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Abstract: Introduction: A monitoring tool, named Oncology Data Management (ODM), was devel-
oped in radiotherapy to generate structured information based on data contained in an Oncology
Information System (OIS). This study presents the proof-of-concept of the ODM tool and highlights
its applications to enhance patient care in radiotherapy. Material & Methods: ODM is a sophisti-
cated SQL query which extracts specific features from the Mosaiq OIS (Elekta, UK) database into
an independent structured database. Data from 2016 to 2022 was extracted to enable monitoring of
treatment units and evaluation of the quality of patient care. Results: A total of 25,259 treatments
were extracted. Treatment machine monitoring revealed a daily 11-treatement difference between two
units. ODM showed that the unit with fewer daily treatments performed more complex treatments
on diverse locations. In 2019, the implementation of ODM led to the definition of quality indicators
and in organizational changes that improved the quality of care. As consequences, for palliative
treatments, there was an improvement in the proportion of treatments prepared within 7 calendar
days between the scanner and the first treatment session (29.1% before 2020, 40.4% in 2020 and
46.4% after 2020). The study of fractionation in breast treatments exhibited decreased prescription
variability after 2019, with distinct patient age categories. Bi-fractionation once a week for larynx
prescriptions of 35 × 2.0 Gy achieved an overall treatment duration of 47.0 ± 3.0 calendar days in
2022. Conclusions: ODM enables data extraction from the OIS and provides quantitative tools for
improving organization of a department and the quality of patient care in radiotherapy.

Keywords: monitoring tool; treatment quality assurance; OIS; data mining in radiotherapy

1. Introduction

In the era of developing artificial intelligence (AI)-based solutions, access to databases
is a major issue. These systems necessitate substantial quantities of data for their learning
processes [1,2]. Traditionally, the accumulation of large-scale data has necessitated the
establishment of data warehouses, also known as datalakes, and has concurrently facili-
tated the evolution of numerous novel technologies [3], such as Hadoop for the storage of
unstructured data, or NoSQL developed to accelerate database access. However, empirical
evidence over time has underscored that data quality is a paramount concern. Data col-
lected in big data can be categorized into three types [4]: unstructured data, semi-structured
data (unstructured data supplemented with tags that offer additional insights about the
data under consideration), and structured data. The transformation of unstructured data
into structured data is feasible, though it demands substantial resources. These factors
have prompted a shift in global data collection strategies over the years, veering towards
targeted and business-oriented data collection [5].

Radiotherapy engenders an array of data types, encompassing imaging (Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography
(PET), Cone Beam Computed Tomography (CBCT), MegaVoltage Computed Tomography
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(MVCT), etc.), clinical records, and treatment plans (RTDose, RTStruct, RTPlan). These
data are disseminated across diverse systems: CT scanner, MR scanner, Treatment Planning
System (TPS), Oncology Information System (OIS), treatment unit, etc. The access, consoli-
dation and organization of this data represent a significant challenge for the future [6,7],
particularly in the context of implementing predictive AI-driven solutions for personalized
radiotherapy treatments.

With this idea in mind, we focused on the treatment information contained in the
OIS. This data, which is structured in nature and present in large quantities, is not trivially
accessible. For these reasons, we developed a model of data, named Oncology Data
Management (ODM), which makes the structured data extracted from the OIS available.

Thus, in this study, we present the proof-of-concept of the developed ODM tool.
Through different clinical examples, metrics are proposed to evaluate the practices of a
radiotherapy department and to improve the quality of patient care.

2. Materials and Methods
2.1. Oncology Information System (OIS)

The OIS Mosaiq, developed by Elekta (Crawley, UK), which has been in production in
our radiation oncology department since 2010, was used in this study. The ODM tool was
implemented in 2019 with version 2.64 of Mosaiq, and was updated during OIS upgrades.
Version 2.83 of Mosaiq was used in this study for data extraction.

