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Abstract: In response to the COVID-19 pandemic and its strain on healthcare resources, this study
presents a comprehensive review of various techniques that can be used to integrate image com-
pression techniques and statistical texture analysis to optimize the storage of Digital Imaging and
Communications in Medicine (DICOM) files. In evaluating four predominant image compression
algorithms, i.e., discrete cosine transform (DCT), discrete wavelet transform (DWT), the fractal com-
pression algorithm (FCA), and the vector quantization algorithm (VQA), this study focuses on their
ability to compress data while preserving essential texture features such as contrast, correlation, an-
gular second moment (ASM), and inverse difference moment (IDM). A pivotal observation concerns
the direction-independent Grey Level Co-occurrence Matrix (GLCM) in DICOM analysis, which
reveals intriguing variations between two intermediate scans measured with texture characteristics.
Performance-wise, the DCT, DWT, FCA, and VQA algorithms achieved minimum compression ratios
(CRs) of 27.87, 37.91, 33.26, and 27.39, respectively, with maximum CRs at 34.48, 68.96, 60.60, and
38.74. This study also undertook a statistical analysis of distinct CT chest scans from COVID-19
patients, highlighting evolving texture patterns. Finally, this work underscores the potential of
coupling image compression and texture feature quantification for monitoring changes related to
human chest conditions, offering a promising avenue for efficient storage and diagnostic assessment
of critical medical imaging.

Keywords: COVID-19; DICOM; image compression; texture quantification; CT chest

1. Introduction

The advent of 2019 saw the emergence of a novel coronavirus, SARS-CoV-2, leading to
the disease termed COVID-19. In December 2019, a rapid outbreak was noted, marking the
beginning of a global health crisis [1]. The primary mode of transmission was identified to
be via respiratory droplets, particularly during sneezing or coughing events from infected
individuals. Furthermore, the virus demonstrated the ability to persist on surfaces, leading
to potential indirect transmission [2]. The susceptibility to COVID-19 varies; elderly individ-
uals, young children, and those with underlying medical conditions, especially respiratory
ailments and diabetes, exhibit heightened vulnerability [3]. The pervasiveness of the virus
can be emphasized by its presence in 213 countries and territories [4]. Notably, the highest
infection rates were observed in the USA, Spain, Italy, the UK, France, Germany, China,
and Canada, with the USA and Spain recording the highest mortality [5]. Governmental
interventions globally have varied but predominantly focused on reducing human mobility,
exemplified by the Indian government’s strategies, including lockdowns, promoting work-
from-home practices, closing educational institutions, and introducing the “Aarogya Setu”
contact-tracing application [6]. The mutating nature of SARS-CoV-2 has posed challenges,
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with noteworthy variants such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta
(B.1.617.2 and B.1.617.3) emerging from different regions [7]. COVID-19, also denoted as
the “Novel Severe Acute Respiratory Syndrome”, primarily manifests as an infectious res-
piratory disease [8]. While a significant proportion of infected individuals experience mild
to moderate respiratory symptoms, recovery without treatment is common. However, indi-
viduals with pre-existing conditions, including cardiovascular diseases, diabetes, chronic
respiratory disorders, and cancer, tend to exhibit severe complications [9]. The critical
role of vaccination in curbing the pandemic has been universally acknowledged. Several
vaccines, including Pfizer-BioNTech [10], Moderna [11], Johnson & Johnson’s Janssen [12],
Sputnik V [13], Covishield [14], and Covaxin [15], have been developed and administered
globally [16]. The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has seen multiple
phases of disease transmission, often referred to as “waves”. The initial outbreak, or the
“first wave”, emerged in late December 2019 and early January 2020, with a significant
impact on several developed nations, including the USA, Italy, the UK, and Brazil. Re-
markably, India experienced relative respite during this phase. However, the subsequent
“second wave” proved devastating for India. Contributory factors included the country’s
high population density and the emergence of the “Delta variant”, recognized as one of
the most virulent strains of the virus. This period marked global challenges, including
hospital bed shortages [17], medical oxygen scarcity [18], medical personnel deficits [19],
and underreported mortality [20]. Anticipating the challenges of an expected “third wave”
necessitates forward-thinking strategies, especially concerning medical data management
need to be addressed. Considering the suboptimal specificity of rapid antigen-antibody
tests, clinicians often advocate for chest CT scans as a more reliable diagnostic measure for
COVID-19 [21]. Such a scenario underscores the potential burden on healthcare systems,
given the massive data storage demands these scans entail.

Concerning the Digital Imaging and Communications in Medicine (DICOM) image
compression scenario, there are two types of image compression techniques, which include
lossy image compression and lossless image compression. The prominent techniques under
lossy compression include transform coding [22,23], fractal compression [24,25], chroma
sampling [26,27], discrete cosine transform (DCT) [28,29], and the vector quantization
algorithm (VQA) [30,31]. On the other hand, lossless compression techniques include
run-length encoding [32,33], entropy encoding [34,35], Lempel–Ziv–Welch (LZW) [36,37],
and DEFLATE, which synergizes LZSS with Huffman coding [38,39]. Lossless compression
is ideal for applications like technical drawings, and medical imaging as it preserves the
quality of all original data. Conversely, lossy compression favors storage over image quality
and introduces a low bit rate, resulting in significant bit rate reduction. Several research
endeavors have explored a myriad of compression algorithms to address this concern.
Parikh et al. [40] used high-efficiency video coding (HEVC) to compress DICOM images,
achieving a commendable compression rate of over 54%. Their findings underscored the
potential of the HEVC coding technique as a feasible alternative to conventional image
compression methods. Rahmat et al. [41], on the other hand, championed the Huffman
coding technique for lossless compression of DICOM images, with their methodology
resulting in a 72.98% reduction in storage space. Ammah et al. [42] introduced a method for
compressing varied medical images, including Magnetic Resonance Imaging (MRI), Com-
puted Tomography (CT), and ultrasound images. Their approach, termed discrete wavelet
transform–vector quantization (DWTVQ), was tested on multiple window sizes. Notably,
they found a window size of 3 × 3 to yield optimal compression results. Sunil et al. [43]
proposed an innovative medical image compression scheme utilizing the “pixel and block-
level splitting technique”. Their work evaluated outcomes based on key metrics, such
as the Peak Signal Noise Ratio (PSNR) and image reconstruction time, with an emphasis
on lossless image compression techniques. The burgeoning realm of medical diagnostics
has witnessed a significant shift towards the texture quantification approach, particularly
when applied to chest CT scans. This method hinges on the mathematical quantification of
image data, juxtaposing it against evolving changes in analysis [44]. A plethora of texture
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classification techniques burgeons in the literature, inclusive of pixel-based methods [45],
feature-based methods [46], and region-based methods [47]. Delving deeper, pixel-based
methods notably encapsulate techniques such as the Gray Level Co-occurrence Matrix
(GLCM) [48] and the Local Binary Pattern (LBP) [49], while feature-based methods pivot
around edge-based features like Scale-Invariant Feature Transform (SIFT) [50], and Speed
Up Robust Features (SURF) [51]. Furthermore, region-based methods find their bifurca-
tion into the Block Counting Method (BCM) [52] and the Active Patch Model (APM) [53].
Among these vast arrays of methodologies, the GLCM-based approach stands out in terms
of its ubiquity in texture classification. Its prominence lies in its ability to simultaneously
capture spectral and spatial relationships between pixels. However, the crucial question
remains: what is the optimum distance and orientation angle between two pixels when
deploying GLCM?

Thus, in this investigation, we propose an innovative approach, leveraging “DICOM
image compression” and “texture quantification” to address data storage challenges. The
system segregates DICOM images into two categories: the region of interest (ROI) and the
non-region of interest (NROI). Diagnostically, the ROI holds significance, while the NROI
often bears less or no diagnostic value. In our proposed method, the NROI undergoes
lossy image compression, while the unaltered ROI is seamlessly incorporated into the
compressed NROI. Previous advancements in DICOM image compression have laid the
groundwork for this approach, as detailed in associated reviews. In the realm of medical
imaging, efficient storage of DICOM images has always been paramount. The trajectory
of previous research underscores the longstanding emphasis on efficient DICOM image
compression. It sets a precedent for the present study, where we seek to further optimize
image compression for both time and storage space conservation.

This article is systematically structured into five sections. Section 1 was about the
introduction and background details of the various compression methods. Section 2 delves
into the mathematical model of the proposed image compression technique and the GLCM-
based texture classification features. Section 3 presents the outcomes of the conducted
simulations, followed by a detailed discussion of the findings. The future scope of image
compression techniques is presented in Section 4. Finally, this article concludes in Section 5,
summarizing the primary insights and implications of this research.

2. Materials and Methods
2.1. Mathematical Framework for Extraction of the ROI and NROI

Identification of the ROI and image compression for DICOM images is important for
the identification of diagnostically important areas from infected body parts [54]. Being
digital, these images can be represented as matrices. Let us explore how digital images
correspond to mathematical matrices. Essentially, every digital image is composed of
pixels arranged in rows and columns, similar to the elements of a matrix. Consequently,
operations applicable to matrices can similarly be performed on digital images, allowing
for various mathematical manipulations and analyses.

Consider an image matrix denoted by A, represented as A = [a_ij](m × n), where
”m” signifies the total rows and ”n” denotes the total columns of the image. Therefore, the
overall pixel count within an image equals m× n. Each pixel in the image can be pinpointed
by its coordinates (i, j). The pixel values for positions i and j within the image are bound
by the constraints 1 ≤ i ≤ m and 1 ≤ j ≤ n. The image matrix A = [a_ij](m × n), can be
further reconstructed using steps (1–6).
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Step 1: Represent a digital image in a matrix of dimensions m × n. Thus, the image
consists of a total of m × n number of pixels.

