures show similar behavior in both the cases, with MAPp and MAPn, respectively.
Values of EROI1

1
, EROI2

1
, EROI1

2
, EROI2

2
, EEI , EOI(1), EOI(2), and EL seems to increase, respec-

tively, with increased values of µ1
1 and µ2

1 whereas, the values of ERE and EC seems to
decrease, respectively, with the increased values of µ1

1 and µ2
1.
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Table 1. Effects of µ1
1 (fix µ2

1 = 4) and µ2
1 (fix µ1

1 = 5): Fix S = 4, S1 = 3, S2 = 3, s = 2, s1
1 = 1, s2

1 = 1,
s1

2 = 1, s2
2 = 2, m1 = m2 = m3 = 2, µ1

2 = 6, µ2
2 = 4, µ1

12 = 3, µ2
12 = 5, β = 6, β1

1 = 4, β2
1 = 5,

β1
2 = 4, β2

2 = 3.

MAPp

3 4 5
← µ2

1 :
µ1

1 →
5 4 3

4.5× 10−3 2.9× 10−3 2.5× 10−3 ERE 2.9× 10−3 3.8× 10−3 6.5× 10−3

4.4× 10−3 5.2× 10−3 5.4× 10−3 EROI1
1

5.2× 10−3 4.2× 10−3 2.4× 10−3

3.8× 10−3 6.0× 10−3 7.9× 10−3 EROI2
1

6.0× 10−3 5.7× 10−3 4.1× 10−3

1.3× 10−3 1.58× 10−3 1.65× 10−3 EROI1
2

1.6× 10−3 1.4× 10−3 9.4× 10−4

1.9× 10−3 2.2× 10−3 2.248× 10−3 EROI2
2

2.2× 10−3 2.1× 10−3 1.5× 10−3

0.8010 0.9202 0.9568 EEI 0.9202 0.8524 0.6213

0.6550 0.5306 0.5220 EC 0.5306 0.5648 1.0821

0.2643 0.2790 0.2837 EOI(1) 0.2790 0.2691 0.2358

0.3040 0.3261 0.3331 EOI(2) 0.3261 0.3122 0.2649

3.11× 10−5 3.76× 10−5 4.01× 10−5 EL 3.76× 10−5 3.45× 10−5 2.35× 10−5

Table 2. Effects of µ1
1 (fix µ2

1 = 4) and µ2
1 (fix µ1

1 = 5): Fix S = 4, S1 = 3, S2 = 3, s = 2, s1
1 = 1,

s2
1 = 1, s1

2 = 1, s2
2 = 2, m1 = m2 = m3 = 2, µ1

2 = 6, µ2
2 = 4, µ1

12 = 3, µ2
12 = 5, β = 6, β1

1 = 4, β2
1 = 5,

β1
2 = 4, β2

2 = 3.

MAPn

3 4 5
← µ2

1 :
µ1

1 →
5 4 3

3.8× 10−3 3.0× 10−3 2.7× 10−3 ERE 3.0× 10−3 3.5× 10−3 4.7× 10−3

5.2× 10−3 5.6× 10−3 5.7× 10−3 EROI1
1

5.6× 10−3 4.6× 10−3 3.5× 10−3

4.9× 10−3 7.1× 10−3 9.2× 10−3 EROI2
1

7.1× 10−3 6.9× 10−3 6.4× 10−3

1.6× 10−3 1.7× 10−3 1.8× 10−3 EROI1
2

1.8× 10−3 1.7× 10−3 1.4× 10−3

2.3× 10−3 2.4× 10−3 2.5× 10−3 EROI2
2

2.5× 10−3 2.4× 10−3 2.29× 10−2

1.0923 1.1719 1.2028 EEI 1.1719 1.1107 0.9824

0.3668 0.3316 0.3264 EC 0.3316 0.3455 0.4189

0.3078 0.3173 0.3213 EOI(1) 0.3173 0.3071 0.2886

0.3468 0.3596 0.3649 EOI(2) 0.3596 0.3470 0.3232

1.58× 10−5 1.74× 10−5 1.82× 10−5 EL 1.74× 10−5 1.65× 10−5 1.43× 10−5

Tables 3 and 4 show the effect of µ1
2 and µ2

2, respectively, the environment dependent
and exponentially distributed service completion rates of the second optional inventory on
different performance measures. From the table, it is clear that the values of the performance
measures show similar behavior in both the cases, with MAPp and MAPn, respectively.
The values of ERE, EROI1

1
, EROI2

1
, EROI1

2
, EROI2

2
, EEI , EOI(1), EOI(2), and EL seems to increase,

respectively, with increased values of µ1
2 and µ2

2 whereas the value of EC seems a decrease,
respectively, with the increased values of µ1

2 and µ2
2.
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Table 3. Effects of µ1
2 (fix µ2

2 = 4) and µ2
2 (fix µ1

2 = 5): Fix S = 4, S1 = 3, S2 = 3, s = 2, s1
1 = 1, s2

1 = 1,
s1

2 = 1, s2
2 = 2, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

12 = 3, µ2
12 = 5, β = 6, β1

1 = 4, β2
1 = 5,

β1
2 = 4, β2

2 = 3.