The Mosaiq database is in SQL format, and the information contained in the OIS is
distributed across 764 tables in version 2.83, the architecture of which has been established
by Elekta.

2.2. Oncology Data Management (ODM) Tool

A sophisticated SQL query, which constitutes the core of ODM, was developed in
this study to generate a new structured database for the exploitation of radiotherapy
data. This query selectively retrieves data of particular relevance to end-users from the
Mosaiq database and aggregates it within a distinct SQL database. In case of an error in
manipulating the ODM database, the operation of Mosaiq is not altered. An automatic agent
has been set up to incrementally update, during the night, new data that was generated
during the day.

The development of ODM required a reflection about the ontology of radiotherapy in
order to define the objects necessary for describing radiotherapy data [8]. Indeed, Mosaiq,
which was developed for radiotherapy and oncology, does not define this data in a straightfor-
ward manner. For instance, the delivered dose of a radiotherapy treatment is not defined in a
single table in Mosaiq, but corresponds to multiple fields scattered across different tables. This
complexity makes querying this information very challenging. The development of ODM
involved creating a data model in which radiotherapy information was logically grouped
together to enable the establishment of a database for conducting quick and efficient queries.
The structure of ODM was deliberated upon by individuals working in radiotherapy, for
whom data accessibility and querying were crucial.

The structure of ODM has been enriched over the years and through various ideas.
The ODM 4.C version was utilized in this study. Its database contains 10 tables, but this
number of tables is subject to change depending on our needs.

In this study, as illustrated in Figure 1, the information contained in five tables
was used:

Activity contained information related to patient file activities: agenda, radiotherapy
treatment coding, Mosaiq EVAL form entries, Escribe documents, and Mosaiq tasks. This
included information such as activity start and end dates and times, as well as the names
of professionals who created or validated an activity.

Diagnosis contained information on the classification of treatment pathologies (Inter-
national Classification of Diseases (ICD)-10 code and custom groupings).
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Patients contained demographic and civil information about patients, as well as their
identifier (IPP) within the radiotherapy center.

TreatmentDate contained patient appointment dates as planned in the Mosaiq agenda.
We note that this information was not representative of reality, as the patient may have
been treated at a different time than planned.

TreatedSite contained the name of the prescriptions entered in Mosaiq, the treatment
technique, the dose and number of prescribed sessions, the treatment beams that are
attached to a prescription, the date and time of delivery of the treatment beams, and the
treatment machine on which the beams were delivered. The temporal data related to a
treatment was therefore reliable.

Figure 1. ODM architecture.

Basic queries on radiotherapy data in ODM were initially conducted by generating
customized reports in Mosaiq using Crystal Reports® (SAP, Levallois-Perret, France). Since
the reports were customizable, each query, such as the number of patients treated over
a period, the number of patients treated on a specific treatment machine, etc., required a
different report to be created. Reports were created once, then users only needed to select
the relevant report and enter the date range to launch the query.

While this method was useful for simple queries, its limitations became apparent to
access complex information, especially when information cross-references were needed,
such as for extracting patients’ cohorts, and customized reports were no longer sufficient. A
specific extraction of data from ODM was implemented in such cases. This extraction was
performed through an SQL query in the ODM database, generating multiple CSV files, each
corresponding to a table. A Python script (version 3.8.11) was then used to concatenate the
data into a single database file in XLSX format and to calculate some additional parameters.

