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Abstract: The aero-pendulum is a non-linear system used broadly to develop and test new controller
strategies. This paper presents a new methodology for an adaptive PID fuzzy-based tracking
controller using a Hunting Search (HuS) algorithm. The HuS algorithm computes the parameters
of the membership functions of the fuzzification stage. As a novelty, the algorithm guarantees the
overlap of the membership functions to ensure that all the functions are interconnected, generating
new hunters to search for better solutions in the overlapping area. For the defuzzification stage, the
HuS algorithm sets the singletons in optimal positions to evaluate the controller response using the
centroid method. To probe the robustness of the methodology, the PID fuzzy controller algorithm is
implemented in an embedded system to track the angular position of an aero-pendulum test bench.
The results show that the adaptive PID fuzzy controller proposed presents root mean square error
values of 0.42, 0.40, and 0.49 for 80, 90, and 100 degrees, respectively.

Keywords: fuzzy control; metaheuristic algorithms; aero-pendulum; hunting search algorithm

1. Introduction

The aero-pendulum is a widely used case study to design classical and robust control
strategies for linear and non-linear systems. It comprises an arm that can rotate around
its pivot, driven by the thrust produced by a coaxial contra-rotating motorized propeller
affixed at its free end [1,2]. It is considered to be a non-linear system, which can be
linearized once all the parameters and functionality are known. Among the classic control
systems are Proportional–Integral–Derivative (PID) controllers that work efficiently in
linear systems [3,4]. For non-linear systems, adjustments must be made to the control
algorithms to suppress the inherent non-linearities of the system [5]. Over time, engineers
have proposed solutions for the PID controllers using auto-tune strategies to correct the
steady-state error. These strategies have shown promising results in changing systems,
even in the control of non-linear systems [6].

On the other hand, different techniques have been applied for advanced control strate-
gies like state-space controllers, optimal controllers, artificial neural networks, sliding mode
controllers, and fuzzy logic [7,8]. Fuzzy controllers have been developing exponentially
in increasingly complex applications. However, the structure of this type of controller has
been adapted to the needs of the current systems, making fuzzy controllers more robust and
more efficient, combining methodologies so that the controllers are appropriately adapted
to the systems to be controlled [9–11]. For instance, fuzzy logic and artificial neural network
controllers are used when the mathematical model of the system under observation is
impossible to obtain and even when the system is inherently non-linear [12]. All these tech-
niques have been combined with metaheuristic algorithms to improve their performance

Technologies 2024, 12, 63. https://doi.org/10.3390/technologies12050063 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies12050063
https://doi.org/10.3390/technologies12050063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0009-0005-0435-8602
https://orcid.org/0000-0001-5773-6068
https://orcid.org/0000-0001-6450-875X
https://orcid.org/0000-0001-8984-440X
https://orcid.org/0009-0009-0788-747X
https://orcid.org/0000-0001-8598-5600
https://doi.org/10.3390/technologies12050063
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies12050063?type=check_update&version=2


Technologies 2024, 12, 63 2 of 29

and identify unknown system parameters. Metaheuristic algorithms are optimization tech-
niques to solve complex computational problems when the classical methods tend to fail.
Regarding control engineering problems, metaheuristics algorithms obtain specific system
parameters, such as identification [13,14]. Another aspect could be that, in the case of the
PID controller, it is necessary to know the model to optimize the controller gains carried
out with the proposed design brief [15,16]. The convergence of metaheuristic algorithms
with control methodologies has experienced notable expansion, primarily propelled by
advancements in computational power. Numerous examples illustrate the fusion of control
methodologies with optimization algorithms, underscoring the synergistic potential of
integrating these domains to address intricate engineering challenges with enhanced effi-
ciency. For example, an identification method was developed by [17] to obtain local linear
models and enable the design of automatic controllers using linear matrix inequalities. For
modern control combined with fuzzy logic strategies applied to an aero-pendulum, the
authors of [18] proposed an observer-based fuzzy regulator for stabilization and tracking
control. The observer is designed for operating points using linear matrix inequality. Also,
the equilibrium states of a reduced-order non-linear plant model are shifted to the origin.
Subsequently, the model is converted into a Takagi–Sugeno fuzzy model utilizing the sector
non-linearity method. The research detailed in [19] proposes an advancement strategy
for an aero-pendulum control system, offering a comprehensive approach to addressing
position control and disturbance compensation. Integrating a multi-loop feedback control
mechanism with PID and PI controllers demonstrates a refined capability to maintain
precise arm positioning, crucial for various applications ranging from experimental re-
search to industrial automation. Additionally, utilizing the particle swarm optimization
(PSO) algorithm to determine optimal PID controller gains underscores the innovative
nature of the proposed strategy, offering a systematic and efficient means to enhance the
system performance. Furthermore, the authors in [20] reported the performance of clas-
sical and adaptive backstepping control schemes for the angular position control of an
aero-pendulum where a PSO algorithm is utilized to tune the design parameters of the
controllers. The Classical and Adaptive Back-Stepping Controllers have been developed
based on Lyapunov stability analysis to establish the convergence of the system’s error
over time. They report only the simulation results in Matlab.

This work combines the Hunting Search (HuS) algorithm with fuzzy logic to control
an aero-pendulum. Several works have used the HuS algorithm to solve problems related
to control engineering [21]. For instance, the authors in [22] validate through simulations
the effectiveness of a Multi-Input Fuzzy PID (MIFPID) controller for Automatic Genera-
tion Control (AGC) in a two-area interconnected power system, comparing it with two
single-input FPID (SIFPID-1 and SIFPID-2) controllers. The objective function incorporates
frequency undershoot, overshoot, and settling time, with each controller implemented
separately in both areas. They propose the Modified Group Hunting Search optimization
(MGHS) algorithm to optimize the controller gain parameters, addressing a multi-objective
problem with constraints. Performance evaluations are conducted with a 1% load distur-
bance in area-1, showing that the MIFPID controller optimized by the MGHS algorithm
outperforms the others in the system studied. On the other hand, [23] presents an ap-
proach of utilizing the HuS algorithm to fine-tune a Takagi–Sugeno–Kang-type neuro-fuzzy
model. It encodes the fuzzy model’s structure and parameters into particles, enabling
simultaneous optimization.

