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Abstract: This paper presents an optimization algorithm named Random Explosion Algorithm (REA).
The fundamental idea of this algorithm is based on a simple concept of the explosion of an object. This
object is commonly known as a particle: when exploded, it will randomly disperse fragments around
the particle within the explosion radius. The fragment that will be considered as a search agent
will fill the local space and search that particular region for the best fitness solution. The proposed
algorithm was tested on 23 benchmark test functions, and the results are validated by a comparative
study with eight well-known algorithms, which are Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABC), Genetic Algorithm (GA), Differential Evolution (DE), Multi-Verse Optimizer (MVO),
Moth Flame Optimizer (MFO), Firefly Algorithm (FA), and Sooty Tern Optimization Algorithm
(STOA). After that, the algorithm was implemented and analyzed for a quadrotor control application.
Similarly, a comparative study with the other algorithms stated was done. The findings reveal that
the REA can yield very competitive results. It also shows that the convergence analysis has proved
that the REA can converge more quickly toward the global optimum than the other metaheuristic
algorithms. For the control application result, the REA controller can better track the desired reference
input with shorter rise time and settling time, lower percentage overshoot, and minimal steady-state
error and root mean square error (RMSE).

Keywords: random explosion; metaheuristic optimization; artificial intelligence; controller design;
unimodal benchmark; multimodal benchmark

1. Introduction

Over the past few years, the popularity of metaheuristic optimization techniques
to solve complex real-life problems has grown among researchers. The main reason for
using metaheuristic optimization techniques is that they are relatively simple, flexible,
non-transferable, and can avoid local stagnation [1]. The simplicity of the metaheuristic
algorithms is derived from straightforward concepts that are typically inspired by physical
phenomena, animal behavior, or evolutionary ideas. Flexibility refers to applying meta-
heuristic algorithms to different problems without any specific structural changes in its
algorithm. Metaheuristic algorithms are easily applied to a variety of issues since they
usually assume problems as black boxes. Most metaheuristic algorithms have mechanisms
that are free of derivation.

In contrast to gradient-based optimization approaches, these algorithms stochastically
optimize the problems. This optimization process begins with a random solution(s), and
there is no need to calculate the derivative of the search spaces to find the optimum value.
This makes metaheuristic algorithms highly suitable for real problems with expensive or
unknown information on derivatives.
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Compared to conventional optimization techniques, metaheuristic algorithms have a
superior capability in avoiding local optima. Due to these algorithms’ stochastic nature, it is
possible to prevent stagnation in local optima and search extensively throughout the search
space. The real problem area is usually unknown and complicated with many local optima,
so metaheuristic algorithms are excellent for optimizing these challenging problems.

Generally, metaheuristic algorithms can be divided into two categories: single-solution
and multi-solution based. On a single-solution basis, the search process begins with one
candidate solution improved throughout the iterations. Whereas multi-solution-based
optimization was carried out using an initially random set of population solutions, these
populations will be enhanced during the iterations. Multiple solutions (population) based
optimization has some advantages over single-solution-based optimization [2]:

• There are multiple possible best solutions.
• There is information sharing between the multiple solutions that can assist each other

to avoid local optima.
• Exploration in the search space of multiple solutions is more significant than a sin-

gle solution.

Furthermore, these metaheuristic algorithms can be classified further into three classes
which are evolutionary-based, physical-based, and swarm-based methods [3], as shown
in Figure 1. The first class is a generic population-based algorithm based on biological
evolution, such as reproduction, mutation, recombination, and selection. This method
often provides close-to-optimal solutions to all types of problems as it does not make
any assumptions about the basic fitness landscape. Some of the popular metaheuristic
algorithms based on the concept of evolution (EA) in nature are Genetic Algorithm (GA) [4],
Differential Evolution (DE) [5], Evolution Strategy (ES) [6,7], Genetic Programming (GP) [8],
and Biogeography-Based Optimizer (BBO) [9].
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The second class of metaheuristic optimization is an algorithm based on physics.
Such an optimization algorithm communicates with each search agent. The search agent
moves across the search space according to the laws of physics, such as gravitational forces,
electromagnetic forces, inertia, etc. These metaheuristic algorithms are Simulated Anneal-
ing (SA) [10], Gravitational Search Algorithm (GSA) [11], Black Hole (BH) algorithm [12],
Ray Optimization (RO) algorithm [13], Big-Bang Big-Crunch (BBBC) [14], Central Force
Optimization (CFO) [15], Charge System Search (CSS) [16], Small World Optimization Al-
gorithm (SWOA) [17], Artificial Chemical Reaction Optimization Algorithm (ACROA) [18],
Galaxy-based Search Algorithm (GbSA) [19], and Curve Space Optimization (CSO) [20].