2.3. Database

In the present study, data were retrieved with an ODM query encompassing treatment
records from 1 January 2016 to 31 December 2022. The resultant XLSX file obtained with
the Python script was structured such that each row corresponded to a single treatment
event and the columns detailed the requisite information for the oversight of radiotherapy
procedures, namely:

- Patient identifier
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- Sex
- Age of the patient at the time of irradiation
- ICD-10 code of the prescription
- Custom location group: these were 13 groups grouping several ICD codes and were

defined as: Cerebral, Cutaneous, Dcodes, Upper-GastroIntestinal, Gyneco., Hemato.,
Mammaries, Metastases, H&N, Bones, Trachea.-Broncho.-Pulmonary (Tr. Br. Pu), Uro.
and Others

- Prescription name
- Treatment technique requested in the prescription: 3D-RTC, IMRT/VMAT, TBI, SRT

or Protons
- Treatment machine
- Date of the simulation scanner
- Date of the first treatment beam
- Date of the last treatment beam
- Delay (in working days and calendar days) between the simulation scanner and the

first treatment beam
- Prescribed dose (Gy), delivered dose (Gy), missing dose (Gy)
- Number of prescribed sessions, number of performed sessions, number of missed sessions
- Start date and end date of the various Mosaiq tasks related to a treatment

Patients included in this study provided their consent for using their anonymized
data for research purposes.

2.4. Monitoring Tools for a Treatment Unit

The analysis of the activity of a treatment machine was performed using three metrics
obtained with ODM:

Quantitative activity of a machine: corresponded to the number of patients treated per
day on a treatment machine. These data were extracted from the TreatedSite table as the
recorded beams contained information about the treatment machine.

Treatment technique: extracted from the TreatedSite table. The technique could be:
3D-RTC, IMRT/VMAT, TBI, SRT, and Protons.

Pathologies distribution on a machine: for each recorded beam, the ICD-10 code extracted
from the Diagnostic table was obtained, and the custom pathology group defined in the
previous section was extracted.

In this present investigation, data were garnered from two of the eight therapeutic
devices available at our facility: a Synergy (Elekta, Crawley, UK), installed in 2010, and
a VersaHD (Elekta, Crawley, UK) installed in 2016. Both were equipped with an Agility
multileaf collimator (MLC) and with an CBCT system. The VersaHD was configured for
stereotactic treatments and incorporated an iGuide table (Elekta, Crawley, UK) and an
Exactrac stereoscopic imaging system (Brainlab, Munich, Germany). The Synergy was
equipped with an AlignRT surface recognition system (VisionRT Ltd., London, UK).

2.5. Quality Indicators of Patient Care

Three indicators reflecting the quality of patient care were extracted from the ODM database:
Time (Calendar days) between the simulation scanner and the first treatment session: the first

therapy session’s date was derived from the first delivered treatment beam, as recorded in
the TreatedSite table, while the simulation scanner’s date was obtained from TreatmentDate
table in the patient’s schedule, indicating the most recent CT exam before the first delivered
beam. This measure is noteworthy, as it mirrors the efficacy of the treatment planning
stages (contouring, ballistic, optimization and dose calculation, treatment plan’s quality
assurance) and the availability of the treatment devices. Clearly, if the treatment units are at
full capacity and unable to accommodate additional patients, this delay would be extended.

Fractionation: this corresponded to the prescription made in the OIS and for which the
treatment beams were delivered. This information was extracted from the TreatedSite table.
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This criterion made it possible to evaluate the homogeneity of the prescriptions made
in the radiotherapy department for the treatment of the same pathology.

Duration (Calendar days) of radiotherapy treatment: this was calculated as the duration,
in calendar days, between the date of the first beam delivered for a medical prescription
and the date of the last beam delivered.

This criterion was representative of the quality of patient care, as it ensured that
patients were treated according to the scheme prescribed by the radiation oncologist, and
that there was no unwanted treatment interruption during radiotherapy.

In this study, the delay between the simulation scanner and the first treatment session
was investigated for metastasis treatments and, more particularly, for palliative treatments.
Three time periods were analyzed: 2016 to 2019, the year 2020, and 2021 to 2022. An upper
threshold of 30 days was set and data exceeding this value were removed, as they did not
make sense for this indicator.

The fractionation indicator was investigated for single breast treatments without nodal
areas or boost for breast pathologies. A correlation between fractionation and patient age
at the time of radiotherapy was performed to further interpret the results.