[A] =
[

a(i,j)
]

m×n
=


a(1,1) a(1,2) . . . a(i,j) a(1,n)
a(2,1) a(2,2) . . . a(2,j) a(2,n)

...
a(i,1)
a(m,1)

...
a(i,2)
a(m,2)

. . .
. . .
. . .

...
a(i,j)
a(m,j)

...
a(i,n)
a(m,n)


Step 2: Extract a matrix of dimension u × v from the input image matrix. This image

matrix can be considered as the ROI. No compression or lossless compression is applied to
this section of the image. Thus, the ROI matrix consists of u × v numbers of pixels in total,
which are extracted from the original image matrix.

[B] =
[
b(l,m)

]
u×v

=

a(2,2) . . . a(2,j)

· · · . . . · · ·
a(i,2) . . . a(i,j)

, where 2 ≤ l ≤ u and 2 ≤ m ≤ v.

Step 3: Apply zero padding to matrix [B] to make the dimension of the matrix [B]
equivalent to the dimensions of matrix [A]. A matrix with zeros at a non-ROI position is
called a zero-padded image matrix and is represented as [C]. Here, we have created a new
matrix having all non-ROI elements zero, but the dimension of the matrix is equivalent to
that of the original image matrix, i.e., (m × n).

[C] =
[
ci,j

]
p×q =


0 0 0 0 0

0
0
0

a(2,2)
. . .

a(i,2)

. . .
. . .
. . .

a(2,j)
. . .

a(i,j)

0
0
0

0 0 0 0 0

, where 1 ≤ p ≤ m and 1 ≤ q ≤ n

Step 4: Perform matrix subtraction of the original image matrix with the zero-padded
image matrix to obtain an image matrix [D](m.n) with redundant information. In this step,
the matrix obtained will have pixels that are of no use to us, as they represent the NROI.
However, the dimensions of the matrix are the same as the original image matrix.

[D](m.n) = [A](m.n) − [C](p=m,q=n)

[D] =
[

D(i,j)

]
m×n

=


a(1,1) a(1,2) . . . a(i,j) a(1,n)
a(2,1) 0 . . . 0 a(2,n)

...
a(i,1)
a(m,1)

...
0

a(m,2)

. . .
. . .
. . .

...
0

a(m,j)

...
a(i,n)
a(m,n)


Step 5: Apply lossy image compression to

[
D(i,j)

]
m×n

. Thus, this region will lose its

original quality and the storage required to store this will be reduced.
Step 6: Finally, fuse the lossy compressed image NROI with the non-compressed

zero-padded ROI to obtain a final image with both parts embedded. This image matrix
represents the final image and is expressed by

[
E(i,j)

]
m×n

.



Technologies 2024, 12, 17 5 of 37

Final image matrix
[

E(i,j)

]
m×n

=
[

D(i,j)

]
m×n

+
[
ci,j

]
p×q

[E] =
[
Ei,j

]
m×n =


a(1,1) a(1,2) . . . a(i,j) a(1,n)

a(2,1)
...

a(i,1)

a(2,2) . . . a(2,j)
...

. . .
...

a(i,2) . . . a(i,j)

 a(2,n)
...

a(i,n)
a(m,1) a(m,2) . . . a(m,j) a(m,n)


Hence, it is evident that mathematical procedures such as matrix multiplication and

subtraction can be applied to digital images, including DICOM formats. These opera-
tions enable effective manipulation of both the ROI and the NROI within these images.
Subsequently, these specific areas can be further processed using targeted algorithms for
enhanced analysis and interpretation.

2.2. Features Derived from the GLCM

Texture classification is pivotal for discerning information regarding individual pixels
in an image. The mechanism to extract both the spectral and spatial attributes from an
image is facilitated by the GLCM. Haralick [55] pioneered various texture features enabling
the quantification of image texture. The computation of GLCM is a two-fold process:
Firstly, texture features are calculated using specified window sizes, e.g., 5 × 5 or 7 × 7.
Subsequently, these features undergo classification by assessing the entirety of image pixels.
After GLCM’s introduction, Gotlieb et al. [56] categorized these fourteen features into
four distinct clusters. If j symbolizes the GLCM, and Px and Py represent the probability
density functions of the image pixels, then µx, µy, σx, and σy are the respective mean and
standard deviation of the image pixels for the probability density functions Px and Py. The
formulations for µx, µy, σx, and σy are provided in Equations (1)–(4) [55].

µx = ∑N
i=1 ∑N

j=1 i × j(i, j) (1)

µy = ∑N
i=1 ∑N

j=1 j × j(i, j) (2)

σx =

√
∑N

i=1 ∑N
J=1 (1 − µx)

2 J(i, j) (3)

σy =

√
∑Ng

i=1 ∑Ng
J=1 (1 − µx)

2 J(i, j) (4)

HXY is expressed as entropy J, which is the entropy of the probability function.
Px and Py are expressed in Equations (5)–(8) [55].

HXY1 = −∑N
i=1 ∑N

j=1 J(i, j).log(Px(i)Py(j)) (5)

HXY2 = −∑N
i=1 ∑N

j=1 Px(i)Py(j).log(Px(i)Py(j)) (6)

Jx+y(k) = ∑i ∑j J(i, j), k = 2, 3, 4 . . . , 2N, where i + j = k; (7)

Jx−y(k) = ∑i ∑j J(i, j), k = 0, 1, 2, 3, 4 . . . ., N − 1, where |i − j| = k; (8)

Using Equations (1)–(8), texture features derived by the GLCM are expressed in
Equations (9)–(26) [55].

Angular second moment = ∑N
i=1 ∑N

j=1 J(i, j)2 (9)

Contrast = ∑N
i=1 ∑N

j=1 (i − j)2 J(i, j) (10)
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Correlation =
∑N

i=1 ∑N
j=1 (i − µi)

(
j − µj

)
J(i, j)

σxσy
(11)

Sum o f square (Variance) = ∑N
i=1 ∑N

j=1 (i − µ)2 J(i, j) (12)

Sum average = ∑2N
i=2 i J(x+y)(i) (13)

Sum variance = ∑N
i=2(i − HXY)2 J(x+y)(i) (14)

Entropy = −∑N
i=1 ∑N

j=1 J(i, j)log(J(i, j)) (15)

Homogeneity = ∑N
i=1 ∑N

J=1 J(i, j)/(1 + |(i − j)| (16)

Di f f erence Variance = ∑N−1
i=0 i2 J(x−y)(i) (17)

Di f f erence entropy = −∑N−1
i=0 J(x−y)(i)log(J(x−y)(i)) (18)

Autocorrelation = ∑N
i=1 ∑N

j=1 (i.j)J(i, j) (19)

Dissimilarity = ∑N
i=1 ∑N

j=1 |(i − j)|J(i, j) (20)

Cluster shade = ∑N
i=1 ∑N

j=1

(
i + j − µx − µy

)3 J(i, j) (21)

Cluster prominence = ∑N
i=1 ∑N

j=1

(
i + j − µx − µy

)4 J(i, j) (22)

Maximum probablity = max(J) (23)

Inverse di f f erence = ∑N
i=1 ∑N

j=1 J(i, j)/(i − j)2 (24)

In f ormation o f correlation (1) =
HXY − HXY1
max(HX, HY)

(25)

In f ormation o f correlation (2) =
√
(1 − e−2(HXY2−HXY)) (26)

Therefore, these texture features can be utilized to quantify pixel variations, facilitating
the analysis of texture differences in the targeted image. This approach allows us to obtain
a more detailed understanding of the image’s textural properties.

2.3. Classification of the Image Compression Algorithm

In image compression, essentially, data compression is applied to digital images which
aims to minimize transmission and storage costs. Predicated on visual perception and the
statistical properties of image data, these algorithms elucidate the compression process.
Predominantly, image compression techniques are bifurcated into “lossless” and “lossy”
categories. While both techniques minimize data redundancy, the choice between them
depends on the application’s specific demands.

2.3.1. Transform Coding

Transform coding is a lossless data compression algorithm that enables digital im-
ages and audio signals to be compressed without compromising any information, thus
preserving the integrity of the original data. This transformation process, while lossless,
optimizes quantization to yield a “low-quality output” from the provided “input data”.
The crucial part of this algorithm is the discernment of the application’s objectives. This
knowledge permits non-essential areas to be pruned by “lowering the bandwidth” [57,58]
while the regions of interest either remain unaltered or undergo minimal compression
based on a pre-defined threshold. Consequently, while the decoded output may not be a
replica of the original image, it is adequately proximate to suit the application’s needs. A
schematic representation of this process, encompassing transformation, quantization, and
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the integration of encoding and decoding to render a reconstructed image, is depicted in
Figure 1.

Figure 1. Block diagram of transform coding [39].

In transform coding, the transformation block denoted as T(x), is typically invertible,
ensuring that the original data can be recovered. The quantization stage, represented
by Q(y), introduces some distortion as it reduces the precision of the transformed data,
often to compress it further [59]. However, it is important to note that the quantizer is
also generally invertible, but with some loss in fidelity due to the introduced distortion.
Subsequently, the encoder block, c(q), alongside the decoder, offers a lossless compression
mechanism, ensuring that post-decoding, the data can be precisely reconstructed, albeit
with the distortions from the quantization stage.

2.3.2. Fractal Compression

This compression technique is based on the mathematical constructs of fractals, which
are self-similar patterns, where a part of the structure resembles the whole. This approach
to digital image compression tends to be lossy [60,61]. The principle behind it is to find self-
similar sections of an image and then use fractal mathematics to represent these sections.
Visual representations of fractals can be seen in figures like the circle geometry in Figure 2a
and the Sierpinski triangle in Figure 2b, both of which showcase the inherent self-similarity
property of fractals.