In this paper, we introduce a novel approach to adaptive fuzzy control. Our method-
ology involves optimizing the membership functions utilized in both the fuzzification
and defuzzification stages using the HuS algorithm. The aim is to employ this optimized
fuzzy controller to effectively regulate an aero-pendulum, which tracks a parabolic motion
profile as its set point. This innovative technique promises to enhance the control precision
and adaptability, offering potential applications in various domains requiring robust and
flexible control systems.
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This paper is organized as follows: Section 2 presents the background on the dynamics
of an aero-pendulum, fuzzy systems, motion profiles, and the HUS algorithm. Section 3
describes the materials used in the experimentation and outlines the methodology followed
during the experimentation. Sections 4 and 5 contain the results and discussion, respectively.
Section 6 contains the conclusion and references.

2. Background
2.1. System Dynamics of Aero-Pendulum

An aero-pendulum system is commonly described as a pendulum driven by a mo-
torized propeller assembly attached to the free end of a rod of negligible mass, the fixed
end of which is pivoted about a rotating shaft encoder. A rotary axis encoder measures the
angular position of the rod concerning the downward vertical axis [24,25].

The control of the angular position of the driven pendulum is achieved by manipu-
lating the propeller’s thrust force using different control strategies. These strategies may
include techniques to adjust the orientation of the propeller direction or speed control
systems for position adjustment depending on its inclination. Figure 1 shows the proposed
plant, which consists of a suspended mass, but, instead of a negligible mass, it uses a
counterweight of 0.34 kg at the end of the arm. This arm is joined to a brushless direct
current motor (BLDC), A2012 1000 KV, with propellers at the other end for oscillatory
motion driven by a 30A ESC (Electronic Speed Controller), which is an electronic circuit
board that enables the control over the BLDC motors. An angular displacement sensor is
adapted to the test bench to measure the angular position. The structure is built with an
aluminum profile of 20 mm, corner brackets, and Allen screws.

Lithium 

Battery

Angular 

Displacement 

Sensor

ESC

BLDC

Switch

Microcontroller

Figure 1. Aero-pendulum system.

The dynamic model of the aero-pendulum is shown in Equation (1) according to [26–28].
Figure 2 shows a cross-section of the test bench used and the model parameters. Where I
inertia of the pendulum, B viscous damping coefficient M is weight of pendulum, m mass
of the counterweight, g gravity, P thrust from dc motor, α angle of the pendulum, L total
distance of the pendulum, h distance from the counterweight to the fulcrum, and l distance
from the center of mass of the pendulum to the fulcrum. Table 1 shows the mechanical
and electrical parameters of the test bench used in experimentation. The parameters from
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the BLDC motor are η maximum efficiency current, ηmax maximum efficiency, IO no-load
current, Imax maximum current, Pmax maximum output, and r internal resistance.

Table 1. Numerical parameters of the aero-pendulum.

Mechanical Parameters Electrical Parameters

Parameter Symbol Value Parameter Symbol Value

Counterweight mass m 0.34 kg Maximum efficiency current η 6–12 A
Counterweight to fulcrum distance h 0.108 m Maximum efficiency ηmax 78%
Pendulum length L 0.45 m No load current IO 0.7 A
Center of mass to fulcrum distance l 0.04 m Maximum current Imax 16 A
Pendulum weight M 0.166 kg Maximum output Pmax 180 W
Gravity g 9.81 m/s2 Internal resistance r 65 mΩ
DC motor throttle P 0.35 kg

Figure 2. Variables of the system.

The equation governing the system in Figure 2 is obtained using Newton’s laws. This
equation is as follows.

Iα̈ + Bα̇ + Mgl sin α + mgh sin α = P (1)

The Equation (1) can be linearized for small values of the angle α to obtain the transfer
function from Equation (2); in this function, it takes the relation between the angle of the
pendulum and the throttle from the motor [19,25].

α(s)
P(s)

=
1
I

Is2 + Bs + (Ml + mh)g
(2)

The MATLAB System Identification Toolbox was utilized to identify the model pa-
rameters. Two-step inputs were proposed, each with amplitudes equivalent to 8% and
14% of throttle power. Subsequently, the response of the system, denoted by the ordered
pairs (v, α), was plotted. In Figure 3, the response of the system graphs depicts estimates of
the transfer functions αe1 and αe2 corresponding to the 8% and 14% throttle power inputs,
respectively. These graphs include the measured system data, and the plotted data points
αm1 and αm2 corresponding to the 8% and 14% power inputs, respectively. The tool’s
approximation accuracy was evaluated to be 93%. Equation (3) presents the resulting
transfer function.

α(s)
V(s)

=
54.82

s2 + 4.368s + 16.88
(3)
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Figure 3. Measure vs. estimated system.

2.2. Fuzzy Systems

A wide variety of controllers serve to execute control in different cases. The PID
controller is more often used thanks to its practicality and efficiency in controlling labor [29].
For this case, a fuzzy controller based on PID is the central part of the controller. On the
other hand, fuzzy logic is a particular area of artificial intelligence in which there is not
a true or false response but a set of values that provide more weight to each decision,
providing a more flexible means to make decisions [30]. So, a fuzzy logic controller takes
advantage of being flexible by using rules proposed by the user to make the controller
more suitable for different situations. Using the fuzzy logic and also the properties of the
PID enables the creation of different sets of controllers that would provide an efficient and
adequate response regarding the system [31,32].

In the first place, to create a fuzzy controller, certain steps are required to elaborate a
fuzzy system. The structure comprises four primary blocks: fuzzification, the establishment
of rules, logic inference, and defuzzification.

1. The fuzzification or fuzzifier is in charge of making and proposing the inputs of the
fuzzy systems, considering the properties of the system to be modeled.

2. The rule base is the step of setting up rules. In this phase, the designer establishes the
range in which each decision from the inputs/outputs is being taken.

3. Then comes the inference logic phase in which the rules from the inputs are related
to the rules of the outputs. Various techniques can be completed in this phase; for
this project, the technique max-product is used to create relations between the inputs
and outputs.

4. Finally comes the ending block from the fuzzy system called defuzzification. As
the name suggests, it is the contrary part of the first step in which the fuzzy rules
established before are now going into the system to create the crisp signal.

2.3. Trajectory Definition

In motion control, trajectory planning consists of obtaining a function of time to
describe the cinematic magnitudes of a movement, such as position, velocity, or acceler-
ation. The model obtained is also known as the motion profile. One of the most used
due to its simplicity is the parabolic motion profile, which models a movement with
continuous speed and constant acceleration [33,34]. As shown in Figure 4, this type of
trajectory, a third-degree polynomial, describes the position, whereas velocity takes on a
parabolic shape.
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Figure 4. Position in a parabolic motion profile.

Equation (4) describes the position of the movement at each instant in time.