The third class of metaheuristic optimization is swarm-based algorithms. These
algorithms are based on social creatures’ collective behavior. Collective intelligence is
based on the interaction of the swarms with each other and their environment. A few
well-known Swarm Intelligence (SI) techniques are Particle Swarm Optimization (PSO) [21],
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Ant Colony Optimization (ACO) [22], Artificial Bee Colony (ABC) [23], Monkey Search
(MS) [24], Cuckoo Search (CS) [25], Bat-inspired Algorithm (BA) [26], Dolphin Partner
Optimization (DPO) [27], Firefly Algorithm (FA) [28], Bee Collecting Pollen Algorithm
(BCPA) [29], and Marriage in Honey Bees Optimization Algorithm (MBO) [30].

There are two essential components in the metaheuristic algorithms that influence
the solution’s efficiency and accuracy: the phases of exploration and exploitation [31,32].
The exploration phase ensures that the algorithm moves and explores the other promising
regions in the search space. In contrast, the exploitation phase provides the search for
the optimal solutions within the promising regions that have been achieved during the
exploration phase [33]. The fine-tuning of these two components is crucial to obtain an
optimal solution for the given optimization problems. However, due to the optimiza-
tion problem’s stochastic nature, it is not easy to balance these two components. This
motivates us to develop a new metaheuristic algorithm and to explore its ability to solve
optimization problems.

In this paper, we will present a different metaheuristic algorithm for optimization
problems. The main objective of this paper is to develop a robust algorithm. The term
robust used in this paper is discussed based on the algorithm’s accuracy and consistency
in finding the optimal solution for the benchmark function tested in several independent
runs. For instance, as we know, a stochastic algorithm will not produce a similar result
every time we run the algorithm. Thus, these algorithms will usually need to be run several
times to see how many times a good result is achieved. Additionally, the average and
standard deviation (typical statistical analysis) of the result can be obtained. This way, the
result can be more convincing than a single run’s result. If the algorithm can provide a
high consistency output result while maintaining its accuracy, then we can say that the
algorithm is robust [34–36].

Hence, an algorithm based on the explosion of a set of initial particles that will produce
a random scatter particle’s fragment around the initial particles within the explosion radius
has been proposed, namely Random Explosion Algorithm (REA). According to the No-
Free-Lunch (NFL) theorem [37], no algorithm can solve all the optimization problems alone,
which means that a particular algorithm for a specific problem may show outstanding
performance. Still, the same algorithm may give a poor performance on different problems.
Therefore, it has led us to develop this robust algorithm.

The rest of this paper is organized as follows: Section 2 introduces the proposed
algorithm’s concept. In Section 3, the benchmark test functions are presented. Section 4
will discuss the application of the algorithm for quadrotor control. In Section 5, the
simulation results and discussion on the algorithm’s performance and the controllers and
a comparative study with several other well-known existing algorithms are presented.
Finally, a concluding remark is presented in Section 6.

2. Random Explosion Algorithm (REA)

In this section, the basic idea of the proposed REA algorithm is described in detail.

2.1. The Fundamental Concept

The concept of the proposed algorithm is based on the phenomena of an explosion.
When a particle is exploded, it will produce numbers of fragments randomly scattered
around the particle. Each particle’s fragments will be landed in a particular location called
RF within the explosion radius, re. In our opinion, the particle’s fragments during the
explosion are considered the search agent to search the local space around the particle.

After the first explosion occurs, we assume the fragment will become the new particle
and continue to explode. This process will be repeated until it can no longer be exploded,
in which whether the stopping criteria have been met or the explosion radius, re, is ap-
proaching zero. Based on whichever fragment, we chose the closest to the global best
solution to select which fragments will become the next particle.
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Since there is n-number of fragments produced during the explosion, the probability
of finding the local optima or near local optima solution can be guaranteed. If we consider
multiple particles, we can also assure that the global optimum can be found and avoid local
optima’s stagnation. These particles 1, 2, 3, . . . , m, will search their own local space and
update the best fitness so far based on the global optimum. This process will be repeated
until all particles reach the only global optimum.