The distribution of the treatment duration was studied through larynx treatments for
head and neck (H&N) pathologies.

3. Results
3.1. Database

Over the period from 2016 to 2022, the ODM extraction corresponded to 25,259 external
radiotherapy treatments all pathologies included. A representation of the evolution of
the number of treatments over time, and the distribution of pathologies according to the
different custom groups, is presented in Figure 2.

Figure 2. Temporal evolution of the treatment’s numbers and their distribution by pathology categories.

The number of treatments increased until 2019, then the activity began to decrease,
reaching its lowest level in 2022 with an activity of 3434 treatments. In 2022, more than 80%
of the treatments were represented by the following five pathology groups: metastases
(33.8%), breast (22.2%), pulmonary (11.7%), urological (6.9%), and H&N (5.6%).
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3.2. Monitoring: Activity of Two Treatment Units

In Figure 3, the average number of patients treated per day is shown for the two
treatment machines studied. The number of treatments performed per day on the VersaHD
is lower than on the Synergy as, from 2016 to 2022, a difference of 11 patients per day was
observed between the averages of each of these two machines.

Figure 3. Evolution of the average daily number of patients treated on Synergy and VersaHD machines.

To go further in the analysis, the proportion of treatment techniques performed each
year on these two machines was analyzed for the period from 2016 to 2022. The treatment
techniques were distributed on the VersaHD as 59.7 ± 4.1% for IMRT/VMAT, 32.7 ± 5.4%
for SRT, 6.2 ± 4.5% for 3D RTC, and 1.3 ± 1.7% for TBI. On the Synergy, the treatment
distribution was 41.0 ± 6.9% for IMRT/VMAT, 0.2 ± 0.4% for SRT, and 58.8 ± 7.0% for
3D RTC. This criterion showed that the VersaHD machine had a higher proportion of
high-tech treatments such as SRT and IMRT/VMAT than the Synergy machine, which
mainly performed 3D RTC treatments.

The study of the distribution of pathologies on the two treatment machines is presented
in Figure 4. The VersaHD unit had a very varied activity, almost 85% of which was
distributed, for the year 2022, between the treatment of metastases (30.3%), lung tumors
(19.0%), urology (14.5%), H&N tumors (10.5%), brain tumors (4.6%), and hematology (4.6%).
On the Synergy, the distribution was less varied, and was distributed in 2022 for more than
85% between breast treatments (59.4%) and metastasis treatments (27.1%).

Thus, although the number of patients treated daily on the VersaHD was lower, the
extracted data allows us to understand that the VersaHD performed more varied and
complex treatments than the Synergy.
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Figure 4. Comparison of treated pathologies’ distribution between VersaHD (top) and Synergy
(bottom) treatment units.

3.3. Quality Indicators of Patient Care in Radiotherapy
3.3.1. Time between the Simulation Scanner and the First Treatment Session

The study of antalgic treatments was chosen to illustrate the quality of patient care.
The ODM extraction corresponded to 5310 treatments for the period studied. The evolution
of this delay, in calendar days, is presented in Figure 5. The proportion of treatments for
which this delay was less than or equal to 7 days was 29.1% for the period from 2016 to 2019,
40.4% in 2020, and 46.4% for the period from 2021 to 2022. A delay of 8 to 15 calendar days
was observed for 41.6% of these treatments over the period from 2016 to 2019, 43.6% for
2020, and 45.3% for the period from 2021 to 2022.

Over the three periods analyzed, the delay between the scanner and the first session
tended to decrease significantly over time, indicating faster patient care for the planning
stage of these palliative treatments.
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Figure 5. Temporal evolution of the distribution of the time interval, in calendar days, between the
simulation scanner and the first treatment session for palliative treatments.