θ(t) = θ0 +
2θ̇max

T (t − t0)
2 − 4θ̇max

3T2 (t − t0)
3, 0 < t ≤ T (4)

Equations (5)–(7) relate the speed, acceleration, and execution time of the movement,
respectively.

θ̇max =
3h
2T

(5)

θ̈max =
6h
T2 =

4θ̇max

T
(6)

T =
3h

2θ̇max
(7)

2.4. HuS Algorithm

The HuS algorithm conceptualized the hunting process of catching prey in group
hunting [21]. The collaboration among group members, referred to as hunters, is essential
for encircling and capturing prey, mirroring the optimization process aimed at attaining a
global solution based on an objective function. Just as hunters coordinate their efforts to
corner and seize their target effectively, optimization techniques leverage collective strate-
gies to converge towards the most optimal outcome, driven by the pursuit of maximizing
or minimizing a defined objective. The likelihood of a hunter catching its prey is contingent
upon its positional relationship to the prey. Likewise, the value of the objective function is
contingent upon the collective assignment of values to each decision variable. The HuS
algorithm is formulated upon a model of group hunting observed in animals seeking food,
resembling the cooperative hunting strategies employed by wolves, for instance. The
following steps display the procedure of the HuS:

1. Define the optimization problem and the design parameters: The HuS algorithm
sets out crucial parameters for tackling the optimization task. These parameters
encompass the hunting group size (HGS), indicating the number of solution vectors
within the hunting group, as well as the maximum movement towards the leader
(MML) and the hunting group consideration rate (HGCR), which varies between
0 and 1. MML and HGCR play pivotal roles in fine-tuning the positions of hunters
(solution vectors), as elaborated in subsequent Steps 3 and 4.

2. Initialize the hunting group (HG): The hunting group matrix is populated with
feasible randomly generated solution vectors contingent upon the number of hunters
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(HGS). Subsequently, the objective function values are computed, and the leader is
determined based on these values across the objective functions of the hunters.

3. Move toward the leader: The updated positions of the hunters (new solution vectors)
h
′

are generated by advancing toward the leader, the hunter possessing the best
position within the group. Equation (8) is used to correct the positions.

h
′
i = hi + rand × MML × (h

′
i − hi) (8)

The MML represents the maximum movement towards the leader, where rand de-
notes a uniformly distributed random number ranging from 0 to 1, and hL

i is the
position value of the leader for the i-th variable.

4. Correct the positions (cooperation between members): This step simulates the collab-
orative behavior among the hunters to enhance the efficiency of the hunt. Following
their movement toward the leader, the hunters select new positions, guided by the
positions of other hunters, and incorporate random factors to discover improved
solutions. Updating the variable value is thus carried out as presented in Equation (9).

hj′

i =

{
hj′

i ∈ {h1
i , h2

i , . . . , hHGS
i } with probability HGCR

hj′

i = hj
i ± Ra with probability (1 − HGCR)

(9)

where i = 1, . . . , N and j = 1, . . . , HGS. The HGCR parameter determines the likeli-
hood of selecting a value from the hunting group stored in HG, while (1 − HGCR)
represents the probability of performing a position correction. The Ra only begins to
contract after a certain number of iterations. An exponential function is used for Ra
reduction as expressed in Equation (10).

Ra(k) = Ramin(max(hi)− min(hi))e
ln(

Ramin
Ramax

)×k
itm

(10)

where k is the iteration number, max(hi) and min(hi) denote the maximum or mini-
mum possible value of vector hi, respectively. Ramax and Ramin indicate the maximum
and minimum of the relative search radius of the hunter, respectively, and itm is the
maximum number of iterations in the optimization process.

5. Reorganize the hunting group: As the search progresses, the hunters can become
ensnared in a local minimum (or a local maximum if the objective is to find the
maximum). In such instances, the hunters must regroup and recalibrate their strate-
gies to afford themselves another opportunity to pinpoint the optimal solution. The
algorithm executes this process under two distinct conditions. Firstly, if the discrep-
ancy between the objective function values for the leader and the poorest-performing
hunter within the group diminishes to a level below a predetermined threshold and
the termination criterion remains unmet, the algorithm restores the hunting group
for every hunter. Alternatively, once a designated number of search iterations has
transpired, the hunters undertake a self-reorganization process autonomously. The
series of search iterations leading to the entrapment of the group in a local minimum,
or the completion of a predetermined number of searches, constitutes one epoch.
During the reorganization, the leader maintains its position, while the remaining
hunters randomly select new positions within the design space by Equation (11).

h
′
i = hL

i ± rand × (max(hi)− min(hi))× αe−β×Tr (11)

In this reorganization phase, hL
i represents the position value of the leader for the i-th

variable. Including the uniform random number rand, fluctuating between 0 and 1, fa-
cilitates the selection process. Furthermore, max(hi) and min(hi) denote the maximum
or minimum possible value of vector hi, respectively. In the meantime, Tr records the
occurrences of the group being trapped up to this point. The parameters α and β are
positive real numbers that establish the algorithm’s overall convergence rate.
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6. Repeat Steps 3, 4, and 5 until the termination criterion is satisfied.

The convergence of the HuS algorithm is achieved quickly since, at each stage of
the algorithm, the hunters move significantly, with only those that are moving closer to
the solution prevailing. If observed from the point of view that the hunters must move
according to the position of the prey, as mentioned above, the algorithm is executed
depending on the size of the group of hunters, where the grouping of the hunters changes
within a matrix of HGS hunters, leaving only the best; that is, the hunters who present
the best results go to the next cyclical stage. These movements are undertaken three times
in a single epoch since they have to move towards the leader, correct their positions, and
reorganize the group of hunters, searching for a more dynamic solution in each iteration
since each step evaluates the objective function, enabling the hunters to obtain better results.
For example, in related work, the convergence of the HuS algorithm is found quickly, as
documented in [22], where the algorithm showed a convergence of ten generations with
eight parameters to be optimized in a fuzzy PID controller.

3. Materials and Methods

The fuzzy controller developed in this paper is a PID fuzzy controller, a compound of
three separate parts: the proportional, derivative, and integral. Each part has its separate
fuzzy system with three different sub-systems; each will calculate the correspondent gain:
the Kp, Kd, and Ki. These values are calculated depending on the values of the derivative
and integral errors. Once each part has been calculated, the following procedure is to add
them together to create the controller response that will go directly to the system. In this
PID fuzzy controller, the HuS algorithm will focus on fuzzy systems in charge of obtaining
the proper gains, as shown in Figure 5, where the main goal is to obtain more suitable
values. This controller references Equation (12), the classical PID controller. The parameters
modified within the controller are proportional, derivative, and integral gains (Kp, Kd, Ki),
which change in real time, meaning that these gains do not stay static. The consequential
values of these gains are determined by the input error present in the system, meaning that,
in different error situations, the gains will behave differently; on the contrary, in classical
controllers, the gains stay permanently static.

u(t) = Kp ∗ e(t) + Kd ∗
de(t)

dt
+ Ki ∗

∫
e(t) dt (12)

Figure 5. Hunting search algorithm-based adaptive PID fuzzy tracking controller proposal.