2.2. Design of the REA

Suppose that the initial position of the particles is defined in Equation (1) as XP
i is

randomly generated within the lower and upper boundaries of search space and the current
location of a particle is

XP
i = Xd, i = 1, 2, 3, . . . , m (1)

where d indicates the dimension of the variable in the d dimensional search space. Then,
for each particle, it will be exploded to produce randomly scattered fragments within the
explosion radius, re, around the initial particle. The location of the fragments is determined
as in Equation (2):

XF
j = XP

i + RF
j , j = 1, 2, 3, . . . , n (2)

where RF
j is a uniformly distributed random number in the explosion radius, (−re, re).

Next, a selection of the new particle must be made to continue the explosion as the
next generation. The best fragment in each group must replace the old particle that has
been exploded before. A selection strategy based on the shortest distance between the
current fragment in the current group and the global best solution is used to determine
which fragment is the best. The following Equation (3) calculates the distance between the
individual fragment and the global best solution, where GB is the global best solution.

Di
j =

∣∣∣norm
(

GB− XF
i

)∣∣∣ (3)

In this algorithm, the explosion radius plays an essential role in determining the
performance of the algorithm. To make sure the agent is exploring the search space globally,
a high value of explosion radius should be chosen at the beginning of the iteration and
gradually decreasing until the end of the iteration. A higher value of the explosion radius
will ensure the search agent explores the further search space (better exploration).

A lower value of the explosion radius lets the search agent exploit the potential region
better (good exploitation). Furthermore, an appropriate number of fragments also must
be chosen so that the chance of finding the best solution is higher. A simple technique
to reduce the explosion radius, re, which is used in this work, is given in Equation (4),
where c is a parameter constant, It is the current iteration, and MaxIt is the total number
of iterations.

renew = reinitial × exp
(
−c× It

MaxIt

)
(4)

2.3. Steps of Implementation of REA

The flowchart of the proposed REA is presented in Figure 2 below.
The steps of implementation of REA are summarized as follows:

Step 1: Define the parameters of REA (maximum iteration, number of particles, number
of fragments, the radius of the explosion, c).

Step 2: Initialize the particle population, XP
i , within the lower and upper bound of the

search space, where i = 1, 2, 3, . . . , m.
Step 3: Evaluate the fitness value of each particle.
Step 4: Explosion: Generate the location of n-number of random fragments, XF

j , within
the explosion radius, re, in each group (in the first explosion, an initial explosion
radius is used; particle 1 will be group 1, particle 2 will be group 2, and so on).

Step 5: Evaluate the fitness value of an individual fragment in each group.
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Step 6: Calculate the distance between individual fragments in each group and the global
best solution.

Step 7: Selection: Select the best fragment in each group which is the fragment that is
nearest (minimum distance) to the global best solution.

Step 8: Update the new particle with the best fragment in each group obtained in Step 7 to
continue the next explosion.

Step 9: Update the new explosion radius (explosion radius will be decreasing from the
initial explosion radius to 0/~0).

Step 10: If the stopping criterion is satisfied, then the algorithm will be stopped. Otherwise,
return to Step 4.

Step 11: Return the best optimal solution (after the stopping criteria are satisfied).
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3. REA for the Benchmark Test Functions

Benchmark test functions are a group of functions that can test the performance and
characteristics of any optimization algorithms for the various optimization problems, such
as constrained/unconstrained, continuous/discrete, and unimodal/multimodal problems.
For any new optimization algorithm developed, testing and evaluating the algorithm’s
performance is very important. Therefore, the common practice to test how these new
algorithms are performed compared to other algorithms is to test on the benchmark test
functions. Furthermore, such benchmarking is also vital to gain a better understanding
and greater insight into the pros and cons of the algorithms under-tested [38–41].

A total of 23 benchmark test functions are applied to the algorithm to demonstrate the
algorithm’s efficiency. These benchmark test functions can generally be divided into three
main categories, that are unimodal benchmark test functions [42], multimodal benchmark
test functions [28] and fixed dimension benchmark test functions [28,42]. These benchmark
functions are described in Appendix A in Tables A1–A3, respectively, where Dim indicates
the function’s dimension, Range is the search space boundary of the functions, and fmin is
the value of the optimum function.