MAPp

3 4 5
← µ2

2 :
µ1

2 →
5 4 3

2.0× 10−3 2.7× 10−3 2.9× 10−3 ERE 2.7× 10−3 2.3× 10−3 1.3× 10−3

3.5× 10−3 4.6× 10−3 5.1× 10−3 EROI1
1

4.6× 10−3 3.8× 10−3 2.0× 10−3

4.2× 10−3 5.7× 10−3 6.3× 10−3 EROI2
1

5.7× 10−3 5.1× 10−3 3.0× 10−3

8.98× 10−4 1.2× 10−3 1.3× 10−3 EROI1
2

1.2× 10−3 8.28× 10−4 3.50× 10−4

1.2× 10−3 2.0× 10−3 2.7× 10−3 EROI2
2

2.0× 10−3 1.7× 10−3 9.71× 10−4

0.7109 0.8643 0.9238 EEI 0.8643 0.7737 0.5353

0.8829 0.5570 0.5190 EC 0.5570 0.6612 1.6951

0.2731 0.2943 0.3001 EOI(1) 0.2898 0.2818 0.2784

0.2993 0.3156 0.3229 EOI(2) 0.3156 0.3018 0.2681

2.50× 10−5 3.47× 10−5 3.91× 10−5 EL 3.47× 10−5 2.98× 10−5 1.66× 10−5

Table 4. Effects of µ1
2 (fix µ2

2 = 4) and µ2
2 (fix µ1

2 = 5): Fix S = 4, S1 = 3, S2 = 3, s = 2, s1
1 = 1, s2

1 = 1,
s1

2 = 1, s2
2 = 2, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

12 = 3, µ2
12 = 5, β = 6, β1

1 = 4, β2
1 = 5,

β1
2 = 4, β2

2 = 3.

MAPn

3 4 5
← µ2

2 :
µ1

2 →
5 4 3

2.4× 10−3 2.8× 10−3 2.9× 10−3 ERE 2.8× 10−3 2.5× 10−3 1.9× 10−3

4.4× 10−3 5.1× 10−3 5.4× 10−3 EROI1
1

5.1× 10−3 4.4× 10−3 3.3× 10−3

5.9× 10−3 7.0× 10−3 7.4× 10−3 EROI2
1

7.0× 10−3 6.5× 10−3 5.4× 10−3

1.2× 10−3 1.4× 10−3 1.5× 10−3 EROI1
2

1.4× 10−3 1.0× 10−3 6.13× 10−4

1.6× 10−3 2.4× 10−3 3.1× 10−3 EROI2
2

2.4× 10−3 2.1× 10−3 1.7× 10−3

0.9929 1.1144 1.1705 EEI 1.1144 1.0193 0.8552

0.4277 0.3423 0.3291 EC 0.3423 0.3857 0.5572

0.3112 0.3104 0.3130 EOI(1) 0.3104 0.3043 0.3003

0.3319 0.3477 0.3571 EOI(2) 0.3477 0.3305 0.3064

1.37× 10−5 1.64× 10−5 1.78× 10−5 EL 1.64× 10−5 1.47× 10−5 1.17× 10−5

Tables 5 and 6 show the effect of µ1
12 and µ2

12, respectively, the environment dependent
and exponentially distributed service completion rates of the combined optional inven-
tories on different performance measures. From the table it is clear that the values of the
performance measures show similar behavior in both the cases with MAPp and MAPn,
respectively. The values of ERE, EROI1

1
, EROI2

1
, EROI1

2
, EROI2

2
, EEI , EOI(1), EOI(2), and EL seems

to increase, respectively, with increased values of µ1
12 and µ2

12 whereas the value of EC seems
to decrease, respectively, with the increased values of µ1

12 and µ2
12.
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Table 5. Effects of µ1
12 (fix µ2

12 = 5) and µ2
12 (fix µ1

12 = 4): Fix S = 4, S1 = 3, S2 = 3, s = 2, s1
1 = 1,

s2
1 = 1, s1

2 = 1, s2
2 = 2, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6, µ2
2 = 4, β = 6, β1

1 = 4, β2
1 = 5,

β1
2 = 4, β2

2 = 3.

MAPp

3 4 5
← µ2

12 :
µ1

12 →
5 4 3

6.4× 10−4 2.9× 10−3 3.5× 10−3 ERE 3.9× 10−3 3.5× 10−3 2.9× 10−3

1.1× 10−3 5.1× 10−3 6.1× 10−3 EROI1
1

6.6× 10−3 6.1× 10−3 5.2× 10−3

1.4× 10−3 6.0× 10−3 7.3× 10−3 EROI2
1

8.2× 10−3 7.3× 10−3 6.0× 10−3

3.4× 10−4 1.5× 10−3 1.8× 10−3 EROI1
2

1.8× 10−3 1.78× 10−3 1.6× 10−3

4.93× 10−4 2.2× 10−3 2.6× 10−3 EROI2
2

2.9× 10−3 2.6× 10−3 2.2× 10−3

0.4330 0.9077 1.027 EEI 1.097 1.027 0.9202

3.2931 0.5618 0.4106 EC 0.3745 0.4106 0.5306

0.1393 0.278 0.3115 EOI(1) 0.3337 0.3115 0.279

0.2273 0.3280 0.3461 EOI(2) 0.3615 0.3461 0.3261

6.77× 10−6 3.28× 10−5 4.18× 10−5 EL 4.36× 10−5 4.18× 10−5 3.76× 10−5

Table 6. Effects of µ1
12 (fix µ2

12 = 5) and µ2
12 (fix µ1

12 = 4) with MAPp and MAPn: Fix S = 4,
S1 = 3, S2 = 3, s = 2, s1

1 = 1, s2
1 = 1, s1

2 = 1, s2
2 = 2, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6,
µ2

2 = 4, β = 6, β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3.