Because the applied controller is a PID, the closed-loop poles of the system are found
in Equation (13).

s3 + (54.82Kd + 4.368)s2 + (54.82Kp + 16.88)s + 54.82Ki = 0 (13)
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To ensure the stability of the system, it is considered that Ki > 0, Kd > 0, (54.82Kd +
4.368) × (54.82Kp + 16.88) > 54.82Ki are taken into account based on an analysis by
Routh Hourwitz.

The PID fuzzy controller proposed is fixed by 12 rules, as shown in Table 2. These
rules describe the control of the aero-pendulum test bench.

Table 2. Fuzzy rules for the aero-pendulum fuzzy tracking controller.

Kp Kd Ki

If e(t) is NP, then Kp is KpN If de(t) is ND, then Kd is KdN If ie(t) is NI, then Ki is KiN
If e(t) is ZP, then Kp is KpZ If de(t) is ZD, then Kd is KdZ If ie(t) is ZI, then Ki is KiZ

If e(t) is SPP, then Kp is KpSP If de(t) is SPD, then Kd is KdSP If ie(t) is SPI, then Ki is KiSP
If e(t) is MPP, then Kp is KpMP If de(t) is MPD, then Kd is KdMP If ie(t) is MPI, then Ki is KiMP

The fuzzification stage is developed using three linguistic variables: the error measured
in degrees, the error derivative measured in degrees per second, and the integral error
measurement. Each linguistic variable is expressed by two triangular and two trapezoidal
linguistic values: the trapezoidal would indicate the larger positive and negative values of
error (MP and N). One triangular value is positioned in zero to demonstrate the absence
of zero (Z), and the last triangle indicates the minor presence of error (P). The triangular
membership function is presented in Equation (14), and the trapezoidal membership
function is displayed in Equation (15).

µtriangular(x) =



0, i f x ≤ xL
i

x−xL
i

µi−xL
i

, i f x ∈ (xL
i , µi]

xR
i+1−x

xR
i −µi

, i f x ∈ (µi, xR
i )

0, i f x ≥ xR
i

(14)

µtrapezoidal(x) =



0, i f x ≤ xL
i

x−xL
i

µL
i −xL

i
, i f x ∈ (xL

i , µL
i ]

1 i f x ∈ (µL
i , µR

i ]
xR

i+1−x
xR

i −µR
i

, i f x ∈ (µR
i , xR

i )

0, i f x ≥ xR
i

(15)

where xL
i and xR

i represent the start (left slope) and end (right slope), respectively, of the
i-th triangular and trapezoidal membership functions and the µi is the core point of the
membership function, x is the input of the fuzzy system. The HuS algorithm has to find
the best position for the parameters of the triangular membership functions. For the case of
the error linguistic variable, the algorithm has to find ten optimized parameters related to
the slopes and three optimized parameters for the centers, as presented in Figure 6a. The
same process occurs for the error derivative linguistic variable, shown in Figure 6b.

There is a set of gains for each fuzzy system, with the controller having three different
total, illustrated in Figure 7. There are four different singletons located in a range used
as a restriction of the gains; the names of these singletons are N (negative), Z (zero), SP
(small positive), and MP (much positive). These values are related to their corresponding
linguistic variables from Figure 6 that have similar names. It is important to note that
the proposed values of the gains are greater than zero since the gains of a classical PID
controller must be greater than zero to ensure stability.
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(a) Error.

(b) Derivative of error.

(c) Integral of error.

Figure 6. Linguistic variables (a) error, (b) error derivative, and (c) integral error.

Figure 7. Proposed linguistic variables of gains Kp, Kd, and Ki.

To compute the gains of controllers Kp, Ki, and Kd, the centroid method displayed in
Equation (16) is used.

uK(t) = ∑ µ(xn) · xn

∑ µ(xn)
=

xn(N) + xn+1(Z) + xn+2(SP) + xn+3(MP)
N + Z + SP + MP

(16)
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Once all the parameters (hunters) are identified, the HuS algorithm is implemented to
find these parameters of the PID fuzzy controller based on the mathematical model of the
aero-pendulum and the motion profile as the reference. The flowchart, Figure 8, presents
the overall process to find the best solution for the gains of the controller. In the first step,
the initialization of the HuS algorithm parameters is proposed according to Section 2.4. The
random initialization of the hunters is carried out in step 2. Equation (17) represents the
first group of hunters. The hunters are uniformly distributed in the search area.

h = {x1, x2, x3, . . . , x24, x25} (17)

The fitness function for evaluating the hunters’ position is the root mean square error
(RMSE) detailed in Equation (18). The HuS algorithm finds membership function parame-
ters to minimize the Euclidean distance between the reference and the computed response.

f (h)RMSE =

√
1
n

n

∑
i=1

(r(i)− θ̂(i))2 (18)

where r(i) and θ̂(i) are the desired value and the computed measured in the i-th iteration,
respectively, and n is the total number of iterations. Once the fitness function is evaluated,
the hunters with the best position are preserved to accommodate their position into the
loop. Steps 3 to 5 reorganize the hunters, evaluate Equation (18), and save the best hunters
for step 6. Step 6 is the enhancement proposed. This phase evaluates the hunters to ensure
the overlapping of the membership functions.