In the first category of the benchmark test functions, the unimodal benchmark func-
tions (F1–F7), there is only one global optimum, and there are no local optima. Thus, that
makes it suitable for the analysis of the algorithm’s convergence speed and exploitation
capability. The second category consists of 9 benchmark functions (F8–F13), and 10 bench-
mark functions (F14–F23) are included in the third category. The second and third categories
of the benchmark test functions are useful for examining the algorithm’s local optima
avoidance and exploration capability as these functions consist of many local optima in
addition to the global optimum. The 3D plot of all the benchmark functions is illustrated
in Figures 3–5 [3].
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4. REA for Quadrotor Control Application

After we have tested our algorithm on the benchmark test functions, the proposed
algorithm is implemented for the quadrotor control application. The goal here is to tune
the controller’s parameters with the proposed algorithm to search for the best performance
optimal parameter.

4.1. Mathematical Model of The Quadrotor

Before we can implement the algorithm, it is necessary to define the quadrotor’s
dynamic equation first. The dynamics equation of the quadrotor used here is based on the
Newton-Euler theory. Several assumptions must be considered to derive these equations,
which are [43] (1) the structure of the quadrotor is rigid and symmetrical, (2) the center
of gravity of the quadrotor and the origin of the body-fixed frame must coincide, and (3)
thrust and drag forces are proportional to the square of the rotor’s speed. The complete
dynamics equation of the quadrotor is given in Equation (5) below [44]:

..
φ =

(Iy−Iz)
Ix

.
ψ

.
θ + l

Ix
U2

..
θ = (Iz−Ix)

Iy

.
ψ

.
φ + l

Iy
U3

..
ψ =

(Ix−Iy)
Iz

.
θ

.
φ + 1

Iz
U4

..
x = (cos φ sin θ cos ψ + sin φ sin ψ) 1

m U1
..
y = (cos φ sin θ sin ψ− sin φ cos ψ) 1

m U1
..
z = −g + (cos φ cos θ) 1

m U1

(5)

where Ix, Iy, Iz are the inertia in the x, y, and z-axis, respectively, l is the length of the rotor
to the center of the quadrotor, m is the mass of the quadrotor, g is the gravity constant, and
Ui(I = 1, 2, 3, 4) is the control input to the quadrotor. It can be expressed as in Equation (6)
below. The parameters of the quadrotor used are given in Table 1 below [45]:

U1 = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)
U2 = b

(
−Ω2

2 + Ω2
4

)
U3 = b

(
−Ω2

1 + Ω2
3

)
U4 = d

(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

)
(6)

Table 1. Parameters of the quadrotor.

Parameter Value Unit

Mass, m 1.12 Kg
Arm length, l 0.23 m

Inertia x-axis, Ix 1.19 × 10−2 Kgm2

Inertia y-axis, Iy 1.19 × 10−2 Kgm2

Inertia z-axis, Iz 2.23 × 10−2 Kgm2

Rotor inertia, Jr 8.50 × 10−4 Kgm2

Thrust coefficient, b 7.73 × 10−6 Ns2

Drag coefficient, d 1.28 × 10−7 Nms2

4.2. A Hybrid PD2-LQR Controller

In this study, only four states will be chosen for the control purpose: the altitude
(z) and the three Euler angles (φ, θ, ψ). In order to control and stabilize the system, an
appropriate control law for the system must be designed to accomplish the desired control
performance. The structure of the hybrid PD2-LQR controller is depicted in Figure 6 below:
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Let a state-space representation of a linear system is described as in Equation (7)
below: .

X = AX + BU (7)

Now, from the above control structure, the control law of the system can be represented
as in Equation (8) below:

U = −KT + EKe (8)

From there, we can see that the gain KT is the total gain of the original LQR controller’s
gain and the PD2 controller’s gain and is defined as Equation (9) below, and Ke is the
system’s error gain.

KT = KX + KpCX + (Kd1 + Kd2)C
dX
dt

(9)

E is the error signal between the output y and the reference input defined in Equation
(10). Now, combining the Equations (9) and (10), the control input of the system can be
expressed as Equation (11) below:

E = −y + rd = −CX + rd (10)

U = −KX− KpCX− KeCX− (Kd1 + Kd2)C
dX
dt

+ Kerd (11)

4.3. Objective Function

The evaluation of the control performance will be determined based on the objective
function. Generally, the typical objective functions that are mostly used to optimize
the controller’s parameter are Integral Absolute Error (IAE), Integral Square Error (ISE),
Integral Time Absolute Error (ITAE), and Integral Time Square Error (ITSE). The IAE
objective function was used in this study to optimize the controller’s parameters so that
the error between input/output of the system is minimum/0.