3 4 5
← µ2

12 :
µ1

12 →
5 4 3

1.9× 10−3 2.9× 10−3 3.3× 10−3 ERE 3.5× 10−3 3.3× 10−3 3.0× 10−3

3.7× 10−3 5.5× 10−3 6.1× 10−3 EROI1
1

6.4× 10−3 6.1× 10−3 5.6× 10−3

4.8× 10−3 7.2× 10−3 8.1× 10−3 EROI2
1

8.8× 10−3 8.1× 10−3 7.1× 10−3

1.1× 10−3 1.7× 10−3 1.8× 10−3 EROI1
2

1.8× 10−3 1.78× 10−3 1.75× 10−3

1.7× 10−3 2.5× 10−3 2.8× 10−3 EROI2
2

3.1× 10−3 2.8× 10−3 2.5× 10−3

0.888 1.1598 1.2702 EEI 1.3336 1.2702 1.1719

0.7408 0.3387 0.2854 EC 0.2708 0.2854 0.3316

0.2511 0.3174 0.3444 EOI(1) 0.3624 0.3444 0.3173

0.3187 0.3608 0.3800 EOI(2) 0.3949 0.3800 0.3596

9.72× 10−6 1.56× 10−5 1.82× 10−5 EL 1.84× 10−5 1.82× 10−5 1.74× 10−5

Numerical Optimization of the Cost Function

Numerical optimization of the cost function constructed in section 4 is shown in
this section. Tables 7 and 8 show the effect of values of the (s, S) control policy with
respect to the essential inventory in the cost incurred on the system with MAPp and MAPn,
respectively. Both the tables give a concrete idea of the optimality of the variables S and s
of the cost function. As expected, it can be observed that the cost incurred increases with
the increased value of S, the maximum level of the main inventory. The factors, such as
holding cost, contribute to this behavior. The cost is seen minimum when the values S
and s are close enough, i.e., when the re-order level is close to the maximum inventory
level. Additionally, the cost incurred on the system is seen to increase with the increase
in the difference between the values S and s, i.e., when the re-order level is not closer to
the maximum inventory level. This shows that it is not profitable to hold more essential
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inventories in the system at any given time and that the re-ordering level of the essential
inventory is to be kept very close to the value of S.

Table 7. Effect of (s, S) with MAPp on the Cost function: Fix S1 = 2, S2 = 2, s1
1 = 1, s2

1 = 1,
s1

2 = 1, s2
2 = 1, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6, µ2
2 = 4, µ1

12 = 3, µ2
12 = 5, β = 6,

β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3, C0 = 120$, C1
1 = 35$, C2

1 = 40$, C1
2 = 45$, C2

2 = 50$, CEI = 110$,
COI(1) = 500$, COI(2) = 450$, C1 = 70$, C2 = 50$.

MAPp

S ↓ s→ 4 3 2 1

8 545.2348 631.7666 905.0076 1003.001

7 403.4487 711.095 985.8775 1181.701

6 292.7348 435.4059 677.8474 914.2366

5 295.0661 297.7624 612.2427 933.1728

Table 8. Effect of (s, S) with MAPnon the Cost function: Fix S1 = 2, S2 = 2, s1
1 = 1, s2

1 = 1,
s1

2 = 1, s2
2 = 1, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6, µ2
2 = 4, µ1

12 = 3, µ2
12 = 5, β = 6,

β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3, C0 = 120$, C1
1 = 35$, C2

1 = 40$, C1
2 = 45$, C2

2 = 50$, CEI = 110$,
COI(1) = 500$, COI(2) = 450$, C1 = 70$, C2 = 50$.

MAPn

S ↓ s→ 4 3 2 1

8 633.9178 667.4360 841.9043 879.9268

7 547.5167 709.7668 899.4244 995.1082

6 406.4411 492.9354 647.1244 786.6579

5 398.9954 397.9574 586.8929 781.3571

Tables 9 and 10 show the effect of the pairs (s1
1, S1) and (s2

1, S1) concerning the first
optional item in the cost incurred on the system under consideration with MAPp and
MAPn, respectively. The table shows that the value of the cost incurred tends to vary in
proportional to the value of S1. The optimum minimum cost value is seen to be obtained
with the decrease in the values of S1, s1

1, and s2
1, respectively.

Table 9. Effect of (s1
1, S1) (fix s2

1 = 1) and (s2
1, S1) (fix s1

1 = 1) with MAPp in the cost incurred on
the system: Fix S = 3, s = 1, S2 = 2, s1

2 = 1, s2
2 = 1, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6,
µ2

2 = 4, µ1
12 = 3, µ2

12 = 5, β = 6, β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3, C0 = 120$, C1
1 = 35$, C2

1 = 40$,
C1

2 = 45$, C2
2 = 50$, CEI = 110$, COI(1) = 500$, COI(2) = 450$, C1 = 70$, C2 = 50$.

MAPp

1 2 3
← s2

1 :
S1 ↓: s1

1 →
3 2 1

935.5729 894.1549 863.9671 6 922.4228 935.3796 935.5729

865.7215 872.3495 874.6748 5 883.7009 877.5753 865.7215

809.9514 824.6832 809.5636 4 796.8894 827.6646 809.9514
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Table 10. Effect of (s1
1, S1) (fix s2

1 = 1) and (s2
1, S1) (fix s1

1 = 1) with MAPn in the cost incurred
on the system: Fix S = 4, S2 = 2, s1

2 = 1, s2
2 = 1, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6,
µ2

2 = 4, µ1
12 = 3, µ2

12 = 5, β = 6, β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3, C0 = 120$, C1
1 = 35$, C2

1 = 40$,
C1

2 = 45$, C2
2 = 50$, CEI = 110$, COI(1) = 500$, COI(2) = 450$, C1 = 70$, C2 = 50$.

MAPn

1 2 3
← s2

1 :
S1 ↓: s1

1 →
3 2 1

509.8432 494.74 524.1961 6 545.1854 510.3812 509.8432

524.6889 520.1184 501.4385 5 562.9512 543.2073 524.6889

467.4061 459.2036 467.5296 4 480.5882 469.6073 467.4061

Tables 11 and 12 show the effect of the pairs (s1
2, S2) and (s2

2, S2) concerning the second
optional inventory in the cost incurred on the system with MAPp and MAPn, respectively.
Both the tables gives an idea on the condition for optimal values of the variables S2, s1

2, and
s2

2. It can be seen that the cost function show a decreasing tendency with decreased values
of S2, s1

2, and s2
2.