3.3.2. Fractionation

The study of dose prescriptions for single breast indications (breast group) made it
possible to study the evolution of practices over the years, as well as the variability of
prescriptions in a radiotherapy department. In total, 1411 treatments were extracted from
the OIS with ODM. Over the period studied, more than 95% of the prescriptions were
made according to eight main dose schemes. The distribution of these prescriptions is
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presented in Figure 6a. The historical prescription of 25 × 2.0 Gy, which was the majority
in 2016 and represented more than 50% of the treatments, decreased over the years to
represent only 12.7% of the prescriptions in 2022. Similarly, the fractionation of 22 × 2.3 Gy,
which represented nearly 25% of the prescriptions in 2016, disappeared in 2022. In 2021 and
2022, more than 85% of single breast treatment prescriptions were represented by four dose
schemes: 15 × 2.67 Gy, 25 × 2 Gy, 15 × 3 Gy, and 5 × 5.2 Gy.

Figure 6. Top (a): Distribution of breast radiotherapy prescriptions. Bottom (b): Distribution of
patient age based on breast radiotherapy prescription. Horizontal bars (−) represent the median
values, crosses (×) the mean values and circles (◦) the outliers.
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The distribution of prescriptions according to the age of the patients is presented in
Figure 6b. The prescription of 25 × 2.0 Gy was performed for patients with an average age
ranging from 49.3 years (2021) to 57.7 years (2016): this figure shows that, from 2016 to 2022,
this prescription was intended for the youngest patients. However, the large standard
deviation shows that it was used for other age categories. The prescription of 15 × 2.67 Gy
was intended for older patients: from 2019 to 2022, the average age of patients treated with
this prescription ranged from 67.7 years (2020) to 71.5 years (2019). The prescription of
15 × 3.0 Gy, which was intended for the oldest patients between 2016 and 2020, was no
longer used in 2022, and was replaced by the prescription of 5 × 5.2 Gy, whose average
patient age was 76.2 years in 2021 and 78.5 years in 2022.

The study of prescriptions showed a decrease in prescription variability over time. In
2022, three major prescriptions were used, and they were addressed to distinct age categories.

3.3.3. Duration of Radiotherapy Treatment

For the period from 2016 to 2022, 194 larynx treatments were extracted. More than 80%
of larynx were treated with three major prescriptions: 35 × 2 Gy, 33 × 2 Gy, and 30 × 2 Gy.
From 2016 to 2020, the 30 × 2.0 Gy and 33 × 2.0 Gy prescriptions were predominant,
and represented more than 50% of larynx prescriptions, while from 2021, the 35 × 2.0 Gy
prescription became the majority (more than 70% of larynx prescriptions). By focusing
on these three prescriptions, the spread of treatments was extracted, and is presented in
Figure 7.

Figure 7. Evolution of the overall treatment duration for three-dose prescriptions of laryngeal
pathology. Horizontal bars (−) represent the median values, crosses (×) the mean values and circles
(◦) the outliers.

The duration of the prescribed treatment, consisting of 35 fractions of 2.0 Gy, has
diminished over time, culminating in an average span of 47.0 ± 3.0 calendar days in 2022;
the theoretical minimum duration to complete of 35 sessions at a frequency of five sessions
per week is 47 days (7 weeks including 6 weekends), presuming initiation of treatment
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on a Monday. Conversely, commencement on any other weekday extends this theoretical
duration to 49 days.

The mean duration for the 33 × 2.0 Gy prescription exhibited a declining trend over
time, culminating in a duration of 44 ± 5.7 calendar days in 2022. The duration for the
30 × 2.0 Gy prescription remained relatively stable between 2016 and 2020, averaging
44.0 ± 1.8 calendar days in 2020.

4. Discussion

The oversight of radiotherapy operations and the ongoing enhancement of the working
environment for both patients and medical staff necessitate vigilant oversight of procedural
execution. Recognizing the wealth and caliber of data inherent in the OIS, the ODM system
was devised. This study addressed the proof-of-concept of the ODM tool and delineated
several prospective applications.