Figure 2. Block diagram of fractal geometry and transform coding (a) Circular geometry (b) Sierpinski
triangle (c) Block based compression (d) Image compression methodology [40].
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Fractal compression capitalizes on the inherent redundancy found within an image.
By recognizing portions of an image that are similar or identical to other sections, the
method simplifies data representation. The image is partitioned into two distinct blocks:
the smaller “range block” and the larger “domain block”. The technique involves using
the domain block to represent or approximate the range block. For every range block,
a search is conducted to find a domain block that closely mimics its appearance [62].
Figure 2c illustrates the method of fractal image compression using these blocks. To fine-
tune the resemblance between domain and range blocks, a series of transformations occur
encompassing shearing, rotation, scaling, translation, adjustments in brightness, contrast,
and sharpness—which are applied to the domain block. The process is visualized in
Figure 2d, which depicts the block diagram for image compression using fractal principles.
Key characteristics of the fractal compression algorithm are:

• The achievable compression ratios range from 1:4 to 1:100, making it efficient in
reducing data size.

• The compression phase is notably slower compared with other methodologies.
• Decoding, on the other hand, is expedited and is not bound by resolution constraints.
• Natural images, with their inherent similarities and patterns, are best suited for this

compression method.
• The algorithm exhibits superior performance with color images as opposed to grayscale

ones.

2.3.3. Chroma Sampling

Chroma subsampling is grounded in the principle of human visual perception, which
is more sensitive to luminance (brightness) than to chroma (color). In this compression
technique, the higher-resolution components of an image are dedicated to luminance data,
while the chroma data are allocated to the lower-resolution portions [63]. Essentially, it
leverages the human eye’s greater sensitivity to changes in brightness over color variations.
By selectively reducing the resolution of color information and retaining more detail in
brightness, chroma subsampling manages to achieve compression without a noticeable loss
in perceived image quality.

The essence of chroma subsampling is predicated on the idea that humans perceive
luminance information (brightness) more acutely than chromatic information (color). To
exploit this characteristic of human vision, the image’s chromatic data are typically sub-
sampled, resulting in a compressed form with less data to store or transmit while retaining
a perceptual quality that is relatively indistinguishable from the original [64]. The process
begins by decomposing an image’s data into two main components: luma, which represents
brightness, and chroma, which carries color information. This decomposition is visually
represented in Figure 3.

Figure 3. Block diagram of chroma subsampling [64].
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For the effective application of chroma subsampling, a transformation is essential,
especially when the original image is in the RGB or CMYK model. This necessitates a
shift from a model that represents colors as red, green, and blue components (or cyan,
magenta, yellow, and black in CMYK) to one that distinctly demarcates brightness (luma)
from color (chroma). This transformation process is typically lossless, meaning that the
original image’s information remains intact and can be fully recovered. Once the image is
in a suitable color space that distinctly represents luma and chroma, the subsampling can
be applied predominantly to the chroma channels, leading to the desired compression.

In digital imaging, popular color spaces used for this purpose include YIQ and YCbCr.
The transformation equations provided in Equations (27)–(33) detail the conversion process
between these color spaces and the RGB model. These equations ensure that the transfor-
mation back and forth between the original RGB model and the chosen color space for
subsampling is consistent, preserving the integrity of the original image data.

Y = 0.299 × R + 0.587 × G + 0.114 × B (27)

I = 0.596 × R − 0.275 × G + 0.321 × B (28)

Q = 0.212 × R − 0.523 × G − 0.311 × B (29)

U = −0.147 × R − 0.289 × G + 0.436 × B (30)

V = 0.615 × R − 0.515 × G − 0.100 × B (31)

Cb = 0.1687 × R − 0.3313 × G + 0.5 × B + 128 (32)

Cr = 0.5 × R − 0.4187 × G − 0.0813 × B + 128 (33)

Some of the common chroma subsampling is expressed as 4 : 4 : 4, 4 : 2 : 2, 4 : 1 : 1,
4 : 2 : 0, 4 : 1 : 0, and 3 : 1 : 1. The main features and subsampling methodologies are
presented in Table 1.

Table 1. Classification of the types of chroma sampling and subsampling.

Chroma Subsampling Features Ref.

4 : 4 : 4 In this sampling methodology, all three YCbCr components have the same sampling rate
as the input resolution. [65,66]

4 : 2 : 2 In this sampling methodology, chroma subcomponents are sampled by a factor of 2, and
their influential position is co-sited. [65,66]

4 : 1 : 1 In this sampling methodology, Cb and Cr components are sampled by a factor of
4 horizontally and co-sited with the fourth brightness sample. [65,66]

4 : 2 : 0 In this sampling methodology, Cb and Cr components are subsampled by a factor of 2 in
both the horizontal and vertical directions. [65,66]

4 : 1 : 0 This sampling methodology uses half of the vertical and one-fourth of the horizontal color
resolution along with one-eighthof the bandwidth of the maximum color resolution. [65,66]

3 : 1 : 1
In this sampling methodology, Cb and Cr components are subsampled by a factor of
3 horizontally. The chroma sample is later divided by every third brightness sample. The
36-byte RGB elements are also reduced by 20, producing 2 : 1 compression.

[66,67]

2.3.4. Discrete Cosines Transform

Discrete cosine transform (DCT) has been a cornerstone in the realm of image com-
pression for decades and forms the underpinning for JPEG, one of the most widely used
image compression standards. The fundamental principle behind DCT lies in its capacity to
represent an image in the frequency domain rather than its spatial domain. This property of
DCT ensures that most of the image’s information is concentrated in the lower frequencies,
making it particularly effective for compressing images [68,69].
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One of the prominent advantages of DCT is its ability to concentrate energy within
the low-frequency components of an image. This energy compaction means that most of
the significant information about an image can be represented using fewer coefficients,
thereby enabling effective compression. Furthermore, DCT also mitigates the “blocking
artifact” phenomenon. Blocking artifacts, often visible as square block-like patterns on
compressed images, are used as a common flaw in many compression algorithms. With
DCT, this effect is reduced, ensuring that transitions between sub-images or blocks are
more seamless and less perceptible to the human eye. These attributes, among others,
make DCT an invaluable tool in various applications, from image and video processing to
telecommunication systems.

After the color coordinate conversion is applied to the image, the next step is to divide
the image into 8 × 8 blocks assuming an 8 bit image. Considering the 8 bit image, the range
of the element falls under [0 − 255]. The center point of this range is 128. So, the modified
data range is shifted from [0, 255] to [−128, 127]. The DCT algorithm divides an image
into separate parts containing different frequencies. The step-in quantization discards less
critical frequencies, and the decompression stage retrieves the image with the assistance
of fundamental frequencies. The 2D-DCT transformation and the inverse of the 2D-DCT
transformation are expressed in Equations (34) and (35), respectively.

f (u, v) =
2
N

C(u)C(v)∑N−1
x=0 ∑N−1

y=0 COS
[

π(2x + 1)u
2N

]
COS

[
π(2y + 1)v

2N

]
(34)

For u = 0, . . . . . . ., N − 1 and v = 0, . . . . . . , N − 1,

When N = 8 bit image, then C(k) =
{

1/
√

2, k = 0
1, otherwise

}

f (x, y) =
2
N ∑N−1

u=0 ∑N−1
v=0 C(u)C(v) f (u, v)COS

[
π(2x + 1)u

2N

]
COS

[
π(2y + 1)v

2N

]
(35)

For x = 0, . . . . . . ., N − 1 and y = 0, . . . . . . , N − 1 where N = 8.

2.3.5. Vector Quantization Algorithm

Linde et al. presented a vector quantization algorithm (VQA) that emerged as a pivotal
lossy compression technique [70]. With its roots deeply embedded in the realms of image
compression and data-hiding applications, VQA is predicated on partitioning an image
into numerous distinct blocks, with each block encapsulating m × m pixels, given m as a
predefined parameter. The crux of this algorithm revolves around mapping each of these
blocks to a corresponding “codeword (CW)” found in a predefined “codebook”. Rather
than representing the block by its actual content, the position or index of the matched CW
in the codebook takes on this role in the output. During the decoding phase, the CW is
systematically retrieved using its associated index values. The degree of likeness between a
block and a potential CW candidate within the codebook can be gauged using a specific
metric, as expressed in Equation (36). This methodology ensures efficient compression by
representing large data blocks with more concise codeword indices.

CD(X, Y) = ∑n
i=0 (Xi − Yi)

2+∑n
i=1 (Xn×i − Yn×i)

2 (36)

where n represents the entries in the state codebook, and Xi and Yi represent the ith and jth

element corresponding to X and Y.
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Figure 4. Encoding–decoding procedure corresponding to the VQA [70].

Side match vector quantization (SMVQ) stands as an evolved iteration of the VQA,
with its foundational premise suggesting that adjacent image pixels bear significant re-
semblances [71]. This enhanced variant of the algorithm, SMVQ, is acclaimed for its
superior compression prowess relative to its predecessor, VQA. The modus operandi of
SMVQ largely mirrors that of VQA, leveraging a VQ codebook to facilitate the coding
and decoding of images. The distinguishing feature that sets SMVQ apart from VQA lies
in the dimensions of the codebook; SMVQ typically uses a more compact codebook. A
visualization of the pixel coding and decoding process under the VQA paradigm can be
observed in Figure 4. Within this framework, individual CWs are crafted specifically for
VQA encoding and decoding. The process begins with the formation of a CW, which
subsequently undergoes a decoding procedure.

2.3.6. Run-Length Encoding

Run-length encoding (RLE) is a straightforward data compression technique that
is particularly effective for scenarios where a dataset possesses successive instances of
recurring elements. Drawing an analogy to a written “essay”, which comprises multiple
paragraphs, spaces, formats, and other repetitive elements, data streams similarly exhibit
repetitive patterns when transferred from one point to another [72,73]. For instance, a digital
audio file may have long stretches of zeros in between songs. RLE capitalizes on these
repetitive runs, compressing such stretches of redundant data to make the representation
more efficient. For a clearer understanding, consider Figure 5, which visually elucidates the
mechanism with which RLE compresses recurrent data sequences. Similar color represents
the same data bits in the IDS and RLE schemes.