Table 11. Effect of (s1
2, S2) (fix s2

2 = 1) and (s2
2, S2) (fix s1

2 = 1) with MAPp in the cost incurred on
the system: Fix S = 3, s = 1, S1 = 2, s1

1 = 1, s2
1 = 1, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6,
µ2

2 = 4, µ1
12 = 3, µ2

12 = 5, β = 6, β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3, C0 = 120$, C1
1 = 35$, C2

1 = 40$,
C1

2 = 45$, C2
2 = 50$, CEI = 110$, COI(1) = 500$, COI(2) = 450$, C1 = 70$, C2 = 50$.

MAPp

1 2 3
← s2

2 :
S2 ↓: s1

2 →
3 2 1

979.5430 986.6257 975.6525 6 970.0710 986.1526 979.5430

885.1778 854.4908 851.0899 5 840.7033 844.198 885.1778

692.9451 696.7333 693.5159 4 699.5264 701.7346 692.9451

Table 12. Effect of (s1
2, S2) (fix s2

2 = 1) and (s2
2, S2) (fix s1

2 = 1) with MAPn in the cost incurred on
the system: Fix S = 3, S1 = 2, s1

1 = 1, s2
1 = 1, m1 = m2 = m3 = 2, µ1

1 = 5, µ2
1 = 4, µ1

2 = 6, µ2
2 = 4,

µ1
12 = 3, µ2

12 = 5, β = 6, β1
1 = 4, β2

1 = 5, β1
2 = 4, β2

2 = 3, C0 = 120$, C1
1 = 35$, C2

1 = 40$, C1
2 = 45$,

C2
2 = 50$, CEI = 110$, COI(1) = 500$, COI(2) = 450$, C1 = 70$, C2 = 50$.

MAPn

1 2 3
← s2

2 :
S2 ↓: s1

2 →
3 2 1

850.5189 853.9868 843.1651 6 842.5212 854.2780 850.5189

776.4571 755.0671 753.3682 5 747.1692 747.7253 776.4571

631.4084 634.4203 634.0225 4 640.1808 639.8542 631.4084

6. Conclusions

We studied a single server multi-commodity queueing inventory system with one
essential and m optional items in n random environments. The condition for stability of
the system is obtained. Under this condition, different performance measures of the system
are derived. A cost function involving these measures and inventory control variables is
constructed. Optimization of the cost function along with the control variables is also done
numerically. The obtained numerical results showed huge resemblances with what we see
and experience around us. A very familiar example is a car/truck (Heavy automobiles)
showroom, where one can see only very few items (main item) displayed. In this example,
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one can think of the additional accessories as the optional inventories. Here, booking of the
essential inventory with other optional inventories has to be done as per the requirement
of the customer.
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Appendix A

Illustration : (1): Fix the number of optional items m = 2 and the number of envi-
ronments n = 2, the state space of the system is precisely,

{(0, j, i, 0∗, i1, i2, j2, j3), 0 ≤ i ≤ S, 1 ≤ j ≤ 2, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, 1 ≤ j2 ≤ m2,
1 ≤ j3 ≤ m3}⋃

{(n̄, j, 0, 0∗, i1, i2, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ 2, 0 ≤ ir ≤ Sj
r for 1 ≤ r ≤ 2, 1 ≤ j2 ≤ m2,

1 ≤ j3 ≤ m3}
⋃

{(n, j, i, 0, i1, i2, j1, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ 2, 1 ≤ i ≤ S, 0 ≤ ir ≤ Sj
r for

1 ≤ r ≤ 2, 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3}
⋃

{(n, j, i, 1, i1, i2, j2, j3), n̄ ≥ 1,
1 ≤ j ≤ 2, 1 ≤ i ≤ S, 1 ≤ i1 ≤ Sj

1; 0 ≤ i2 ≤ Sj
2, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3}

⋃
{(n, j, i, 2, i1, i2, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ 2, 1 ≤ i ≤ S, 0 ≤ i1 ≤ Sj

1; 1 ≤ i2 ≤ Sj
2, 1 ≤ j2 ≤ m2,

1 ≤ j3 ≤ m3}
⋃

{(n, j, i, 12, i1, i2, j2, j3), n̄ ≥ 1, 1 ≤ j ≤ 2, 1 ≤ i ≤ S, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3;
1 ≤ ik ≤ Sj

k for k ∈ {1, 2}}.
The transitions rates are:

1. Transition rates due to customer arrival.

(a) (0, l1, i, 0∗, i1, i2, j2, j3)→ (1, l2, i, 0, i1, i2, j1, j2, j
′
3)

at the rate γj1 [H1]j3,j′3
when l1 = l2

for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2, and 1 ≤ j3, j
′
3 ≤ m3

where 1 ≤ i ≤ S; 0 ≤ ir ≤ Sr for1 ≤ r ≤ 2.
(b) (n̄, l1, i, 0, i1, i2, j1, j2, j3)→ (n̄ + 1, l2, i, 0, i1, i2, j1, j2, j

′
3) at the rate [H1]j3,j′3

when

l1 = l2
for 1 ≤ l1, l2 ≤ 2 and 1 ≤ j1 ≤ m1 , 1 ≤ j2 ≤ m2 and 1 ≤ j3, j

′
3 ≤ m3 where

n̄ ≥ 1; 1 ≤ i ≤ S; 0 ≤ ir ≤ Sr for 1 ≤ r ≤ 2.
(c) (n̄, l1, i, Cu, i1, i2, j2, j3)→ (n̄ + 1, l2, i, Cu, i1, i2, j2, j

′
3)

at the rate [H1]j3,j′3
when l1 = l2

for 1 ≤ l1, l2 ≤ 2 , 1 ≤ j2 ≤ m2 , 1 ≤ j3, j
′
3 ≤ m3 where n̄ ≥ 1; 1 ≤ i ≤ S and,

when
Cu = 1 −→ 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2;
Cu = 2 −→ 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2;
Cu = 12 −→ 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2
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2. Transition rates due to the service completion of essential and optional items.