In this work, the concept of overlapping holds significant importance as it enables
the inclusion of an appropriate control surface. It is widely acknowledged that, when
the membership functions of a linguistic variable fail to interact, dead zones may arise,
leading to situations where the actuator receives no signal from the controller or experiences
instability. Therefore, adequate overlapping can mitigate the risk of such dead zones and
ensure smooth and stable control system operation. This emphasizes the critical role
of overlapping in achieving effective and reliable control in various applications. Step
seven guarantees that all membership functions interact properly by randomly moving
the hunters in the range of the overlapping. For instance, using x2 and x3 from Figure 6a,
some hunters of column x2 are smaller than x3, when x3 is supposed to be smaller than
each hunter in x2; the algorithm provides a chance to the hunters that do not carry out
this assertion to pass to the successive movements since they present a linguistic value
interaction. Still, if this assertion is the opposite, the hunters in x3 reorganize in the interval
[x1, x2] using Equation (19).

xi+1 = abs(γ × rand(µi, xi))± xi (19)

where xi+1 is the hunter that moves between the core membership function µi and the
left/right slope if the membership function xi is triangular or trapezoidal. rand(µi, xi)
finds a uniformly random number among µi and xi. The parameter γ plays a critical
role in determining the movement behavior of hunters within the defined overlap area.
Representing a real number within the [0.2, 0.7] range, γ is the hunter movement factor,
dictating the magnitude of steps taken during the hunting process. When γ approaches the
lower bound of 0.2, hunters are inclined to proceed cautiously with smaller steps, exhibiting
a more conservative approach to navigation. Conversely, as γ approaches the upper bound
of 0.7, hunters adopt a more assertive stance, traversing the terrain with larger strides. This
distinction in movement strategy, dictated by the value of γ, underscores its significance in
optimizing hunting behaviors within the specified overlap region.
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Figure 8. Hunting search modified to ensure overlapping of the membership functions.

4. Results
4.1. General Controller Programming

An embedded system board based on a microcontroller ESP32 with two 32-bit Xtensa
LX6 processing cores can run at speeds up to 240 MHz. A variety of peripherals, including
GPIO, UART, SPI, I2C, 10-bit PWM, and ADC with 12 bits of resolution, make it a good
choice for real-time implementation. C++ was used to test the control algorithms on the
aero-pendulum test bench using a sample time of 0.02 s. The code structure initiates by
declaring the variables and constants of the system, including the specific fuzzy parameters;
some functions are subsequently declared that are needed within a main function, and,
finally, it initiates the primary function. The main function undertakes various actions,
such as generating the motion profile, receiving the degrees sensor reading, processing the
fuzzy controller, generating the response from the controller, creating an offset (the relation
from the angle and the throttle), and sending the response to the BLDC. The Algorithm 1
presents the structure of the motion controller algorithm.
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Algorithm 1: Motion controller algorithm

Declare the inputs and outputs;
Declare the constants and variables;
Indicate the fuzzy gain of Kp, Kd, and Ki from Figure 7 and the fuzzy variables;
Function LinguisticValues(error, anchoring points):

Create the figures of the functions;
Calculate the membership degree;

Function SetUp():
Configure the BLDC frequency, PWM, and channel;
Create the interruption of 0.02s;

while True do
Generate the parabolic profile in Figure 4;
Measure the position from the angular displacement sensor;
Filter the readings obtained from the sensor;
Calculate error e(t);
Calculate the derivative error de(t);
Calculate the integral error ie(t);
Evaluate the linguistic variable of error e(t) presented in Figure 6a;
Evaluate the linguistic variable of derivative error de(t) presented in Figure 6b;
Evaluate the linguistic variable of integral error ie(t) presented in Figure 6c;
Calculate the controller response;
Calculate the offset from the system;
Adjust the output signal by adding the controller response and the offset together;
Send the output signal to the BLDC;

end

4.2. Non-Optimized PID Fuzzy Logic Controller

The design and implementation of control systems for complex mechanical systems
like the aero-pendulum present numerous challenges, particularly when employing fuzzy
logic controllers that require more precise tuning.

Understanding the behavior of an aero-pendulum system poses the initial challenge of
designing effective control strategies. The dynamic interactions of the system between the
pendulum, motor, and counterweight offer a more complex way to analyze the system. For
example, stabilizing the aero-pendulum in a particular position requires a specific amount
of throttle from the propeller; another example would be the inability to control how the
pendulum lowers and leaves primarily due to gravity because there is only one propeller
aiming upwards. The examples mentioned are some conditions one must consider when
proposing the controller.

It is important to mention that the aero-pendulum used in this paper has a counter-
weight situated at one end of the pendulum. Adding a counterweight can adjust the center
of mass, minimizing the erratic behavior and uneven weight distributions in the system.
This counterweight directly impacts stabilizing the pendulum, so every test regarding this
system starts at a position of 63 degrees.

Another problem when controlling the system includes the inconsistencies in the
sensor and actuator. For the input, an angular displacement sensor is used to measure the
position of the pendulum; the problem with this sensor is that it usually causes a great
deal of noise regarding the signal, making it difficult to obtain a proper reading. To fix this,
a filter was added, making this sensor more suitable. Then, for the output, a BLDC uses
a duty cycle with little resolution, which causes problems when correcting a minimum
quantity of errors. These two devices provide certain inconsistencies when trying to control
the pendulum because they do not have an accurate way of eliminating the error. The
fuzzy controller is based on the set of rules in Table 2. The first test of this controller uses
the parameters established by the user considering his knowledge of the system. Figure 9
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shows the aero-pendulum maintaining the position of a 90-degree angle, which is also
demonstrated by the plotter observed over the screen.

Figure 9. Working system at 90 degrees.

On the other hand, certain points should be considered when proposing the gain
values. The controller response is evaluated as the product of the gains and the current
error. It is very important to consider the magnitude of the error when proposing the gain
values because the error could be large or small, meaning that, if the gains are wrongly
established, there could be an aggressive or weak response. Also, the gains are not allowed
to take negative values.

For this controller, the gains were established as inversely proportional to the error,
meaning that, if the error increases its value, the gain will tend to reduce. The reason for
this is to avoid the aggressiveness issue mentioned previously. For that reason, the gains
related to the absence of zero are larger; this can be seen in Figure 7.

The linguistic values depicted in Figure 10 were proposed by experimentation. Initially,
the process involved defining linguistic values based on Figures 10a and 11a, which served
as the foundation for this controller. The error values from Figure 10a were determined by
analyzing the error presence across various positions of the aero-pendulum. The Kp values
were established through experimentation with the system, identifying those values that
yielded superior responses. After establishing these initial parameters, the subsequent step
involved incorporating the derivative values from Figure 10b, which would be settled by an-
alyzing the error of just the P fuzzy controller. The Kd values from Figure 11b were assigned
heuristically and maintained at the best values to provide the best results. Once the PD
fuzzy controller is designed, the final part is to adjust the integral linguistic values and Ki as
shown in Figures 10c and 11c, respectively. The integral linguistic variable universe was set
to work in a range of two degrees of error because it would correct the final portions of error.
The values of Ki are the smallest because it does not require much power to eliminate the
remaining error.
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(a) Error.

(b) Derivative of error.

(c) Integral of error.

Figure 10. Non-optimized input linguistic variables (a) error, (b) derivative of error, and (c) integral
of error.