Figure 5. Encoding model using run-length coding [74] IDS = input data stream, RLE = run-length-
encoded.

RLE operates based on the principle of identifying and compressing repetitive data
sequences. As illustrated in Figure 5, the encoding process kicks in whenever a data element,
for example, “0” (known as the Image Data Stream or IDS), recurs. The RLE = encoded data
stream then logs the element itself (“0” in this case) followed by its frequency of repetition.
A critical factor for the efficacy of this algorithm is the average run length of these repetitive
elements; it should exceed zero for the compression to be meaningful. RLE finds significant
utility in fields like computer vision, pattern recognition, and image processing. However,
it is less effective with content like natural language text where repetitive runs are either
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short or non-existent. Its suitability for image compression is contingent upon the image
content; images with recurrent patterns or data will see notable compression, whereas
those without such redundancies will not benefit much. A pivotal point to note is that it
depends on the algorithm’s application and the nature of the data. The reconstructed data
post-RLE compression might suffer from information loss, which might be imperceptible
to human vision but can impact the data’s fidelity.

2.3.7. Entropy Encoding

Entropy encoding capitalizes on the notion that in many images, adjacent pixels are
inherently related, often resulting in recurring patterns or information. This repetition,
emblematic of redundancy in the data, is where entropy encoding steps in, aiming to target
and compress the less correlated pixels to pare down such redundancies [75]. The process
bifurcates into two phases: repetition reduction, which primarily seeks to strip away the
frequencies spawned by these redundant signals, and data compression, which endeavors
to excise elements of the image most immune to human visual detection. Figure 6 offers
a schematic view of the entropy encoding process. It showcases two distinct blocks. The
first one is the “encoder block”, which is responsible for executing the image compression,
and its counterpart is the “decoder block”, which is tasked with decompressing the data to
retrieve or reconstruct the original image. The mechanics of the decoder are essentially the
inverse of the encoder, ensuring that the original image can be faithfully reproduced from
the compressed data.

Figure 6. Block diagram of entropy encoding [76].

Entropy encoding delves deeper into compressing signals, providing a lossless encap-
sulation of the original data to achieve optimal compression. The essence of this technique
lies in exploiting both “spatial redundancy” and “spectral redundancy”. The former per-
tains to the inherent correlation that exists amongst adjacent pixels in an image. In contrast,
the latter involves the correlation between distinct spectral image bands and differing
color planes. Guided by these redundancies, entropy encoding calculates the likelihoods
associated with each quantized value, thus creating a more efficient, probability-based code.
This intelligent coding mechanism refines the output bitstream (OBS), ensuring that it is
notably shorter than the input counterpart. Shannon’s entropy measure lays the foundation
for this process, which is expressed by Equation (37) [75]. This mathematical expression
quantifies the expected value of the information in a message or signal, serving as the
bedrock for entropy-based encoding techniques.

H = ∑ P(Ai)I(Ai) = −∑ P(Ai)logbP(Ai) where |A| = (A1, A2, . . . ..AN) (37)

where A is an event and P(A) is the probability of the event occurring.
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The data compression ratio of the “entropy of the source” and “average numbers
of binary bits” is used to calculate the source data. These data represent the amount of
effectiveness of the source. The significance of the compression code can be calculated as
the ratio of the “entropy of the source” to the “average length of the codeword”. The source
can be expressed as α = {s1, s2 . . . . . . .sn}, where the consecutive symbol selected from α
is sj. Then the generalized probability is expressed as Pr[sj] = Pj, ∑n

j=1 Pj = 1.
The entropy from the source can be expanded with Equation (38).

∑n
J=1 pjlog2

1
pj

= p1log2
1
p1

+ p2log2
1
p2

+ . . . . . . . . . . . . .. + pnlog2
1
pn

(38)

Equation (38) can be expanded using a variable-length code and expressed by Equa-
tion (39).

l = ∑n
j=1 lj pj = l1 p1 + l2 p2 + . . . . . . . . . . . . + ln pn (39)

The optimum code is equivalent to the entropy length and is expressed by Equa-
tion (40).

∑n
j=1 lj pj = ∑n

j=1 pjlog2
1
pj

(40)

Thus, it is good to encode every sj with lj = −log2 pj where 1 ≤ j ≤ n. Thus the bits
are encoded in the entropy encoding.

2.3.8. Lempel–Ziv–Welch Image Compression

Lempel–Ziv–Welch (LZW) is a dictionary-based lossless compression algorithm com-
monly used for GIF, TIFF, and PDF formats, as shown in Figure 7. Similar color represents
the similarity in the I/P and character bits. During encoding, LZW dynamically creates
a dictionary of frequently recurring sequences from the input data. These sequences are
then replaced with shorter dictionary codes, leading to compression. Initially, the dic-
tionary only contains individual characters, but as more sequences are found, they are
added. During decompression, the process is reversed, reconstructing the original data
using the dictionary. LZW excels with repetitive data but may not significantly compress
non-repetitive data [77].

Figure 7. Coding of a general bitstream.

In LZW compression, an index table is dynamically formulated, assigning codes
for strings of characters that recur in the sequence. Taking the example of the bitstream
CDDCDCCCDDCCC, initial assignments are made for the characters C and D. As the
bitstream progresses, sequences like DC, DCC, and CD are recognized and given new
codes. Following this methodology, the 13-character sequence CDDCDCCCDDCCC is
compressed to a 10-character sequence CD2C3C1D4C. Similarly, when this technique is
applied to a longer 16-character bitstream CDDCDCCCDDCCCCDD, it is condensed to
a 12-character sequence CD2C3C1D4C5D, as visualized in Figure 8. The similar colors
represent the similarity in the I/P and character bits.

Figure 8. Coding of a general bitstream.
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The compressed bit can also be converted into the digital form per requirement. Here, it
is observed that LZW performs the coding of a group of characters having variable lengths.

2.3.9. DEFLATE Image Compression

The DEFLATE algorithm, rooted in the LZ77 approach, distinguishes itself from the
LZW technique. Instead of building a dynamic dictionary of data sequences, DEFLATE
uses a sliding window mechanism. This window acts as a buffer, capturing chunks of data
and encoding them directly. Initially, as the encoding process starts, this sliding window
becomes populated with data blocks, which are then encoded. The essence of this method is
its ability to identify sequential symbols, especially those with the longest match distances,
and convert them into length and distance pairs. This allows the algorithm to efficiently
compress files by pointing back to previous similar sequences instead of writing out each
sequence afresh, leading to considerable data reduction [78,79].

The DEFLATE compression mechanism operates through a sequence of well-coordinated
steps. Initially, the sliding window peruses the source file, pinpointing the “longest match”
of a given block. If this match surpasses a certain threshold, the corresponding symbol is
bypassed. Otherwise, the encoder determines the distance between this symbol and its
longest match. This yields a (length, distance) pair, which subsequently undergoes Huffman
coding to be encoded. The decoding process inverts these actions, reconstructing the
original data from the (length, distance) pair based on its coded counterpart. Illustratively,
Figure 9 delineates the DEFLATE operation with the LZ77 encoder at its core, outputting an
LZ77-coded stream. Complementing components include a Huffman code generator and
an immediate data buffer. Figure 9a lays out these modules alongside the Huffman encoder,
while Figure 9b showcases preliminary data in conjunction with a symbol frequency table,
detailing frequency counts for each buffered dataset.

Figure 9. The DEFLATE image compression algorithm: (a) Huffman coding and (b) a symbol
frequency table.

2.4. Performance Measures for Image Compression

Several parameters can express compressed image quality. Some notable parameters
through which image quality can be expressed are represented by Equations (41)–(44).
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2.4.1. Mean Square Error

Mean Square Error (MSE) is a parameter with which the quality of the compressed
image can be measured. The MSE between two different images I1(x, y) and I2(x, y) is
expressed in Equation (41) [80].

MSE =
1

M × N ∑M
x=1 ∑N

y=1 [I1(x, y)− I2(x, y)]2 (41)

where I1(x, y) represents the input image, and I2(x, y) is the compressed image. M and
N represent the dimension of the input image. The MSE can be considered a relative
parameter that depends entirely on the “image intensity”. Let an 8 bit image obtain an MSE
value of 100, which means that the visual appearance of the image will not be good. At the
same time, the MSE value of 100 for a 10 bit image is hardly observable. Thus, the MSE
value outcome also depends upon the bits of the image used for a study.

2.4.2. The Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio (PSNR) is defined as the ratio of the input image
dimension and MSE. It is measured in decibels (dB). The PSNR is considered an ideal
parameter to compare the restoration result of the image. Generally, if an image has a PSNR
value of 25 dB it looks more exceptionally improved than an image having 50 dB PSNR.
The PSNR is expressed with the assistance of Equation (42) [80].

PSNR = 10 × log10

[
(M × N)

(MSE2)

]
(42)

2.4.3. Compression Ratio

The compression ratio (CR) is an essential parameter with which the amount of
reduced data compared with the original data is quantified. It is also known as the
“compression power” and depends on the algorithm used to compress the data. It can be
expressed using Equation (43) [81].

CR =
Uncompressed Image Size

Compressed Image Size
(43)

2.4.4. Bits per Pixels

Information in bits stored in a pixel of an image is known as “bits per pixel” (BPP).
If an image has more numbers of bits, it can display more colors but, at the same time,
also requires more space for storing the image. Increasing the memory bits of an image
is necessary for displaying image quality. It can be expressed with the assistance of
Equation (44) [81].

BPP =
Compressed image size

Total number o f the image pixels
(44)

Thus, these parameters are utilized to rate the degree of compression achieved in an
image compared with the original uncompressed image.