(a) Transition rates from level 1 to level 0 due to the service completion of optional
inventory

i. (1, l1, i, 1, i1, i2, j2, j3)→ (0, l2, i, 0∗, i1 − 1, i2, j2, j3)
at the rate µl1

1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2 , 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2.

ii. (1, l1, i, 2, i1, i2, j2, j3)→ (0, l2, i, 0∗, i1, i2 − 2, j2, j3)
at the rate µl1

2 when l1 = l2
for 1 ≤ l1, l2 ≤ 2 , 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2.

iii. (1, l1, i, 12, i1, i2, j2, j3)→ (0, l2, i, 0∗, i1 − 1, i2 − 1, j2, j3)
at the rate µl1

12 when l1 = l2
for 1 ≤ l1, l2 ≤ 2 , 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2.

(b) Transition rates from level 1 to level 0 due to the service completion of essential
inventory

i. (1, l1, i, 0, 0, 0, j1, j2, j3)→ (0, l2, i− 1, 0∗, 0, 0, j2, j3)
at the rate Tj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1;1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S

ii. (1, l1, i, 0, 0, i2, j1, j2, j3)→ (0, l2, i− 1, 0∗, 0, i2, j
′
2, j3)

at the rate η1Tj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3 where
1 ≤ i ≤ S; 1 ≤ i2 ≤ S2 and η1 = p + (1− p)(p1 + p12) .

iii. (1, l1, i, 0, i1, 0, j1, j2, j3)→ (0, l2, i− 1, 0∗, i1, 0, j
′
2, j3)

at the rate η2Tj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3 where
1 ≤ i ≤ S; 1 ≤ i1 ≤ S1 and η2 = p + (1− p)(p2 + p12) .

iv. (1, l1, i, 0, i1, i2, j1, j2, j3)→ (0, l2, i− 1, 0∗, i∗1 , i∗2 , j2, j3)
at the rate pTj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 1 ≤ ik = i∗k ≤ Sk for k ∈ {1, 2}.

(c) Transition rates from level n̄ to level n̄− 1 for n̄ ≥ 2 due to the service comple-
tion of optional inventory

i. (n̄, l1, i, 1, i1, i2, j2, j3)→ (n̄− 1, l2, i, 1, i1 − 1, i2, j2, j3)
at the rate µl1

1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2 ,n̄ ≥ 2, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2.

ii. (n̄, l1, i, 2, i1, i2, j2, j3)→ (n̄− 1, l2, i, 2, i1, i2 − 1, j2, j3)
at the rate µl1

2 when l1 = l2
for 1 ≤ l1, l2 ≤ 2 ,n̄ ≥ 2, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2.

iii. (n̄, l1, i, 12, i1, i2, j2, j3)→ (n̄− 1, l2, i, 12, i1 − 1, i2 − 1, j2, j3)
at the rate µl1

12 when l1 = l2
for 1 ≤ l1, l2 ≤ 2 ,n̄ ≥ 2, 1 ≤ j2 ≤ m2, 1 ≤ j3 ≤ m3
where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2.

(d) Transition rates from level n̄ to level n̄− 1 for n̄ ≥ 2 due to the service comple-
tion of essential inventory

i. (n̄, l1, 1, 0, 0, 0, j1, j2, j3)→ (n̄− 1, l2, 0, 0∗, 0, 0, j2, j3)
at the rate Tj1 when l1 = l2
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for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1;1 ≤ j2 ≤ m2;1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ i ≤ S.

ii. (n̄, l1, 1, 0, 0, i2, j1, j2, j3)→ (n̄− 1, l2, 0, 0∗, 0, i2, j2, j3)
at the rate η1Tj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ i2 ≤ S2
and η1 = p + (1− p)(p1 + p12) .

iii. (n̄, l1, 1, 0, i1, 0, j1, j2, j3)→ (n̄− 1, l2, 0, 0∗, i1, 0, j2, j3)
at the rate η2Tj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2, 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ i1 ≤ S1
and η2 = p + (1− p)(p2 + p12) .

iv. (n̄, l1, 1, 0, i1, i2, j1, j2, j3)→ (n̄− 1, l2, 0, 0∗, i1, i2, j2, j3)
at the rate pTj1 when l1 = l2
for 1 ≤ l1, l2 ≤ 2; 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ ik ≤ Sk for k ∈ {1, 2}.

v. (n̄, l1, i, 0, 0, 0, j1, j2, j3)→ (n̄− 1, l2, i− 1, 0, 0, 0, j1, j2, j3)
at the rate Tj1 when l1 = l2
for 1 ≤ j1 ≤ m1;1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ l1, l2 ≤ 2; 1 ≤ i ≤ S.

vi. (n̄, l1, i, 0, 0, i2, j1, j2, j3)→ (n̄− 1, l2, i− 1, 0, 0, i2, j1, j2, j3)
at the rate η1Tj1 when l1 = l2
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ l1, l2 ≤ 2, 2 ≤ i ≤ S; 1 ≤ i2 ≤ S2 and η1 = p +
(1− p)(p1 + p12).

vii. (n̄, l1, i, 0, i1, 0, j1, j2, j3)→ (n̄− 1, l2, i− 1, 0, i1, 0, j1, j2, j3)
at the rate η2Tj1 when l1 = l2
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3
where n̄ ≥ 2; 1 ≤ l1, l2 ≤ 2, 2 ≤ i ≤ S; 1 ≤ i1 ≤ S1 and η2 = p +
(1− p)(p2 + p12).

viii. (n̄, l1, i, 0, i1, i2, j1, j2, j3) → (n̄ − 1, l2, i − 1, 0, i1, i2, j1, j2, j3) at the rate
pTj1 when l1 = l2
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2; 1 ≤ j3 ≤ m3 where 1 ≤ l1, l2 ≤ 2,n̄ ≥ 2;
2 ≤ i ≤ S; 1 ≤ ik ≤ Sk for k ∈ {1, 2}.