Hence, the algorithm considers the system’s overshoot (which is also related to the
rise time) and steady-state error to achieve this. With these interdependent relationships
among parameters, we can be sure that the algorithm minimizes all involved parameters
(or at least within the acceptable limit), so the input/output of the system is minimal.

Additionally, the objective function has been modified to accommodate some other
performance indexes such as the rise time (RT), percentage overshoot (OS), and steady-state
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error (SSE). This modification was made based on the findings made by [44], who claimed
that the system’s response shows an improvement where a faster rise time, short settling
time, small overshoot, and minimal steady-state error are produced when such objective
function is used. The IAE and the new objective function are given in the Equations (12)
and (13) respectively:

IAE =
∫ T

0
|e(t)|dt (12)

IAE =
∫ T

0
|e(t)|dt (13)

4.4. Experimental Setup

The parameter settings for the proposed algorithm and other selected algorithms are
shown in Table 2. These parameters are set according to the literature reported. For our
algorithm, the selection of the parameter is made based on several preliminary experiments.
We found that our algorithm works quite well with the parameters setting reported in
Table 2. However, it is worth noting some guidelines for tuning these parameters.

Table 2. Parameter setting for the algorithm.

No. Algorithms Parameters Value

1 Random Explosion
Algorithm (REA)

No. of fragments, nF
Explosion radius, re

c

90 (triple of the
population size)

(Ub, ~0)
70

2 Particle Swarm
Optimization (PSO)

Inertia coefficient, w
Cognitive and social

coefficient, c1, c2

0.75
1.8, 2

3 Artificial Bee Colony
(ABC) Parameter limit

Number of food source ×
dimension, (number of

food source = number of
populations, dimension =

dimension of solution)

4 Genetic Algorithm (GA) Crossover
Mutation

0.9
0.05

5 Differential Evolution
(DE)

Crossover
Scale factor

0.9
0.5

6 Multi-Verse Optimizer
(MVO)

Wormhole existence
probability

Traveling distance rate

(0.2, 1)
(0.6, 1)

7 Moth Flame Optimizer
(MFO)

Convergence constant
Logarithmic spiral

(−1, −2)
0.75

8 Firefly Algorithm (FA) Randomness factor, α
Light absorption coefficient, γ

0.2
1

9 Sooty Tern Optimization
Algorithm (STOA)

Controlling variable, Cf
Sa

2
(Cf, 0)

Firstly, for the number of fragments, it is advisable to choose based on the number
of populations, the complexity of the problem, and how big the search space is. Suppose
the number of populations is less than 10. In that case, it is recommended to use a high
value of the number of fragments such as five or more times of population size, while for
populations greater than 10, it is sufficient to use only triple times of population size (used
in this study).

For a complicated problem, it is recommended to increase the number of fragments
instead of the number of the population since it only has a minor effect on the computational
time, while increasing the population size will increase the computational time significantly.
For a small search space, it is sufficient to use a low number of fragments (triple of
populations size), but for a large search space, it is recommended to use a high number
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of fragments because the search radius will be larger, so low number of fragments is not
appropriate to search such large space.

Secondly, for the parameter constant, c, it is advisable to choose based on the maximum
number of iterations. In this study, with a maximum iteration of 1000, we use c = 70, but the
range can be between 70–100 where the algorithm can still perform sufficiently. Different
maximum iteration has a different range of c value. This value must be chosen carefully
since it affects the search radius that will indirectly affect the algorithm’s exploration and
exploitation capability.

Experimentation and algorithms are implemented in the MATLAB R2020a version
(MathWorks, Natick, MA, USA), and the simulation was run on the Microsoft Windows
10 with 64-bit on Core i5 processor with 2.4 GHz and 8 GB of memory. The mean and
standard deviation of the best fitness achieved until the last iteration is calculated as the
performance metrics. For each of the benchmark test functions, the algorithms were run
for 10 separate runs, with each run using 1000 times of iterations.

5. Results and Discussion

The simulation and experimentation to evaluate the performance of the proposed
algorithm are presented in this section. The algorithm was tested on 23 benchmark test
functions. The performance of the proposed algorithm is also validated by comparing it
with eight other well-known algorithms. Particle Swarm Optimization (PSO) [21], Artificial
Bee Colony (ABC) [23], Genetic Algorithm (GA) [4], Differential Evolution (DE) [5], Multi-
Verse Optimizer (MVO) [46], Moth Flame Optimizer (MFO) [47], Firefly Algorithm (FA) [28],
and Sooty Tern Optimization Algorithm (STOA) [48] are the algorithms chosen.