Firstly, ODM facilitates the quantification of a radiotherapy department’s throughput
by assessing the number of treatments administered within specified timeframes (weekly,
monthly, annually, etc.), and categorizing them according to the types of pathologies treated
(Figure 2). Utilizing this metric, we were able to quantify the reduction in departmental
activity experienced in 2020 attributable to the COVID-19 pandemic and ascertain the
pathologies that were most significantly impacted. For example, the decrease in surgical
care during the pandemic in 2019 generated a decrease of nearly 15% of the radiotherapy
treatments for the breast pathology between 2019 and 2020. After 2020, an increase in breast
treatments in radiotherapy was observed and, in 2021, it reached a value close to the one
before 2019. For the same reasons, the number of metastasis treatments decreased by 11%
between 2019 and 2020, but unlike breast treatments, it did not increase again: compared
to 2019, it has decreased by 26.5% in 2022. This very singular behavior was quantified
thanks to ODM, and, in view of the raised questions, an investigation would be planned to
understand the causes.

The development of ODM and its application during the pre-production phase in
2019 enabled the measurement of various metrics, which precipitated numerous modifi-
cations within the radiotherapy department’s structure. The outcomes discussed in this
research mirror these alterations.

Among the indicators accessible with ODM, monitoring the activities of treatment
machines is highly valuable for effective department management. It is important to note
that a combination of several indicators is essential for optimizing machine utilization.
In this study, we demonstrated that the average number of patients treated per day on
a treatment machine should be considered alongside the specific treatment techniques
and pathologies being treated to enable a comprehensive analysis of machine activity.
The two treatment machines presented in this study were opened daily during the same
amount of time, and Figure 3 alone revealed a higher daily throughput for the Synergy
system compared to the VersaHD. Nevertheless, a detailed examination of the therapeutic
modalities and the spectrum of pathologies addressed indicates that the VersaHD was
predominantly utilized for treatments of higher complexity, such as Intensity-Modulated
Radiation Therapy (IMRT), Volumetric Modulated Arc Therapy (VMAT), and Stereotactic
Radiotherapy (SRT), across a diverse range of pathologies. Conversely, the Synergy system
was engaged in a narrower scope of treatment types, predominantly excluding SRT, which
facilitated a greater number of daily treatments. On the Synergy, the installation of the
surface recognition system was carried out in 2019, and led to a specialization of breast
and metastasis treatments on this machine: Figure 4 serves as a clear illustration of the
departmental decision-making process. Prior to 2019, the Synergy machine was utilized for
treating a wide range of pathologies. However, starting from 2020, there was a noticeable
shift towards predominantly treating breast and metastasis cases. This example exemplifies
how the use of ODM can enable the verification of implemented strategies within the
department and provide a means to evaluate their effectiveness. It demonstrates the
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capability of ODM in tracking and analyzing treatment patterns, facilitating informed
decision-making and resource allocation in the department.

In addition to the aforementioned benefits, ODM is an essential tool for quantifying
the quality of patient care in radiotherapy. In this study, we focused on three indicators:
the delay between the simulation scan and the first treatment session, the coherence of
prescriptions for a particular pathology, and the overall treatment duration. The results
obtained from the first indicator led to a significant change in departmental strategy in 2019.
Prior to that, the date of the first treatment session was assigned once the entire planning
process (including delineation, ballistics, optimization, and file verification) was completed.
This allowed each actor in the planning process (dosimetrist, radiation oncologist, physicist,
manipulator) to be a driving force and to ensure a rapid treatment preparation for the
patients. However, the first results provided by ODM showed that, before 2019, this strategy
was not effective; this was illustrated in this study for palliative metastasis treatments in
Figure 5, for which only 29.1% were treated within 8 days following the simulation scan.
To address this issue, a new strategy was implemented in 2019, which established specific
timeframes between the simulation scan and the first treatment session. The delay was
set to 1 working day for symptomatic treatments, to 7 calendar days for analgesic, simple
metastasis and epiduritis treatments, and to 14 calendar days for other types of metastases.
This revised strategy successfully reduced the delay in initiating care. By 2021 and 2022,
45.3% of palliative treatments had their first session within 8 days of the simulation scan.