The infinitesimal generator Q of the system is obtained to be

Q =


A00 A01
A10 A1 A0

A2 A1 A0
. . . . . . . . .


A00 is a square matrix of order a. A01 is a matrix of order a× b. A10 is a matrix of order

c× a. A0, A1, and A2 are square matrices of order c, where a = 2(S+ 1)(S1 + 1)(S2 + 1)m2m3,
b = 2(S + 1)(S1 + 1)(S2 + 1)m1m2m3 and c = 2((S1 + 1)(S2 + 1)m2m3 + S(b1 + b2 + b3 +
b4)) where b1 = (S1 + 1)(S2 + 1)m1m2m3, b2 = S1(S2 + 1)m2m3, b3 = (S1 + 1)S2m2m3
and b4 = S1S2m2m3.

The structure of A00, A01, A10, A1, A0, A2 and their corresponding ijth sub matrices
Aij

00, Aij
01, Aij

10, Aij
1 , Aij

0 ,Aij
2 for 1 ≤ i, j ≤ 2 are obtained as given in Equations (A1)–(A12).
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The structure of A00, A01, A10, A0, A1 andA2 are obtained as

A00 =


1 2

1 A11
00 A12

00
2 A21

00 A22
00

 (A1)

where each Aij
00 for 1 ≤ i, j ≤ 2 has the structure

Aij
00 =



0 1 · · · s s + 1 · · · S
0 Zij

0 Ẑij

1
ˆ

Zij
1 Ẑij

...
. . .

...
s Ẑ1

ij Ẑij

s + 1 Ẑ2
ij

...
. . .

S Ẑ2
ij



(A2)

A01 =


1 2

1 A11
01 A12

01
2 A21

01 A22
01

 (A3)

where each Aij
01 for 1 ≤ i, j ≤ 2 has the structure

Aij
01 =


0 1 · · · S

0 0̄
1 L∗ij
...

. . .
S L∗ij

 (A4)

A10 =


1 2

1 A11
10 A12

10
2 A21

10 A22
10

 (A5)

where each Aij
10 for 1 ≤ i, j ≤ 2 has the structure

Aij
10 =



0 1 2 · · · S
0 0̄
1 Mij

0 M̂ij

2 Mij
0 M̂ij

...
. . . . . .

S Mij
0 M̂ij


(A6)
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A1 =


1 2

1 A11
1 A12

1
2 A21

1 A22
1

 (A7)

where each Aij
1 for 1 ≤ i, j ≤ 2 has the structure

Aij
1 =



0 1 · · · s s + 1 · · · S
0 Zij

0 Z0ij

1 Zij
1 Zij

...
. . .

...
s Zij

1 Zij

s + 1 Zij
2

...
. . .

S Zij
2



(A8)

A0 =


1 2

1 A11
0 A12

0
2 A21

0 A22
0

 (A9)

where each Aij
0 for 1 ≤ i, j ≤ 2 has the structure

Aij
0 =


0 1 · · · S

0 0̄
1 Lij
...

. . .
S Lij

 (A10)

A2 =


1 2

1 A11
2 A12

2
2 A21

2 A22
2

 (A11)

where each Aii
2 for 1 ≤ i, j ≤ 2 has the structure

Aij
2 =



0 1 2 · · · S
0 0̄
1 Mij

0 M̄ij

2 Mij M̄ij
...

. . . . . .
S Mij M̄ij


(A12)
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1. Submatrices of Aij
00

For i = j,

Zij
0 =

(
Isi

1+1 ⊗ C1 esi
1+1 ⊗ [I(S2+1) ⊗ βi

1 Im2m3 ]

0̄ IS1−si
1
⊗ C2

)
,

where

C1 =

(
Isi

2+1 ⊗ B1 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B2

)
,

C2 =

(
Isi

2+1 ⊗ B3 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B4

)
,

B1 = (D0 + Di − (β + βi
1 + βi

2)Im2)⊕ H,
B2 = (D0 + Di − (β + βi

1)Im2)⊕ H,
B3 = (D0 + Di − (β + βi

2)Im2)⊕ H,
B4 = (D0 + Di − βIm2)⊕ H.

For i 6= j, Zij
0 = I(S1+1)(S2+1) ⊗ [Dj ⊗ Im3 ]

For i = j,
ˆ

Zij
1 =

(
Isi

1+1 ⊗ Ĉ1 esi
1+1 ⊗ βi

1 I(S2+1)m2m3

0̄ IS1−si
1
⊗ Ĉ2

)
, where

Ĉ1 =

(
Isi

2+1 ⊗ B̂1 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B̂2

)
,

Ĉ2 =

(
Isi

2+1 ⊗ B̂3 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B̂4

)
,

B̂1 = (D0 + Di − (β + βi
1 + βi

2)Im2)⊕ H0,
B̂2 = (D0 + Di − (β + βi

1)Im2)⊕ H0,
B̂3 = (D0 + Di − (β + βi

2)Im2)⊕ H0, B̂4 = (D0 + Di − βIm2)⊕ H0.
For i 6= j,
ˆ

Zij
1 = I(S1+1)(S2+1) ⊗ [Dj ⊗ Im3 ]

For i = j,
ˆ

Zij
2 =

(
Isi

1+1 ⊗ C̄1 esi
1+1 ⊗ βi

1 I(S2+1)m2m3

0̄ IS1−si
1
⊗ C̄2

)
, where

C̄1 =

(
Isi

2+1 ⊗ B̄1 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B̄2

)
,

C̄2 =

(
Isi

2+1 ⊗ B̄3 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B̄4

)
,

B̄1 = (D0 + Di − (βi
1 + βi

2)Im2)⊕ H0,
B̄2 = (D0 + Di − (βi

1)Im2)⊕ H0,
B̄3 = (D0 + Di − (βi

2)Im2)⊕ H0, B̄4 = D0 + Di ⊕ H0.
For i 6= j,
ˆ

Zij
2 = I(S1+1)(S2+1) ⊗ [Dj ⊗ Im3 ]

For i = j,
Ẑij = βI(S1+1)(S2+1)m2m3.

