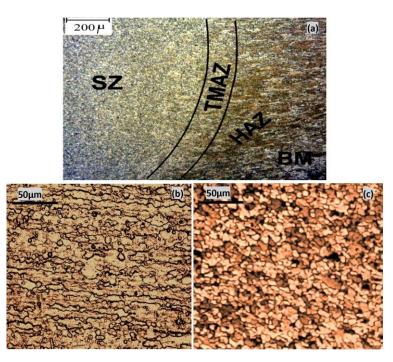


Correction

Correction: Tamadon et al. Influence of WC-Based Pin Tool Profile on Microstructure and Mechanical Properties of AA1100 FSW Welds. *Technologies* 2020, *8*, 34

Abbas Tamadon ^{1,*}, Arvand Baghestani ², and Mohammad Ebrahim Bajgholi ^{3,†}


- ¹ Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
- ² Department of Mechanical Engineering, Kish International Campus, University of Tehran, Kish Island 79416-55665, Iran; a.baghestani@alumni.ut.ac.ir
 ³ Department of Mechanical Engineering, École de Technologie Supérieure (ETS),
- Department of Mechanical Engineering, Ecole de Technologie Superieure (E1S), Montreal, QC H3C 1K3, Canada; mohammadebrahim.bajgholi.1@ens.etsmtl.ca or mebajgholi@gmail.com
 * Correspondence: abbas.tamadon@pg.canterbury.ac.nz; Tel.: +64-021-028-12680
- Current Address: Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.

The authors wish to make the following correction to this paper [1]:

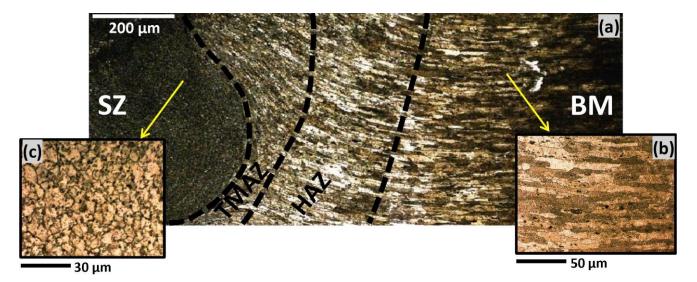
The microstructure of the AA1100 base metal (Figure 8b) was shown for the wrong sample. This was caused by a wrong micrograph being included in the assembly of images from a similar aluminium base metal sample, but of different grade (6xxx).

We have reverted to the AA1100 weld sample, repolished and re-etched, and retaken the image. We have taken the opportunity to replace the original Figure 8 by repeating the metallography test. Hence, the following correction needs to be made to Figure 8.

1. Correction—Old Version

Figure 8. Microstructure of the grain distribution in the cross-section of the AA1100 FSW weld (processed at 1120 rpm and 250 mm/min); (**a**) general view of the cross-section, (**b**) stir zone (SZ), and (**c**) the base metal at higher magnification.

Citation: Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Correction: Tamadon et al. Influence of WC-Based Pin Tool Profile on Microstructure and Mechanical Properties of AA1100 FSW Welds. *Technologies* 2020, *8*, 34. *Technologies* 2023, *11*, 180. https://doi.org/ 10.3390/technologies11060180


Received: 29 March 2021 Accepted: 2 September 2023 Published: 13 December 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

2. Correction-New Version

The old Figure 8 needs to be replaced with the following:

Figure 8. Microstructure of the grain distribution in the cross section of the AA1100 FSW weld (processed at 1120 rpm and 250 mm/min); (**a**) general view of the cross section, (**b**) the base metal, and (**c**) the stirring zone (SZ), at higher magnification.

The purpose of Figure 8 was to show the changes in grain morphology and size across the weld section. We have taken this opportunity to provide a better quality image. The change is limited to the replacement of Figure 8 and edits to the caption. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

 Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Influence of WC-Based Pin Tool Profile on Microstructure and Mechanical Properties of AA1100 FSW Welds. *Technologies* 2020, 8, 34. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.