3. Results

In this section, we execute two operations on DICOM images of a CT chest infected
with the COVID-19 virus. Firstly, based on matrix operations outlined in Section 2.1, we
perform DICOM image processing. The DICOM images are split into ROI and NROI
sections. The ROI, being diagnostically significant, can undergo lossless compression or
no compression at all since it has medically important information, while the NROI is
compressed using lossy compression methods. We then combine the ROI and the NROI,
with which we obtain information about the superior compression technique that yields the
best compression ratio. Thus, we identify the most suitable and effective image compression
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algorithm based on matrix-based image manipulation. Secondly, we utilize a GLCM-based
approach for quantifying texture features in time-series DICOM images affected by the
COVID-19 virus. This method quantifies and compares texture features across various
orientations and offsets. It is an approach not previously reported in which eight offset
combinations are investigated. Our unique offset combinations indicate the feasibility
of texture analysis in these new directions. Ultimately, we combine both techniques to
generate new insights, including the early prediction of COVID-19 infection and strategies
for efficient data storage in critical situations.

3.1. ROI and NROI-Based Compression of the DICOM Image

The proposed image compression algorithm is applied to the DICOM image of the
human lung infected with COVID-19 obtained from the “Center for Artificial Intelligence
in Medicine & Imaging, Stanford University” [82]. DICOM is considered an international
standard related to medical images. This format of medical images interchanges the data
and quality necessary for medical use. X-ray, MRI, CT scans, and ultrasound are generated
in the DICOM format. DICOM images have “changed the face of clinical medicine”.
DICOM is approved under the “International Organization for Standardization as the ISO-
12052 standard” [83] and was developed by the “American College of Radiology (ACR)”
and “National Electrical Manufacturers Association (NEMA)” [84]. Thus, for medical
image analysis, the DICOM format is considered better than other image formats. Detailed
information on the DICOM image data of the patient used in this research work is presented
in Table 2.

Table 2. Detailed information on the DICOM image.

S. No Series Scan Mode mAs KV N*T CTDIvo
(mGy)

DLP
(mGy*cm)

Phantom
Type (cm)

1 Mediastin Surview ----- 120 2 × 0.75 0.05 1.93 BODY32

2 Mediastin Helical 80 120 16 × 1.50 5.55 170.49 BODY32

Study ID: 93725.
Time: 11 March 2020, 11:36:03 AM.
Total DLP: 172.42 mGy*cm.
Estimated dose saving: 13.41%.
Figure 10 presents the view of the DICOM image under observation. MicroDICOM

software (DICOM Viewer 2023) is used to analyze the DICOM image of the human body.
The DICOM image has dimensions of 512 × 512. The “computed tomography (CT)”
scan image used in this work shows a human lung. Since the proposed methodology is
developed to be implemented on medical images, DICOM images are best suited for this
application. The image compression of the DICOM is performed with the assistance of
Matlab 2018 (b), with an operating system having a Core i7 3687U processor, 4 GB RAM,
and a 128 GB SSD hard drive.

The image is extracted from the software and presented in Figure 11a. The image
consists primarily of two types of information, i.e., helpful information and redundant
information. Valuable information is stored in the ROI, which consists of vital data about
the parts of the body infected with the virus. Redundant information includes the region
of the body is unaffected by the virus, which becomes unimportant from a diagnostic
point of view. This redundant information is stored in the NROI region. An image under
investigation can have a single or several diagnostic vital regions. These ROIs can be
compressed losslessly or can be kept as is according to one’s needs. Since these are medical
images, they need to be handled very carefully, and storage space reduction becomes the
secondary objective while treating these images.
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Figure 10. DICOM representation of the human lung (MicroDICOM) [85].

Figure 11. (a) DICOM image of the human chest [55] (b) ROI selection from the DICOM image.

Figure 11a shows the DICOM image of the human chest with the ROI and NROI
together. This image consists of too much redundant information. Let us assume that
Figure 11b shows the DICOM image with four different ROIs represented by four different
colors. These ROIs are considered necessary from the diagnostic point of view. These sub-
sections are square and can be described in matrices. Thus, “lossless” or “no compression”
can be applied to these regions of the DICOM image. The rest of the image is considered as
the NROI, which does not have any useful information and thus can be compressed using
any lossy compression technique. In this “process development”, a DICOM image with a
single ROI is assumed, and the proposed methodology is implemented. A single ROI can
be of any dimension, size, and shape, but the ROI used in our experiment is square.

Figure 12a represents the DICOM image with a single ROI. The ROI consists of the
most vital information from a “diagnostic point of view”. The ROI can be considered
an essential region consisting of information about disease. Thus, in the entire DICOM
image, the ROI needs to be handled with a lot of care. This region can be compressed
using “lossless compression” or “no compression”. The ROI is extracted from the DICOM
image using the “sectioning technique” available in the Matlab software (R2023a). A square
section of dimensions (165 : 390; 165 : 390) is extracted from the DICOM image, as shown
in Figure 12b. It can be observed that the size of the ROI is different from the original
DICOM image. Thus, any matric-based mathematical operation cannot be performed.
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Therefore, the zero-padding technique is applied to the ROI to create an image matrix
having dimensions 512 × 512. In the zero-padding approach, every matrix position is filled
with “zero”, leaving the ROI, and a matrix of desirable dimensions is created. This step is
performed so that matrix differencing can be achieved to obtain the NROI from the DICOM
image. The zero-padded image with the same dimension as the original image is presented
in Figure 13a. The zero-padded image is subtracted from the original DICOM image, and
the resultant image obtained after subtraction is illustrated in Figure 13b. This image does
not contain any helpful information from the diagnostic point of view and is considered as
the NROI. Thus, this region can be compressed using various lossy compression techniques
according to one convenience and application.

Figure 12. (a) DICOM image of the human chest with a single ROI. (b) The extracted ROI.

Figure 13. (a) Zero-padded ROI image. (b) The NROI section of the DICOM image.

Here, we are aware of the medical importance of the DICOM image. Since these
images are used for medical applications, we decided not to compress the ROI using any of
the lossless compression schemes. The non-compressed ROI is added to the compressed
NROI in its current form. However, to represent the compression effect on the ROI for
education purposes, we illustrate ROI reduction in Figure 14a–d. Here, the ROI described
in Figure 14a is compressed with a threshold value of 0.5. Thus, it can be observed that
no or minimum loss of information occurs. Similarly, the ROI presented in Figure 14b is
compressed with a threshold value of 0.1, respectively, using wavelet transform. Thus, it
can be visually identified that the compressed ROI has now lost information. Figure 14c
shows the ROI compressed by a threshold value of 0.025. The compressed image obtained
from this compression shows a drastic loss of data, which becomes dangerous for medical
diagnosis. Finally, Figure 14d shows the highly compressed NROI having no input from
human visual perception. Here, the threshold value is reduced to 0.010. The compression
scheme used to compress the ROI is “wavelet compression”. Here, it can also be observed
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that with the decrease in the threshold value of compression, the visual appearance of the
NROI becomes worse. It is also understood that even the ROI sections, which visually
represent helpful information, may be invalid for some users. Good compression at the cost
of lost data is not the objective of this research work. Thus, different lossless compression
schemes can be used to compress the ROI at the same time, and no compression schemes
are required to compress the ROI region.

Figure 14. Zero-padded ROI compression using wavelet transform: (a) compression factor of 0.5,
(b) compression factor of 0.1, (c) compression factor of 0.025, and (d) compression factor of 0.010.

It is assumed that the NROI of the DICOM image does not contain any useful in-
formation that can help detect any diseases or infected parts. This image region can be
compressed using “lossy image compression” techniques, which can be completed accord-
ing to one perspective, i.e., one compresses the NROI part with a minimum or maximum
threshold value. Since these are medical images, we advise performing lossy image com-
pression to a desirable level so as not to affect human life. The lossy compressed NROI
of the DICOM image with four different threshold values is presented in Figure 15a–d.
Figure 15a presents the NROI compressed with a threshold value of 0.5. Here, it can be
observed that the compressed image has visually retained its essential parameters, and
some critical image areas are still visually identified. Now, the threshold of compression
is reduced to 0.1, and the NROI of the image begins to lose its information, as shown in
Figure 15b. As the compression threshold is reduced to 0.025, the NROI part of the image
loses more information, and the visual appearance of the compressed image is presented in
Figure 15c. Finally, the compression threshold is reduced to 0.010, and the visual appear-
ance of the compressed NROI is illustrated in Figure 15d. This compressed NROI does not
have useful information, and the image quality is also dreadful.
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Figure 15. NROI compression using wavelet transform: (a) compression factor of 0.5, (b) compression
factor of 0.1, (c) compression factor of 0.025, and (d) compression factor of 0.010 .

Finally, the fusion of both the ROI and NROI sections of the DICOM image is com-
pleted. The fused image consists of both the compressed NROI and non-compressed
ROI sections of the image. Indeed, the size of the newly compressed DICOM is less than
the original DICOM. Perceptual image parameters are used to evaluate the performance
parameters of the newly fused image. Different combinations of the final fused DICOM
are presented in Figure 16a–d, which represent four different image thresholds having a
variety of compression factors including (0.0, 0.5), (0.5, 0.5), (0.1, 0.025), and (0.01, 0.01),
respectively. The first combination of (0.0, 0.5) is finalized in this work, where the ROI is
added directly to the compressed NROI section. The first term of the compression factor
(0.0, 0.5), i.e., (0.0), indicates that no compression is applied to the ROI section of the
DICOM image. The compression methodology used to compress the NROI is the lossy
wavelet transform. The perceptual image quality parameters through which the effect of
the image compression of the DICOM image is represented are MSE, PSNR, CR, and BPP.
Table 3 presents detailed information about the perceptual image quality parameters when
image compression is applied to the DICOM image using four different “lossy image com-
pression” techniques. These compression algorithms are discrete cosine transform (DCT),
discrete wavelet transform (DWT), the fractal compression algorithm (FCA), and the vector
quantization algorithm (VQA), respectively. Compression time (CT*) and decompression
time (DCT*) are also two factors with which the time requirement is estimated during
compression and decompression of the DICOM. The CT* and DCT* indeed depend on the
capacity of the workstation on which the proposed compression algorithm is performed. It
may vary for different computer systems and can be less or more from the obtained results.
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Figure 16. Final fused image with a non-compressed ROI and a compressedNROI: (a) compression
factor of (0.0, 0.5), (b) compression factor of (0.5, 0.5), (c) compression factor of (0.1, 0.025), and
(d) compression factor of (0.01, 0.01).