For i 6= j, Ẑij = 0̄
2. Submatrices of Aij

01
For i = j, L∗ij = I(S1+1)(S2+1) ⊗ [γ⊗ (Im2 ⊗ H1)]

For i 6= j, L∗ij = 0̄
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3. Submatrices of Aij
10

For i = j, Mij
0 =



0 1 2 · · · S1
0 m0
1 m1
2 m1
...

. . .
S1 m1

,
where

m0 =

(
T0 ⊗ Im2m3 0̄

0̄ IS2 ⊗ η1T0 ⊗ Im2m3

)
, where η1 = p + (1− p)(p1 + p12)

m1 =

(
η2T0 ⊗ Im1m2

0̄ IS2 ⊗ pT0 ⊗ Im1m2

)
, where η2 = p + (1− p)(p2 + p12)

For i 6= j, Mij
0 = 0̄

For i = j, M̂ij =


0 1 2 12

0 0̄
1 µi

1 IS1(S2+1)m2m3
0̄

2 µi
2 I(S1+1)S2m2m3

0̄
12 µi

12 IS1S2m2m3 0̄

.

For i 6= j, M̂ij = 0̄
4. Submatrices of Aij

1
For i = j, Z0ij = I(S1+1)(S2+1) ⊗ [γ⊗ βIm2m3 ].
For i 6= j, Z0ij = 0̄
For i = j, Zij = βI[(S1+1)(S2+1)m1m2m3+S1(S2+1)m2m3+(S1+1)S2m2m3+S1S2m2m3]

For i 6= j, Zij = 0̄

Zij
1 =


0 1 2 12

0 G1 G12 G13 G14

1 G2
2 G3
12 G4

 where

For i = j, G1 =

(
Isi

1+1 ⊗ C3 esi
1+1 ⊗ βi

1 I(S2+1)m1m2m3

0̄ IS1−si
1
⊗ C4

)
.

C3 =

(
Isi

2+1 ⊗ B5 esi
2+1 ⊗ βi

2 Im1m2m3

0̄ IS2−si
2
⊗ B6

)
,

C4 =

(
Isi

2+1 ⊗ B7 esi
2+1 ⊗ βi

2 Im1m2m3

0̄ IS2−si
2
⊗ B8

)
,

B5 = T ⊕ [(D0 + Di)− (β + βi
1 + βi

2)Im2 ⊕ H0],

B6 = T ⊕ [(D0 + Di)− (β + βi
1)Im2 ⊕ H0],

B7 = T ⊕ [(D0 + Di)− (β + βi
2)Im2 ⊕ H0],

B8 = T ⊕ [(D0 + Di)− βIm2 ⊕ H0].

For i 6= j, G1 = I(S1+1)(S2+1)m1
⊗ [Dj ⊗ Im3 ]

For i = j, G12 =

(
0̄

H1

)
, H1 = IS1(S2+1) ⊗ [(1− p)p1T0 ⊗ Im2m3 ]

For i 6= j, G12 = 0̄
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For i = j, G13 = IS1+1 ⊗ Z∗, where

Z∗ =
(

0̄
H2

)
, H2 = IS2 ⊗ [(1− p)p2T0 ⊗ Im2m3 ].

For i 6= j, G13 = 0̄

For i = j, G14 =

(
0̄

IS1 ⊗ Z̄

)
, where

Z̄ =

(
0̄

H3

)
, H3 = IS2 ⊗ [(1− p)p12T0 ⊗ Im2m3 ],

For i 6= j, G14 = 0̄

For i = j, G2 =

(
Isi

1
⊗ C5 esi

1
⊗ βi

1 I(S2+1)m2m3

0̄ IS1−si
1
⊗ C6

)
, where

C5 =

(
Isi

2+1 ⊗ B9 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B10

)
,

C6 =

(
Isi

2+1 ⊗ B11 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B12

)
B9 = [(D0 + Di)− (β + βi

1 + βi
2 + µi

1)Im2 ]⊕ H0,
B10 = [(D0 + Di)− (β + βi

1 + µi
1)Im2 ]⊕ H0,

B11 = [(D0 + Di)− (β + βi
2 + µi

1)Im2 ]⊕ H0,
B12 = [(D0 + Di)− (β + µi

1)Im2 ]⊕ H0.
For i 6= j, G2 = IS1(S2+1) ⊗ [Dj ⊗ Im3 ]

For i = j, G3 =

(
Isi

1+1 ⊗ C7 esi
1+1 ⊗ βi

1 IS2m2m3

0̄ IS1−si
1
⊗ C8

)
, where

C7 =

(
Isi

2
⊗ B13 esi

2
βi

2 Im2m3

0̄ IS2−si
2
⊗ B14

)
, C8 =

(
Isi

2
⊗ B15 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B16

)
B13 = [(D0 + Di)− (β + βi

1 + βi
2 + µi

2)Im2 ]⊕ H0,
B14 = [(D0 + Di)− (β + βi

1 + µi
2)Im2 ]⊕ H0,

B15 = [(D0 + Di)− (β + βi
2 + µi

2)Im2 ]⊕ H0,
B16 = [(D0 + Di)− (β + µi

2)Im2 ]⊕ H0.
For i 6= j, G3 = I(S1+1)S2

⊗ [Dj ⊗ Im3 ]