The study of prescription variability with ODM is of particular interest in breast
pathology due to the evolution of practices and reference frameworks linked to patient age.
In our institution, the prescription schemes of the START B study (15 × 2.67 Gy) [9] were
applied for breast treatment in 2019, typically reserved for patients over 40 years of age,
while the historical protocol (25 × 2.0 Gy) was prescribed for patients under 40 years of
age. For patients over 65 years of age, the 15 × 3.0 Gy protocol was used until 2021, when
it was replaced by the prescription of 5 × 5.2 Gy. Figure 6 shows the results of the audit
carried out with ODM, indicating that the 25 × 2.0 Gy prescription was still being used
for patients over 40 years of age. This data suggests the need for a medical discussion to
harmonize prescriptions according to the decided schemes.

The overall duration of radiotherapy treatments is another significant criterion for
assessing quality, as it influences the rate of cellular repopulation in tumor cells [10]. In
the case of larynx H&N pathology, this duration was quantified using data obtained from
the ODM tool. The prescription of 35 × 2 Gy corresponds to a theoretical duration of 47 to
49 calendar days, depending on the starting day of the first session in the week. In 2020,
the department implemented a bi-fractionation strategy for this pathology, scheduling
treatments on one day a week to minimize their duration, as treatment interruptions can
occur due to medical reasons or machine maintenance or breakdowns. Prior to this measure,
the median duration of treatment was 51 days (Figure 7) for the period from 2016 to 2020,
and decreased to 48 calendar days in 2022, approaching the desired theoretical duration.
Regular monitoring of this quality indicator using the ODM tool allows for evaluation of
any potential deviations and facilitates necessary adjustments.

Overall, these findings demonstrate how ODM can identify inefficiencies and drive
improvements in patient care through evidence-based decision-making and strategic adjust-
ments. Consequently, it is a highly promising instrument that is anticipated to be pivotal in
the forthcoming years for leveraging radiotherapy data.

Indeed, most of the data analyzed in this study, such as the date and time of treatment,
the recorded dose, the name of the treatment unit associated with the delivered dose, etc.,
were generated by the Mosaiq OIS, and are robust data. However, some entries, such as
the diagnostic code (ICD), for example, were entered by humans and were therefore prone
to errors. This poses a significant limitation since, in the case of ICD codes, a data entry
error could result in the patient being classified in an inappropriate pathology group, thus
generating inaccurate statistics. To address this issue, two main actions were implemented
in the radiotherapy department. The first, which yielded the most benefits, involved
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educating individuals entering information into Mosaiq about the importance of their data
entry for posterior radiotherapy data extraction. The second action involved verifying data
robustness during data analysis by conducting information cross-referencing. For instance,
cross-referencing among the pathology group (derived from the ICD code), the prescribed
dose, and the prescription name was performed to identify patients whose ICD codes may
have been inaccurately assigned.