Table 3. Image quality parameters for NROI sections of the DICOM image.

S. No NROI
Image

Compression
Algorithm

MSE PSNR BPP CR CT* (s) DCT* (s)

1 Figure 16a
Discrete cosine

transform (DCT)

0.0018 123.77 0.574 27.87 1.33 22.1
2 Figure 16b 0.0054 119.00 0.512 31.25 1.38 24.9
3 Figure 16c 0.0652 108.18 0.482 33.19 1.41 26.4
4 Figure 16d 0.3847 100.47 0.464 34.48 1.49 28.2

5 Figure 16a
Discrete wavelet
transform (DWT)

0.0008 127.29 0.422 37.91 1.51 23.1
6 Figure 16b 0.0032 121.29 0.389 41.13 1.58 25.6
7 Figure 16c 0.0315 111.35 0.302 52.98 1.62 27.8
8 Figure 16d 0.2752 101.93 0.232 68.96 1.68 28.4

9 Figure 16a
Fractal compression

algorithm (FCA)

0.0009 126.78 0.481 33.26 1.34 25.9
10 Figure 16b 0.0084 117.08 0.432 37.03 1.38 26.8
11 Figure 16c 0.0542 108.98 0.354 45.19 1.45 27.7
12 Figure 16d 0.4842 99.47 0.264 60.60 1.51 28.9

13 Figure 16a
Vector quantization

algorithm (VQA)

0.0012 125.53 0.584 27.39 1.23 21.4
14 Figure 16b 0.0048 119.51 0.512 31.25 1.36 24.5
15 Figure 16c 0.0568 108.78 0.482 33.19 1.48 28.5
16 Figure 16d 0.3218 101.25 0.413 38.74 1.55 31.5

Figure 17a–f presents bar plots corresponding to the various perpetual image quality
parameters. From Figure 17a, it can be observed that the maximum obtained MSE value
corresponds to VQA and the minimum value corresponds to DCT. The lowest MSE value
suggests that minimum error is generated between the original and the compressed image,
which is considered suitable for image compression. Figure 17b presents the plotting for
the PSNR feature. Here, it can be observed that the maximum PSNR value is obtained
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with the DCT algorithm, and the minimum value is obtained with the VQA. The PSNR is a
prominent image quality parameter, and for efficient image compression, it should be high.
Thus, since the DCT algorithm presented the highest value of the PSNR, it is regarded as
an efficient image compression algorithm.

Figure 17. Comparison of the perpetual image quality parameters: (a) MSE, (b) PSNR, (c) BPP, (d) CR,
(e) CT*, and (f) DCT*.

Figure 17c compares the BPP obtained using the different image compression schemes.
Here, it can be observed that BPP received the maximum value using the DCT compression
algorithm and the minimum value using the VQA. Figure 17d presents a comparative plot
of the CR. It can be observed that the minimum CR is obtained with the DCT algorithm,
whereas the maximum compression corresponds to the VQA. The maximum CR can be
symbolized as the ultimate compromise with image quality. Thus, a reasonable CR is
obtained using the DCT algorithm. Figure 17e presents a comparative plot, which is
minimum for the DCT algorithm and maximum for the VQA since maximum compression
is obtained using the VQA. Thus, the CT* required to achieve this compression is also the
largest. Finally, Figure 17f presents the DCT* of the compression algorithms. Here, the
DCT algorithm obtained the minimum decompression time, whereas the VQA obtained
the maximum decompression time. Thus, it is observed that the DCT algorithm emerged
as an efficient and effective DICOM compression scheme. This algorithm produced good
results for compressing DICOM images when compared with the other image compression
algorithms. Thus, DCT can be considered best-suited for compressing DICOM images.
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3.2. Texture Quantification of the Time-Series CT Chest Images

In this section, CT scans of the human chest are analyzed using a GLCM-based texture
analysis approach. GLCM is a popular texture classification approach with which texture
quantification of the image data is performed. GLCM offers information regarding the
“spectral” and “spatial” variation in the image pixels. A time series of four CT scans
of the lung chamber of a human chest infected with the COVID-19 virus is shown in
Figure 18. These images are obtained from the “Italian Society of Radiology” [86]. Texture
quantification of these images is performed to identify the pattern of change that developed
in the visual statistical features due to the severity of the virus.

Figure 18. Time series of CT scans of a human chest infected from COVID-19 virus (a) Day 1 (b) Day 7
(c) Day 14 (d) Day 21 [86].

Figure 18 presents the time series representation of the patient’s chest. Figure 18a
illustrates the earliest image of the chest infected with the COVID-19 virus. At the same
time, Figure 18b–d shows the decrease in infection in the human chest in descending order.
Finally, Figure 18d illustrates the least amount of infection in the human chest. These
images are converted into HSV image format to visually represent the change developed in
the human chest over time. Texture quantification of the image can be performed using
the GLCM technique. The GLCM calculation from an input image can be understood by
reviewing Figure 19.

Figure 19. Example of the GLCM calculation. (a) Pixel position in the test image of dimensions 5 × 5.
(b) Pixels in the test image. (c) GLCM obtained from the test image. (d) Normalized GLCM of the
test image.
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Equation (45) expresses the probability of each combination’s occurrence.

Prob(i,j,D, theta) = ̸= {((a, b)(c, d))ϵ(Lr×Lc)/(a − b), (c − d)ϵ{−D, 0, D}/I(a, b) = i, I(c, d) =
j, angle (a, b), (c, d) = theta} (45)

Any element in the normalized co-occurrence matrix p (a, b) at the position (a, b) is
expressed in Equation (46).

Element(i,j,D, theta) =
Prob(i,j,D, theta)

∑
Ng
a=1 ∑

Ng
b=1 Prob(i,j,D, theta)

(46)

The orientation of the GLCM along different angles with a change in distance can be
understood by reviewing Figure 20. Here, the orientation angles can be observed along
0
◦

to 315
◦

from the pixel of interest (POI). The distance variations can also be understood
as the diagonal GLCM POI having distances D = 1, D = 2, and D = 3. Similarly, several
other GLCMs for an input image can be created with distances varying from D = 1 to
D = 8, respectively.

Figure 20. GLCM with variation in the angle and distance.

Texture quantification using GLCM has two essential parameters, i.e., distance and
angle. While calculating the texture feature of an image, the angle can be varied from
0
◦

to 45
◦
, 90

◦
, 135

◦
, 180

◦
, 225

◦
, 270

◦
and 315

◦
, and after 315

◦
, the following entry can be

(315
◦
+ 45

◦
= 360

◦
), which is equivalent to 0

◦
. Similarly, 45

◦
is opposite to 225

◦
, 90

◦
is

considered opposite to 270
◦
, and finally, 135

◦
is regarded as the opposite of 315

◦
. Thus,

the repetitive pattern in orientation direction is obtained; therefore, only four orientation
directions are considered unique in GLCM while calculating the texture features. Similarly,
the distance factor varies as d = 1, d = 2, d = 3, d = 4, d = 5, d = 6, d = 7, and d = 8. The
offset combination of the angle and distance considering repetitive patterns for the image
pixels is presented in Table 4.

Table 4. Offset combinations for different distances and angles.

S. No Angle Generalized
Offset

Distance
D = 1

Distance
D = 2

Distance
D = 3

Distance
D = 4

Distance
D = 5

Distance
D = 6

Distance
D = 7

Distance
D = 8

1 0
◦

[0, D] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7] [0, 8]
2 45

◦
[−D, D] [−1, 1] [−2, 2] [−3, 3] [−4, 4] [−5, 5] [−6, 6] [−7, 7] [−8, 8]

3 90
◦

[−D, 0] [−1, 0] [−2, 0] [−3, 0] [−4, 0] [−5, 0] [−6, 0] [−7, 0] [−8, 0]
4 135

◦
[−D,−D] [−1,−1] [−2,−2] [−3,−3] [−4,−4] [−5,−5] [−6,−6] [−7,−7] [−8,−8]

5 180
◦

[0,−D] [0,−1] [0,−2] [0,−3] [0,−4] [0,−5] [0,−6] [0,−7] [0,−8]
6 225◦ [D,−D] [1,−1] [2,−2] [3,−3] [4,−4] [5,−5] [6,−6] [7,−7] [8,−8]
7 270

◦
[D, 0] [1, 0] [2, 0] [3, 0] [4, 0] [5, 0] [6, 0] [7, 0] [8, 0]

8 315
◦

[D, D] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8]
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The grey-level representation of the images of the human chest infected with COVID-
19 is presented in Figure 21a–d. The grey level is the false-color representation of the human
chest infected with the COVID-19 virus. This image representation is presented in HSV
format, which assists in identifying the changes developed in the human chest through
human visual perception. As shown in Figure 21a–d, the green and yellow regions in the
human chest decrease in descending order and reach a minimum in Figure 21d. The texture
quantification of these images can provide information about how COVID-19 infections
affect the human chest.

Figure 21. Grey-level representation of the human chest infected with the COVID-19 virus in
descending order of severity: (a) Day 1, (b) Day 7, (c) Day 14, and (d) Day 21.