Figure 12a illustrates the trajectory followed by the aero-pendulum, reaching its
final position of 90 degrees within a time of 7 s. Upon examining the error depicted in
Figure 12b, it is evident that the error fluctuates between 0 and 1.5 degrees. However, the
most significant error peaks lie within 1.5 to 1.8 degrees along the trajectory, rendering it
not quite precise for a PID fuzzy controller with an RMSE magnitude of 0.54. Analyzing
Figure 12c reveals the controller’s response in the presence of error, which is deemed
sub-optimal based on the obtained results. Consequently, adjustments to this controller
response are necessary. The throttle signal is the direct value from the fuzzy controller,
which serves as a way to correct the error by accelerating or decelerating the system. The
positive values are the ones in charge of providing more throttle, and the negative values
provide less to the system.
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(a) Singletons forKp

(b) Singletons for Kd

(c) Singletons for Ki

Figure 11. Non-optimized output linguistic variables (a) Kp, (b) Kd, and (c) Ki.
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Figure 12. Cont.
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Figure 12. PID fuzzy controller (a) set point—position, (b) error, and (c) throttle.

4.3. Optimized PID Fuzzy Logic Controller with HuS Algorithm

For the computing of the PID fuzzy controller using the HuS algorithm, Equation (3)
was employed. The HuS algorithm was implemented in Python 3 programming on
a Macbook Pro M2 Pro computer, and it calculates 36 parameters in the optimization
process. These parameters correspond to the triangular membership functions, using
Equations (14)–(16), in the fuzzification phase and the position of the singletons in the
defuzzification stage, respectively. Table 3 displays the parameters used by the HuS al-
gorithm to compute the fuzzy controller. On the other hand, in Figure 13, the depiction
of the parabolic motion profile trajectory, Equation (4), can be observed. The response
derived from Equation (3) represents the mathematical model of the test bench and the
optimized fuzzy controller. The HuS algorithm, guided by the parameters outlined in
Table 3, successfully generates a well-suited PID fuzzy controller through simulation. As a
restriction of the HuS algorithm to search the range of the gains, Equation (13) is used.

Table 3. Descriptions of the parameters.

Parameter Description Value

MML Maximum movement towards the leader 0.4
HGCR Hunting group consideration rate 0.3
Ramax Maximum relative search radius of the hunter 1.00 × 102

Ramin Minimum relative search radius of the hunter 1.00 × 10−7

α Positive real numbers that establish convergence 0.01
β Positive real numbers that establish convergence −1
γ Hunter movement factor in the overlapping 0.2
HGS Hunting group size 50
m Number of variables 36
Kp Proportional gain restriction (0, 3]
Kd Derivative gain restriction (0, 1]
Ki Integral gain restriction (0, 0.8]
N Number of generations 20
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Figure 13. Reference vs. fuzzy controller optimized by HuS algorithm.

The number of rules used to build this controller is set to over 12, and this magnitude
is chosen over the necessities of the system. The error linguistic values were determined
to be four for each fuzzy system. Two are set to eradicate positives that act on small or
large presences of error. One is set to eliminate the negative error; there is only one rule
here because the deceleration of the system does not require many more specifics; this is
presumed by conducting tests over the system. Finally, one variable is placed on zero to
represent the absence of error.

The error linguistic variable ranges from −65 to 65 degrees. Table 4 displays the
optimized parameters of the triangular (ZP and MPP) and trapezoidal (NP and SPP)
linguistic values. There are three variables for the trapezoid, displaying a half-trapezoid
shape. The form of each linguistic value is presented in Figure 14a.

Table 4. Optimized parameters of the error linguistic variables.

Linguistic Value xL
i µi xR

i
NP −65 −24.89 −4.9
ZP −5 0 1

MPP 0.6 8 15.61
SPP 9.33 33 65

The error derivative linguistic variable uses a similar approach as the proportional
variable. The derivative rules permit the system to comprehend and predict more suitable
behavior. Table 5 displays the optimized parameters of the triangular (ZD and SPD) and
trapezoidal (ND and MPD) derivative error linguistic values. The derivative error linguistic
variable ranges from −65 to 20 degrees; these values are obtained by analyzing the response
of the error measured and are used as a restriction of the HuS algorithm. The shape of each
linguistic value is presented in Figure 14b.

Table 5. Optimized parameters of the error derivative linguistic variables.

Linguistic Value xL
i µi xR

i
ND −65 −3.45 0
ZD −1 0 1
SPD 0 2 9.31
MPD 2.45 11.53 20

The error integral linguistic variable is observed in Table 6; the integral controller has
as its main aim to correct the last amounts of error present within the system. As a result,
it would only work in a range of 2 degrees of error. For this reason, the universe of the
linguistic variable goes from −200 to 200. The system comprehends four different variables:
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two triangular (ZI and SPI) and two trapezoids (NI and MPI). The shape of each linguistic
value is presented in Figure 14c.

Table 6. Optimized parameters of the error integral linguistic variables.

Linguistic Value xL
i µi xR

i
NI −200 −40 0
ZI −20 0 20
SPI 15 60 80
MPI 70 100 200

Table 7 shows the corresponding optimized values of Kp, Kd, and Ki. The values of
Kp end up being the largest because the proportional controller is in charge of providing
the aggressive response; the following value, Kd, is smaller because it is only in charge of
the erratic behavior of the proportional controller. Finally, the values of Ki are the smallest
because the integral controller focuses on eliminating the small magnitude of error.

Table 7. Optimized parameters for the output linguistic variables.

Linguistic Value Kp Kd Ki

N 0.5 0.348 0.03
Z 2.28 0.774 0.025
SP 0.727 0.69 0.022
MP 0.02 0.124 0.02

Figures 14 and 15 provide a visual representation of the linguistic variables utilized
in the fuzzy controller, as detailed in Tables 4, 5, and 7. According to the stability analysis
from Routh Hourwitz, regarding the values obtained from the controller by the proposed
algorithm when the controller accomplishes the permanent regimen, it accomplishes the
condition (54.82Kd + 4.368)(54.82Kp + 16.88) > 54.82Ki so that the system could main-
tain stability. The gain values displayed by the controller from the HuS algorithm are
kp = 1.963, kd = 0.7234, ki = 0.023. Substituting the values in the condition previously
mentioned, 3067.3 > 1.2609 demonstrates the system stability in a closed loop.

(a) Error.

Figure 14. Cont.
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(b) Derivative of error.

(c) Integral of error.

Figure 14. Optimized input linguistic variables (a) error, (b) error derivative, and (c) error integral.