For i = j, G4 =

(
Isi

1
⊗ C9 esi

1
⊗ βi

1 IS2m2m3

0̄ IS1−si
1
⊗ C10

)
, where

C9 =

(
Isi

2
⊗ B17 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B18

)
, C10 =

(
Isi

2
⊗ B19 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ B20

)
B17 = [(D0 + Di)− (β + βi

1 + βi
2 + µi

12)Im2 ]⊕ H0,
B18 = [(D0 + Di)− (β + βi

1 + µi
12)Im2 ]⊕ H0,

B19 = [(D0 + Di)− (β + βi
2 + µi

12)Im2 ]⊕ H0,
B20 = [(D0 + Di)− (β + µi

12)Im2 ]⊕ H0.
For i 6= j, G4 = IS1S2 ⊗ [Dj ⊗ Im3 ]

Zij
2 =


0 1 2 12

0 Ĝ1 G12 G13 G14

1 Ĝ2
2 Ĝ3
12 Ĝ4

,

where,
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For i = j, Ĝ1 =

(
Isi

1+1 ⊗ Ĉ3 esi
1+1 ⊗ βi

1 I(S2+1)m1m2m3

0̄ IS1−si
1
⊗ Ĉ4

)
, where

Ĉ3 =

(
Isi

2+1 ⊗ B̂5 esi
2+1βi

2 Im1m2m3

0̄ IS2−si
2
⊗ B̂6

)
,

Ĉ4 =

(
Isi

2+1 ⊗ B̂7 esi
2+1 ⊗ βi

2 Im1m2m3

0̄ IS2−si
2
⊗ B̂8

)
,

B̂5 = T ⊕ [(D0 + Di)− (βi
1 + βi

2)Im2 ⊕ H0],
B̂6 = T ⊕ [(D0 + Di)− (βi

1)Im2 ⊕ H0],
B̂7 = T ⊕ [(D0 + Di)− (βi

2)Im2 ⊕ H0],
B̂8 = T ⊕ [(D0 + Di)⊕ H0].

For i 6= j, Ĝ1 = G1

For i = j, Ĝ2 =

(
Isi

1
⊗ Ĉ5 esi

1
⊗ βi

1 I(S2+1)m2m3

0̄ IS1−si
1
⊗ Ĉ6

)
, where

Ĉ5 =

(
Isi

2+1 ⊗ B̂9 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ ˆB10

)
,

Ĉ6 =

(
Isi

2+1 ⊗ ˆB11 esi
2+1 ⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ ˆB12

)
B̂9 = [(D0 + Di)− (βi

1 + βi
2 + µi

1)Im2 ]⊕ H0,
ˆB10 = [(D0 + Di)− (βi

1 + µi
1)Im2 ]⊕ H0,

ˆB11 = [(D0 + Di)− (βi
2 + µi

1)Im2 ]⊕ H0,
ˆB12 = [(D0 + Di)− (µi

1)Im2 ]⊕ H0.

For i 6= j, Ĝ2 = G2.

For i = j, Ĝ3 =

(
Isi

1+1 ⊗ Ĉ7 esi
1+1 ⊗ βi

1 IS2m2m3

0̄ IS1−si
1
⊗ Ĉ8

)
, where

Ĉ7 =

(
Isi

2
⊗ ˆB13 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ ˆB14

)
, Ĉ8 =

(
Isi

2
⊗ ˆB15 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ ˆB16

)
ˆB13 = [(D0 + Di)− (βi

1 + βi
2 + µi

2)Im2 ]⊕ H0,
ˆB14 = [(D0 + Di)− (βi

1 + µi
2)Im2 ]⊕ H0,

ˆB15 = [(D0 + Di)− (βi
2 + µi

2)Im2 ]⊕ H0,
ˆB16 = [(D0 + Di)− (µi

2)Im2 ]⊕ H0.

For i 6= j, Ĝ3 = G3

For i = j, Ĝ4 =

(
Isi

1
⊗ Ĉ9 esi

1
⊗ βi

1 IS2m2m3

0̄ IS1−si
1
⊗ Ĉ10

)
, where

Ĉ9 =

(
Isi

2
⊗ ˆB17 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ ˆB18

)
, Ĉ10 =

(
Isi

2
⊗ ˆB19 esi

2
⊗ βi

2 Im2m3

0̄ IS2−si
2
⊗ ˆB20

)
ˆB17 = [(D0 + Di)− (βi

1 + βi
2 + µi

12)Im2 ]⊕ H0,
ˆB18 = [(D0 + Di)− (βi

1 + µi
12)Im2 ]⊕ H0,

ˆB19 = [(D0 + Di)− (βi
2 + µi

12)Im2 ]⊕ H0,
ˆB20 = [(D0 + Di)− (µi

12)Im2 ]⊕ H0.
For i 6= j, Ĝ4 = G4

5. Submatrices of Aij
0

For i = j,



Mathematics 2022, 10, 104 25 of 26

Lij =


0 1 2 12

0 I(S1+1)(S2+1)m1m2
⊗ H1

1 IS1(S2+1)m2
⊗ H1

2 I(S1+1)S2m2
⊗ H1

12 IS1S2m2 ⊗ H1

.

For i 6= j, Lij = 0̄

6. Submatrices of Aij
2

For i = j, Mij =



0 1 2 · · · S1
0 m̂0
1 m̂1
2 m̂1
...

. . .
S1 m̂1

,
where

m̂0 =

(
diagT0 ⊗ Im2m3 0̄

0̄ IS2 ⊗ [η1diagT0 ⊗ Im2m3 ]

)
,

where η1 = p + (1− p)(p1 + p12)

m̂1 =

(
η2diagT0 ⊗ Im1m2 0̄

0̄ IS2 ⊗ pdiagT0 ⊗ Im1m2

)
,

where η2 = p + (1− p)(p2 + p12)
For i 6= j, Mij = 0̄

M̄ij =


0 1 2 12

0 0̄
1 µi

1 IS1(S2+1)m2m3

2 µi
2 I(S1+1)S2m2m3

12 µi
12 IS1S2m2m3

.

For i 6= j, M̄ij = 0̄
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