The chest images are converted to greyscale, and later, quantification of the visual
texture features is performed to obtain the change developed in the statistical image features.
The numerical quantification for the different CT scans of the human chest is presented
in Tables 5–8. The quantification of the texture features provides information about the
behavior of the GLCM visual texture features. The histogram signature plotting of the
human chest infected with the COVID-19 virus is presented in Figure 22a–d. The histogram
plots reflect the relationship between the image pixels and the intensity values. Here, it
can be observed that all four images have different histogram patterns, which indicate the
change developed in the CT scan of the human chest due to COVID-19.
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Table 5. Quantification of the texture features for chest CT scan corresponding to Day 1.

Texture Direction Change in Distances
GLCM Features: (Con. = Contrast), (Corr. = Correlation)

GLCM Visual
Features

Angle
(Degree) D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Con.

0
◦

0.0619 0.1130 0.1558 0.1945 0.2319 0.2693 0.3080 0.3483
Corr. 0.9936 0.9883 0.9838 0.9798 0.9759 0.9721 0.9681 0.9639
ASM 0.1199 0.1089 0.1010 0.0948 0.0896 0.0851 0.0812 0.0778
IDM 0.9691 0.9438 0.9234 0.9058 0.8895 0.8743 0.8597 0.8458

Con.

45
◦

0.0890 0.1552 0.2125 0.2655 0.3164 0.3673 0.4202 0.4759
Corr. 0.9907 0.9839 0.9779 0.9724 0.9672 0.9619 0.9565 0.9507
ASM 0.1141 0.1019 0.0936 0.0870 0.0817 0.0773 0.0734 0.0701
IDM 0.9557 0.9251 0.9012 0.8801 0.8613 0.8437 0.8269 0.8110

Con.

90
◦

0.0671 0.1216 0.1663 0.2048 0.2391 0.2741 0.3030 0.3349
Corr. 0.9930 0.9873 0.9827 0.9787 0.9751 0.9718 0.9685 0.9652
ASM 0.1192 0.1086 0.1016 0.0964 0.0921 0.0885 0.0853 0.0824
IDM 0.9666 0.9411 0.9225 0.9075 0.8944 0.8824 0.8712 0.8605

Con.

135
◦

0.0934 0.1634 0.2224 0.2762 0.3291 0.3830 0.4395 0.4980
Corr. 0.9903 0.9830 0.9768 0.9712 0.9657 0.9601 0.9542 0.9481
ASM 0.1133 0.1009 0.0926 0.0863 0.0810 0.0765 0.0726 0.0693
IDM 0.9535 0.9217 0.8975 0.8766 0.8573 0.8392 0.8218 0.8056

Table 6. Quantification of the texture features for the chest CT scan corresponding to Day 7.

Texture Direction Change in Distances
GLCM Features: (Con. = Contrast), (Corr. = Correlation)

GLCM Visual
Features

Angle
(Degree) D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Con.

0
◦

0.0730 0.1317 0.1828 0.2308 0.2797 0.3309 0.3843 0.4402
Corr. 0.9918 0.9852 0.9795 0.9741 0.9686 0.9628 0.9568 0.9505
ASM 0.1427 0.1305 0.1220 0.1156 0.1100 0.1050 0.1005 0.0963
IDM 0.9635 0.9352 0.9133 0.8951 0.8786 0.8630 0.8484 0.8344

Con.

45
◦

0.1057 0.1885 0.2613 0.3327 0.4071 0.4849 0.5663 0.6518
Corr. 0.9881 0.9788 0.9706 0.9625 0.9542 0.9454 0.9362 0.9266
ASM 0.1368 0.1239 0.1151 0.1079 0.1018 0.0965 0.0917 0.0875
IDM 0.9477 0.9143 0.8890 0.8665 0.8461 0.8273 0.8097 0.7934

Con.

90
◦

0.0771 0.1431 0.1980 0.2443 0.2874 0.3299 0.3731 0.4173
Corr. 0.9913 0.9839 0.9777 0.9726 0.9677 0.9630 0.9581 0.9532
ASM 0.1437 0.1328 0.1257 0.1203 0.1159 0.1120 0.1085 0.1053
IDM 0.9617 0.9337 0.9139 0.8978 0.8836 0.8703 0.8578 0.8461

Con.

135
◦

0.1060 0.1879 0.2568 0.3229 0.3897 0.4587 0.5309 0.6060
Corr. 0.9881 0.9789 0.9712 0.9638 0.9563 0.9486 0.9406 0.9322
ASM 0.1368 0.1236 0.1150 0.1082 0.1024 0.0974 0.0931 0.0891
IDM 0.9477 0.9138 0.8888 0.8672 0.8478 0.8301 0.8140 0.7992
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Table 7. Quantification of the texture features for the chest condition corresponding to Day 14.

Texture Direction Change in Distances
GLCM Features: (Con. = Contrast), (Corr. = Correlation)

GLCM Visual
Features

Angle
(Degree) D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Con.

0
◦

0.0795 0.1484 0.2106 0.2702 0.3321 0.3977 0.4681 0.5431
Corr. 0.9902 0.9816 0.9738 0.9663 0.9584 0.9501 0.9412 0.9316
ASM 0.1301 0.1150 0.1044 0.0960 0.0891 0.0832 0.0782 0.0738
IDM 0.9604 0.9286 0.9030 0.8808 0.8605 0.8418 0.8244 0.8082

Con.

45
◦

0.1099 0.1958 0.2759 0.3562 0.4396 0.5278 0.6226 0.7234
Corr. 0.9864 0.9756 0.9654 0.9552 0.9445 0.9331 0.9207 0.9075
ASM 0.1235 0.1074 0.0963 0.0876 0.0806 0.0749 0.0700 0.0659
IDM 0.9454 0.9073 0.8766 0.8493 0.8247 0.8026 0.7823 0.7638

Con.

90
◦

0.0744 0.1318 0.1812 0.2271 0.2706 0.3134 0.3557 0.3996
Corr. 0.9908 0.9837 0.9775 0.9718 0.9663 0.9610 0.9557 0.9501
ASM 0.1323 0.1198 0.1113 0.1047 0.0993 0.0946 0.0907 0.0872
IDM 0.9628 0.9350 0.9136 0.8953 0.8790 0.8639 0.8502 0.8372

Con.

135
◦

0.1086 0.1940 0.2730 0.3513 0.4317 0.5169 0.6080 0.7039
Corr. 0.9865 0.9758 0.9658 0.9558 0.9455 0.9345 0.9227 0.9102
ASM 0.1237 0.1075 0.0965 0.0880 0.0811 0.0754 0.0706 0.0666
IDM 0.9460 0.9081 0.8776 0.8508 0.8266 0.8041 0.7835 0.7647

Table 8. Quantification of the texture features for the chest condition corresponding to Day 21.

Texture Direction Change in Distance
GLCM Features: (Con. = Contrast), (Corr. = Correlation)

GLCM Visual
Features

Angle
(Degree) D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Con.

0
◦

0.0607 0.1054 0.1399 0.1696 0.1967 0.2234 0.2498 0.2764
Corr. 0.9925 0.9870 0.9827 0.9791 0.9758 0.9725 0.9693 0.9660
ASM 0.1651 0.1544 0.1471 0.1416 0.1372 0.1333 0.1299 0.1269
IDM 0.9697 0.9476 0.9308 0.9170 0.9052 0.8940 0.8835 0.8737

Con.

45
◦

0.0899 0.1479 0.1938 0.2351 0.2744 0.3126 0.3516 0.3919
Corr. 0.9889 0.9817 0.9760 0.9709 0.9661 0.9614 0.9567 0.9517
ASM 0.1584 0.1466 0.1392 0.1334 0.1286 0.1246 0.1209 0.1176
IDM 0.9551 0.9278 0.9084 0.8919 0.8774 0.8644 0.8517 0.8397

Con.

90
◦

0.0692 0.1193 0.1588 0.1914 0.2202 0.2473 0.2740 0.3006
Corr. 0.9914 0.9852 0.9803 0.9763 0.9728 0.9695 0.9662 0.9630
ASM 0.1636 0.1528 0.1458 0.1409 0.1369 0.1333 0.1301 0.1272
IDM 0.9655 0.9415 0.9244 0.9113 0.9000 0.8896 0.8797 0.8703

Con.

135
◦

0.0892 0.1469 0.1927 0.2334 0.2712 0.3093 0.3469 0.3862
Corr. 0.9890 0.9818 0.9762 0.9713 0.9667 0.9621 0.9576 0.9529
ASM 0.1586 0.1469 0.1395 0.1338 0.1291 0.1249 0.1215 0.1183
IDM 0.9556 0.9285 0.9092 0.8928 0.8781 0.8642 0.8515 0.8393
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Figure 22. Histogram signatures corresponding to time-series images of the human chest: (a) Day 1,
(b) Day 7, (c) Day 14, and (d) Day 21.

The difference in the histogram pattern of the different images suggests that change
occurred in the human chest’s physical structure due to the virus’s spread. This progres-
sive change can be quantified using the GLCM technique, and changing patterns can be
identified corresponding to different time-series images.

Texture classification is performed assuming four different orientations and eight dif-
ferent directions. Only four different exclusive orientations are considered in this research
work. These unique texture features’ quantified values are included in this investigation.
The quantification of the texture features for the CT scan of the human chest on Day 1
is presented in Table 5. The texture plotting is performed to identify the pattern in the
changing texture for different distances and orientation angles, as shown in Figures 23–26.