(a) Singletons for Kp.

(b) Singletons for Kd.

Figure 15. Cont.
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(c) Singletons for Ki .

Figure 15. Optimized output linguistic variables (a) Kp, (b) Kd, and (c) Ki.

Moving on to Figure 16, it displays the performance of the PID fuzzy controller opti-
mized using the HuS algorithm. This evaluation shares identical experimental parameters
with the un-optimized PID fuzzy controller from Figure 12. Figure 16a illustrates the
response of the optimized adaptive PID fuzzy controller designed by the HuS algorithm,
tracing the same trajectory over 7 s and stabilizing at 90 degrees. Figure 16b shows that
the error provided from the error oscillates over 0.5 error degrees and oscillates around
an error of 0.3 degrees when settling at 90 degrees; the response makes it an acceptable
and notably improved controller over the initially proposed one by having an RMSE of 0.4.
Finally, Figure 16c provides insight into the controller’s response to the error.
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(b) Error.

Figure 16. Cont.
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(c) Throttle Signal.

Figure 16. PID fuzzy controller HuS: (a) set point—position, (b) error, and (c) throttle signal.

Figure 17 shows that the proposed algorithm converges to the optimized parameters in
the fifth iteration. This is fast since the modified HuS algorithm develops four search stages,
enabling the hunters to move considerably toward the prey (solution) per generation. As
mentioned in Section 2.4, the unmodified HuS algorithm has three stages where the hunters
have to move towards the leader, correct their positions based on the target values, and
reorganize to improve the position of each hunter. In this proposal, as mentioned in Sec-
tion 3, the hunters will be reorganized based on the overlaps of the membership functions
of each controller stage to enable the hunters to work better with the uncertainty of the
measurements. The HuS algorithm has to find 36 parameters for the fuzzy PID controller.
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Figure 17. Convergence of the HuS algorithm.

Table 8 displays the statistical values of the gain triplets, including the mean, standard
deviation, minimum value, and maximum value. The consistency of the gains can be
verified by the minimums and maximums, which show the complete range of possible
values for each gain, all of which fall within the constraints considered in the HUS algorithm.
However, the standard deviation for Kp and Ki is relatively low compared to the mean
values of these parameters. Although the standard deviation for Kp is higher than its
mean value, the parameters do not reflect significant variability among the individual
values. For all the gains, it can be observed that the values are more clustered around
the mean, as shown in the box and whisker plot displayed in Figure 18. The diagram in
Figure 18a shows the absence of outliers. The data distribution does not contain extreme
values significantly beyond the limits established by the HUS algorithm constraints, and
they fall within quartiles Q1 and Q3.

By conducting 400 experiments to obtain the profit tuples for Kp and Ki, these exhibit
only one and four values outside the interquartile range, as can be seen in Figure 18b,c,
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respectively. This indicates a uniform distribution without a notable presence of outliers
that could significantly affect the central tendency and dispersion measures.

Table 8. Statistical values of the gain triplets.

Linguistic Value Kp Ki Kd

Min 1.7132 0.0200 0.3987
Max 2.4988 0.0495 0.9987

Mean 2.1266 0.0335 0.8528
St.Dev. 0.2444 0.0022 0.0874

(a) Kp.

(b) Kd.

(c) Ki .

Figure 18. Box and whisker plot of PID fuzzy controller gains.
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5. Discussion

In this section, two cases will be discussed: the comparison of the PID fuzzy controller
with a step input, compared with a Mamdani controller that was designed with 36 rules
for the aero-pendulum, and, second, the response of the PID fuzzy controller with the
trajectory will be discussed, including a third-degree polynomial with a duration of 7 s,
varying the set point to show that the system responds to any target position.

In Figure 19, a comparative examination between the adaptive and non-adaptive
fuzzy controllers, implemented using the HuS algorithm, is presented. The PID fuzzy
controller was compared with a Mamdani controller that was provided a step input. The
fuzzy controller using the Mamdani inference method was designed from 36 rules; this
controller tends to consume too many computational resources because all 36 rules must
be evaluated to calculate the control signal. This controller presents aggressive oscillations
when it has not been optimized. The optimization carried out as a test of the operation of
the HuS algorithm has to find 29 optimization parameters. These parameters correspond
to the membership functions of the fuzzification stage and the positions of the singletons
of the defuzzification stage. When optimized, the Mamdani fuzzy controller considerably
reduces the oscillations and settling time. However, the PID fuzzy controller presents
a better response, with a considerable overshoot and a significant improvement in the
steady-state error with a settling time of 1.45 s, less than either version of the Mamdani
fuzzy controller with 5 s for the non-optimized one and 3.2 s for the optimized one. The
PID fuzzy controller was designed with a total of 12 rules to calculate the gains Kp, Ki, and
Kd, using one-to-one fuzzy relationships, which means that the calculation of the gains is
computed directly using Equation (16), which entails a lower computational cost when
compared to the Mamdani controller.
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Figure 19. Step comparison of non-adaptive and adaptive fuzzy controllers.

With the third-degree polynomial trajectory, regarding the parabolic motion profile,
Figure 20a shows three adaptive PID fuzzy controller signals. In each signal, the controller
follows different trajectories, one for a settlement at 80 degrees, the second at 90 degrees,
and the third at 100 degrees; every trajectory settles at 7 s. A higher settlement position
makes the trajectory change faster, meaning each signal faces different magnitudes of
change. For the 80-degree trajectory, the magnitude of change is lower than the other two;
meanwhile, the 100-degree trajectory faces a major quantity of change, making it more
difficult to track.

Examining the error patterns illustrated in Figure 20b, it provides valuable insights
into the efficacy of the response of the controller across different trajectories. Notably, when
comparing the trajectories reaching 80 and 90 degrees, a striking similarity in error presence
is observed, characterized by an acceptable level of deviation and commendable settlement
behavior. This consistency suggests the robust performance of the controller in maintaining
the desired positions within these ranges. However, upon closer inspection of the trajectory
aimed at 100 degrees, a slightly heightened error level becomes apparent, surpassing
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that observed in the other trajectories. Despite this, the controller exhibits adaptive and
responsive behavior, compensating for the increased error magnitude, particularly in the
rapid trajectory changes and beyond the analysis of the error behavior.
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Figure 20. Tracking of trajectory with 80, 90, and 100 degrees settlement.