Since the initial implementation of ODM in our radiotherapy department, alternative
software systems have been developed by radiotherapy vendors. The Aria OIS system from
Varian Medical System (Palo Altoa, CA, USA) allows for straightforward data extractions,
but presents limitations when cross-queries need to be conducted. Additionally, it lacks a
user interface for data analysis. To date, the RayCare OIS from Raysearch Laboratories AB
(Stockholm, Sweden) also does not support complex treatment data extractions. However,
Raysearch Laboratories AB has developed RayIntelligence to exploit radiotherapy data from
TPS. It consists of two components: RayData, which enables automatic data extraction to a
cloud server from TPS, and RayAnalytics, present on the cloud server, which allows for data
analysis and visualization. Considering these developments, the integration of treatment
data from the RayCare OIS appears to be a natural progression. Accuray’s Integrated
Data Management System (iDMS) currently does not offer treatment data analysis tools
for machines like Cyberknife, Tomotherapy, or Radixact, but provides data interfacing
with third-party OIS systems such as Mosaiq, Aria, or RayCare. Queries on treatment data
conducted with these machines need to be performed via the OIS. Furthermore, Elekta
has developed Mosaiq Oncology Analytics (MOA), which enables in-depth extraction of
treatment data, and features an intuitive graphical interface designed for users, making
data extraction and query execution seamless without the need for specific computer skills.
However, two significant limitations are noted. The first limitation, shared by MOA with
RayIntelligence, concerns cybersecurity with the cloud-based architecture of these systems,
meaning health data is aggregated and made available on secured cloud servers. With the
rise in cyberattacks targeting medical data [11–14] and their impact on clinical activities,
radiotherapy centers are opting to store the medical data on physical servers within their
premises, making a cloud platform less attractive until stronger security measures are
in place [15,16]. The second limitation relates to the MOA structure: while ODM allows
accessing all radiotherapy data stored in Mosaiq, enabling almost any type of query, MOA
was designed based on a model allowing queries on predefined indicators. If additional
queries are desired by users, Elekta would undertake additional developments, leading
to a certain rigidity in usage. Nonetheless, radiotherapy centers may have limited human
resources to fully extract treatment data, and turnkey software solutions offered by vendors
can serve as an attractive alternative for managing a radiotherapy department.

In our center, the implementation of ODM has represented a significant advancement
in the analysis and understanding of radiotherapy data, enriching our medical databases
with structured treatment information. Firstly, at the local level, ODM facilitated the
extraction of essential data for the validation of the OSIRIS [17] clinical model within its
radiotherapy component. Several potential applications of this instrument are currently
under consideration. For instance, Guihard et al. [18] presented the interest of having an
overlap between the information of the OIS and those of the treatment planning through an
application focused on breast treatments. Nowadays, data related to treatment planning,
such as CT, MRI, RTDose, RTStruct, RTPlan, RTImage, REG, CBCT, etc., can be stored
in OIS. Future developments of ODM will enable linking data treatment with planning
data. Furthermore, a French national project led by the Unitrad group aims to generate
structured clinical data directly in OIS [19,20]. Three crucial categories of information
for radiotherapy will be stored in the OIS: treatment planning data, patient clinical data
(including initial consultation, follow-up during treatment, and post-treatment follow-up),
and data related to the course of radiotherapy. The extraction of this data using ODM
would create a comprehensive structured database.
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The subsequent phase involves the integration of radiotherapy datasets with hospital
information system records to elucidate the correlations among diverse medical datasets,
including surgery, anatomopathological data, diagnostic assessments, chemotherapeutic
treatments, radiotherapeutic treatments, and many others. A single database resulting from
the concatenation of all structured medical data generated from patients during their cancer
care can thus be obtained. These databases, created at the level of a care center or even at a
national level [17], exploitable by artificial intelligence-based tools [21], present significant
potential for improving patient care. Similar to various medical domains, this will have
the potential to predict treatment toxicity [22,23], propose personalized treatments [24],
provide decision support tools [25–27], establish new dose reference framework [28], and
much more.

This integration is a pivotal goal underpinning large-scale initiatives [29], and in this
context, the ODM tool constitutes a critical component amidst the myriad developments
required, thereby facilitating advancements in oncological radiotherapy practices.

5. Conclusions

A proof-of-concept of a monitoring tool, named ODM, was presented. It was devel-
oped in radiotherapy to generate structured information based on data contained in an
OIS. Our primary objective was to highlight some of the applications of ODM in enhancing
patient care in radiotherapy. This study demonstrates the efficacy of ODM as a valuable
tool for extracting structured data from OIS, providing quantitative insights that improve
the organization of radiotherapy departments and the overall quality of patient care.
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