The variation in the GLCM visual features of the chest scan on Day 1 suggests similar
behavior corresponding to the angles 0

◦
, 45

◦
, 90

◦
and 135

◦
. Here, it can be observed that

the contrast features increase as the distance increases, whereas correlation, ASM, and
IDM decreased the feature values. By analyzing the plot thoroughly, it is observed that the
contrast feature shows a rapid increase with the increase in distance. IDM demonstrates
the most rapid decline rate. ASM shows a slow decline rate as compared with IDM. Finally,
the decline rate correlation is almost negligible compared with ASM and IDM, respectively.
Similarly, the texture quantification for the remaining three images of the human chest is
performed, and their behavior is analyzed, corresponding to changes in distance and angle.
Table 6 presents the quantification of texture features for Day 7.
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Figure 23. Variation in the GLCM features of the human chest infected with COVID-19 (Day 1):
(a) 0 degrees, (b) 45 degrees, (c) 90 degrees, (d) and 135 degrees (1 = contrast, 2 = correlation, 3 = ASM,
4 = IDM).

Figure 24. Variation in the GLCM features of the human chest infected with COVID-19 (Day 7) :
(a) 0 degrees, (b) 45 degrees, (c) 90 degrees, and (d) 135 degrees (1 = contrast, 2 = correlation, 3 = ASM,
4 = IDM).
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Figure 25. Variation in the GLCM features of the human chest infected with COVID-19 (Day 14):
(a) 0 degrees, (b) 45 degrees, (c) 90 degrees, and (d) 135 degrees (1 = contrast, 2 = correlation, 3 = ASM,
4 = IDM).

Figure 26. Variation in the GLCM features of the human chest infected with COVID-19 (Day 21):
(a) 0 degrees, (b) 45 degrees, (c) 90 degrees, and (d) 135 degrees (1 = contrast, 2 = correlation, 3 = ASM,
4 = IDM).
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The variation in the texture features corresponding to the CT scan on Day 7 is presented
in Figure 24a–d. This plotting presents a similar pattern for the change in the values of
the features as presented on Day 1. The contrast features show a slight increase in the
texture features. IDM shows the sharpest decline in the texture features. In this case, using
visual interpretation, it can be observed that correlation and ASM obtain the same pattern
of reduction in the texture features.

Next, the CT scan report for Day 14 is analyzed in terms of the texture features. The
detailed, quantified texture features are presented in Table 7. The texture features are
quantified corresponding to four orientations and eight distances.

The quantified texture features are plotted in Figure 25a–d. These feature values show
the same pattern in the texture features as illustrated on Day 1 and Day 7. Here, we observe
a sharp rise in the texture feature contrast, whereas IDM, ASM, and correlation show a
sharp decline in the texture feature values. The texture features show the same change
pattern in the texture values corresponding to all four orientation directions.

Finally, the texture features of the final CT chest image are quantified to obtain the
change developed in the texture features. Table 8 presents the quantified texture features.

The behavior of the texture features is presented in Figure 26a–d, which shows a
similarity in the feature behavior. Here, the contrast shows the highest rise in the feature
value, whereas correlation, ASM, and IDM show a decline in the feature value. It can also be
observed that the feature value’s behavior is approximately similar for all four orientation
angles. Finally, the average of the GLCM features obtained from the texture quantification
of the CT chest images is performed, making the GLCM direction independent. The
difference in the average GLCM features between two consecutive dates is performed to
obtain a positive or negative change in the texture features of the images.

The differencing of the average of the GLCM features for the CT chest images 1 to 4
is performed and presented in Figure 27. This differencing is performed to observe the
change developed between two consecutive CT chest images. It is observed in Figure 27
that the difference in the average texture features between I1 and I2 lies mainly on the
negative side and is below zero. The contrast of the average texture features between I2 and
I3 is slightly above zero and lies on the positive side. Finally, the difference between the
average texture features of I3 and I4 lies mainly toward the opposing side and is below zero.
Thus, several interpretations can be concluded from this study; for example, the maximum
improvement in the human chest is developed between images I2 and I3 because the
difference in the average texture is primarily positive. Thus, it can be concluded that using
the GLCM-based texture analysis approach, the maximum amount of change developed
in the CT chest scans of the human chest can be identified. The main advantage of this
approach is that it provides “change information” based on the statistical arrangement
of the image pixels. It is a practical methodology for change estimation. Here, GLCM
application is presented for medical image processing. GLCM features are also considered
unique because they can provide information on “spectral” and “spatial” arrangements.
One of the shortcomings of this methodology is that it is too lengthy to implement as it
contains several intermediate steps.
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Figure 27. Difference in the average GLCM features of the CT scans of the human chest.

4. Discussion

In this study, we conducted a comprehensive analysis of various methods used in
image processing for texture quantification and image compression by examining DICOM
files. CT chest scans of patients infected with the novel COVID-19 virus were utilized
in this work. This investigation elegantly married two sophisticated methodologies, i.e.,
image compression and texture quantification, to yield insightful observations regarding
the manifestations of COVID-19 infections within the human chest. Two distinct imaging
techniques served as the foundational pillars of this study. DICOM imaging, which pri-
marily underwent compression processes, and CT chest imaging, which was subject to
texture quantification. The distinction between the ROI and the NROI was paramount. It
was facilitated using a rigorous matrix-based mathematical algorithm. The significance
of the ROI cannot be understated, given its diagnostic relevance. It encapsulates critical
information about pathologies or other health anomalies. Contrarily, the NROI, while
not as diagnostically critical, still plays a significant role in the overall image architecture.
A suite of algorithms, namely, DCT, DWT, FCA, and VQA, were deployed to compress
the NROI of the DICOM images. An intriguing observation was that the potential for
heightened compression of these images certainly existed. Given their invaluable medical
implications, only a calibrated level of compression was exercised. This was a strategic
choice to underscore the efficiency of our proposed technique without compromising the
integrity of the medical data. For empirical clarity, the achieved compression ratios ranged
from 27.87 to 34.48 for DCT, from 37.91 to 68.96 for DWT, from 33.26 to 60.60 for FCA, and
from 27.39 to 38.74 for VQA. Although using lossless compression on the ROI was a tangi-
ble option, our chosen methodology intentionally fused the uncompressed ROI with the
compressed NROI. This approach ensured absolute data fidelity, precluding the omission
of even the minutest details. Transitioning to the texture quantification of CT chest scans,
we delved deep into the intricate statistical arrangements of image pixels. The use of GLCM
for feature quantification painted a detailed landscape of both spatial and spectral data
of the pixel configurations. The resultant quantification laid bare an intriguing pattern of
texture metamorphosis over time. This not only serves as a bellwether for the progression
or regression of the disease but also furnishes a multitude of diagnostic inferences. Of note
was the revelation that between the time intervals I2 and I3, there was a marked positive
alteration in texture features, possibly indicative of a patient’s pronounced recovery during
that phase. This study further established that image processing techniques are highly effi-
cient for data compression and storage space reduction. Each image compression technique
has its advantages and disadvantages. Therefore, in our work, we endeavored to integrate
various compression methods to determine the most reliable technique for image com-
pression. A significant number of procedures were used, where the ROI was compressed
using certain techniques, while the NROI was compressed utilizing others. Ultimately, we
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identified the most ideal combination of techniques for the analysis of DICOM images. In
the current era, with the evolution of machine learning and computational intelligence
techniques, several new methodologies have been introduced in image processing that
can certainly produce more sound, accurate, and better results than the algorithms used
in this article. Some of these notable techniques include Neural network-based image
compression [87], which uses deep learning-based architectures like Convolutional Neural
Networks (CNNs). These algorithms are designed to read the data for efficient image
compression. Wavelet transform [88] is not a machine learning-based technique. This tech-
nique is merged with a machine learning-based algorithm for effective image compression.
Evolutionary algorithms [89,90] are quite popular in image compression. One of the very
popular evolutionary algorithms includes the Genetic Algorithm (GA), which can optimize
image parameters for better compression, efficiency, and performance. Another popular
image compression algorithm includes Fuzzy-logic systems [91], which are designed to
compress an image based on its content, characteristics, and features. Generative Adversar-
ial Networks (GANs) [92] are used to compress the image content based on high fidelity.
This algorithm can create compressed images that look the same as the original image.
These images cannot be distinguished from their previous vision, but the property of the
compressed image is completely different from the original image. Support vector machine
(SVM) [93] techniques act as a middleman, whose purpose is feature extraction and the
selection of image data, based on which a suitable compression technique is selected. In
the Reinforcement Learning technique [94], compression strategies are decided based on
specific image characters like the compression rate and image quality. Deep reinforcement
learning-based techniques [95] are considered one of the most advanced image compression
techniques in which compression strategies are decided based on the type of outcome. For
example, if more compression is required, then algorithms are designed in that manner,
and if low compression is required, then the compression approach changes automatically.
Finally, using the Convolutional Autoencoder [96] algorithm, image data can be effectively
compressed by learning the spatial hierarchies of features. Currently, Artificial Intelligence
(AI)-based [97,98] algorithms are in trending. These algorithms have the potential to be
designed for a specific purpose and could be used for image compression purposes. In
summary, this research unequivocally underscores the potency of the dual approach of
image compression and texture quantification in medical image analytics. In addition to its
analytical prowess, the proposed image compression algorithm could be a game-changer
in data storage efficiency—a boon for the medical fraternity, especially considering the
anticipated third wave of COVID-19, where rapid, efficient data processing and storage
will be paramount.

5. Conclusions

This research presents a novel methodology for optimizing storage by compressing
DICOM images and harnessing texture analysis to extract pivotal diagnostic information
from CT chest scans. During the second wave of COVID-19, such storage efficiency became
paramount. Four compression algorithms were used, including DCT, DWT, FCA, and
VQA, each showing varying degrees of efficiency. The compression algorithms DCT, DWT,
FCA, and VQA achieved minimum CRs of 27.87, 37.91, 33.26, and 27.39, respectively, with
maximum CRs of 34.48, 68.96, 60.60, and 38.74 for the DICOM images. Finally, the texture
quantification, applied to CT images of COVID-19 patients, provided insights into evolving
infection patterns. Overall, our approach not only conserves storage but also enriches the
diagnostic depth of medical imaging.
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