Figure 20c provides a more comprehensive view of the controller’s dynamic response
across the entire error spectrum. By visualizing the controller’s actions concerning varying
degrees of error, these supplementary data enhance the understanding of its adaptive
capabilities and ability to navigate diverse operating conditions effectively. Overall, the
combination of error analysis and controller behavior visualization offers a comprehensive
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assessment of the controllers’ performance, showing their robustness and adaptability in
achieving precise trajectory tracking in dynamic environments.

Table 9 presents the RMSE values obtained from the tests conducted with the optimized
and non-optimized controllers, as depicted in Figures 12 and 20, respectively. The RMSE is
used to conduct a more general comparison between the response of the controller and, in
that way, obtain a better conclusion. The non-optimized controller ended up with an RMSE
of 0.54; meanwhile, the optimized controller, submitted to different tests, ended up with
a lower RMSE than the non-optimized one. The comparison in the table unequivocally
demonstrates that the optimized controller exhibits a superior performance compared to
its non-optimized counterpart. This outcome validates the efficacy of the optimization
methodology proposed in this paper, underscoring its success in enhancing the controller’s
responsiveness and accuracy in trajectory-tracking tasks.

Table 9. RMSE comparison.

Controller PID Fuzzy
Controller

PID Fuzzy
Controller
HuS—80

PID Fuzzy
Controller
HuS—90

PID Fuzzy
Controller
HuS—100

RMSE 0.54 0.42 0.4 0.49

The HuS algorithm presents a good response in the optimization process of the fuzzy
controller, as shown in Table 10. The methodology proposed in this paper shows better
results than those presented in Refs. [19,20], where a PSO algorithm is utilized. The
analysis of an aero-pendulum is presented in [20]. The methodology is well-described,
with two parameters to optimize being proposed for a backstepping controller. The paper
demonstrates good results; for instance, the number of iterations is 18, the settling time
is 0.5 s, and the steady error is 0 degrees. This methodology only includes the simulated
results, creating a large panorama if the implementation is carried out since, in many cases,
some inherent characteristics of the system are not considered.

In contrast, the study referenced in [19] introduces a comprehensive control scheme
featuring a PID position controller, feed-forward mechanism, and a PI current compo-
nent. Specifically tailored for an aero-pendulum system equipped with two propellers,
the PID controller undergoes optimization through a PSO algorithm. Notably, devel-
oping a rigorous mathematical model facilitates a deeper understanding of the system
dynamics, particularly treating the two propellers as single entities to streamline the anal-
ysis and design. Remarkably, the study yields promising outcomes, with the authors
optimizing their proposal using 12 parameters. Despite the inherent complexity of the
control scheme and the system dynamics, the convergence process is reported to require
a manageable 32 iterations in the best-case scenario, showcasing the efficiency of the op-
timization approach. Furthermore, the experimental validation of the proposed control
scheme corroborates its effectiveness, with a settling time of 10.24 s and a steady-state error
of 0.4 degrees reported. These findings underscore the practical viability of the control
scheme in real-world applications, providing tangible evidence of its ability to achieve the
desired performance metrics under experimental conditions.

The methodology proposed in this paper focuses on optimizing a fuzzy controller,
achieving remarkable results with efficiency. By employing only five iterations and target-
ing thirty-six parameters for optimization, the approach demonstrates an excellent process
that minimizes the computational overhead while maximizing the effectiveness. Central to
the methodology is using a parabolic motion profile to define the settling time. Specifically,
a settling time of 7 s is adopted as a default value within this framework, providing a
balance between a rapid response and stability. Notably, the flexibility of the method-
ology allows the users to adjust the settling time according to the specific application
requirements, offering adaptability to diverse scenarios and preferences. The experimental
validation of the proposed method underscores its efficacy, as evidenced by the achieved
steady-state error of only 0.28 degrees. This impressive degree of precision highlights the
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robustness and reliability of the optimized fuzzy controller, showcasing its potential for
real-world implementation and practical impacts.

Table 10. Controller performance comparison.

Work [19] [20] Proposed

Controller PID Backstepping Fuzzy Controller
Application Experimental Simulation Experimental
Number of Iterations 32 18 5
Number of Parameters to Optimize 12 2 36
Settling Time (s) 10.24 0.5 7
Steady Error (degrees) 0.4 0 0.28

6. Conclusions

The implementation of fuzzy control systems may be considered confusing at times
because of the lack of specific parameters for correctly proposing the fuzzy rules and the
ignorance of the system’s dynamics. Consequently, this normally results in erratic fuzzy
systems that create inadequate behaviors that must be controlled.

The proposed solution is a method that helps to optimize unstable fuzzy systems by
formulating more suitable fuzzy parameters. The technique used was an HuS algorithm
that analyzes the parameters provided by the membership functions for multiple iterations
until it finds the best generation or results for the fuzzy system. The HuS algorithm ensures
that the membership functions overlap so the controller does not present discontinuities.
This process enables the creation of new parameters from those calculated in moving
toward the leader, cooperation between the members, and reorganizing the hunting group
processes, causing the search to be carried out using the values that do not meet the present
conditions and generating the new ones in a heuristic way. In this way, it is assured that
the testing will succeed.

In this paper, an aero-pendulum system is used, and a PID fuzzy controller is designed
by experimentation so that the system can follow a trajectory; following this, the HuS
optimizer will be used to improve this controller. The results detailed in the articles demon-
strate that this method is reliable and functional thanks to the improvements obtained by a
decrease of 26 percent in the error in the new and improved controller. The use of heuristic
algorithms to generate fuzzy systems and improve them may be useful not only due to the
enhancement of the response from the controller but also to facilitate the creation of these
systems by making them more accurate, reducing the time in the design process according
to the tuning specification.
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Abbreviations

AGC Automatic Generation Control
BLDC Brushless Direct Current
DC Direct Current
ESC Electronic Speed Controller
HGCR Hunting Group Consideration at Rate
HG Hunting Group
HGS Hunting Group Size
HuS Hunting Search
Kp Proportional Gain
Kd Derivative Gain
Ki Integral Gain
MATLAB Matrix Laboratory
MIFPID Multi-Input Fuzzy PID
MML Maximum Movement towards the Leader
MPD Much Positive Derivative
MPI Much Positive Integral
MPP Much Positive Proportional
MP Much Positive
N Negative
ND Negative Derivative
NI Negative Integral
NP Negative Proportional
P Positive
PID Proportional Derivative Integral
PD Proportional Derivative
PWM Pulse With Modulation
PSO Particle Swarm Optimization
RMSE Root Mean Squared Error
SPD Small Positive Derivative
SPI Small Positive Integral
SPP Small Positive Proportional
Z Zero
ZD Zero Derivative
ZI Zero Integral
ZP Zero Proportional
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