For all algorithms, the number of search agents (population) used is 30, the maximum
iteration is set to be 1000, and each algorithm was run for 10 separate runs. Furthermore,
the controller’s performance using the proposed algorithm is also evaluated similarly to
the first part of this study by comparing the result with the different algorithms used. The
controller’s performance will be assessed in terms of the rise time, settling time, percentage
overshoot, steady-state error, and RMSE of a system’s response.

5.1. Performance Comparison of REA

A comparative study with eight other well-known algorithms on unimodal, multi-
modal, and fixed dimensional multimodal benchmark test functions was conducted to
demonstrate the proposed algorithm’s performance. The unimodal benchmark functions
consist of one global optimum and are therefore suitable for analyzing the algorithm’s
exploitation capability. According to the results in Table A4 in Appendix B, REA provided
a competitive outcome compared to the others.

In particular, REA outperforms the other algorithms on F1, F2, F3, F4, F6, and F7
benchmark functions with the lowest mean and standard deviation. For F5 only, with
the lowest mean and standard deviation, ABC performs better than REA. Based on these
results, we can say that REA can provide superior performance in exploiting the optimum
with a faster convergence speed than the other algorithms.

Unlike the unimodal benchmark functions, the multimodal benchmark functions
consist of many local optima, which increase exponentially with the dimension. For this
reason, it makes them suitable for evaluating the algorithm’s exploration capability and
local stagnation avoidance. Based on the findings reported in Table A4 in Appendix B for
multimodal benchmark functions (F8–F13) and fixed dimension multimodal benchmark
functions (F14–F23), we can see that REA has a good exploration capability in finding the
global optimum solution for the benchmark functions tested. These results show that out
of the 16 (F8–F23) benchmark functions tested, REA can give a better performance for 12
benchmark functions (F10, F12, F13, F14, F15, F16, F17, F18, F19, F21, F22, and F23) while ABC
is outperforming REA for F8, F9, F11, and F20 benchmark functions.

However, it can also be noted that some other algorithms produce the same outcome
as REA for fixed dimension multimodal benchmark functions. In F14, the algorithms that
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can give the same average value as REA are ABC, GA, DE, MVO, and FA, but only DE has
the same standard deviation as REA. In F15, only FA has the same average value as REA.
In F16, PSO, DE, and MFO have the same average value and standard deviation as REA,
while the rest of the algorithms only have the same average value. In F17, PSO, ABC, DE,
MFO, and FA have the same average value and standard deviation as REA, while the rest
only have the same average value.

In F18, all algorithms produced the same results for the average value, but only PSO
has the best standard deviation. In F19, all algorithms except STOA have the same average
value as REA, while only REA has the best standard deviation. In F21, REA, ABC, DE,
and FA have the same average value, but only DE has the best standard deviation. In F22
and F23, REA, ABC, DE, and FA have the same average value, but only REA has the best
standard deviation. These findings show that REA can obtain a very competitive outcome
in most multimodal benchmark functions and has good merit in exploration capability and
local optima avoidance.

5.2. Convergence Analysis

The convergence curve of all algorithms is plotted in Figure 7 to visualize the REA
algorithm’s evolution over iterations. For this analysis, three distinct benchmark func-
tions were contemplated: F1 (for unimodal benchmark functions), F10 (for multimodal
benchmark functions), and F15 (for fixed dimension multimodal benchmark function).
These figures are plotted to illustrate the speed at which the algorithms converge and the
algorithm’s exploration and exploitation capability. From these figures, we can see that
REA has a very competitive result compared to the other algorithms.

At the initial stage of the iteration process, we can see that REA can explore the promis-
ing region in the search space and quickly converge towards a global optimum compared
to other algorithms. After a certain amount of iteration, the REA finally converges towards
the optimum when the final iteration is reached. With these findings, we can conclude
that REA has a better balance between exploration and exploitation capability to find
a global optimum. REA’s convergence speed is also faster and more accurate than the
other algorithms.

5.3. Performance Comparison of REA Based PD2-LQR Controller

Since the number of populations affects the algorithms’ performance, all algorithm’s
population size was chosen to be the same. The specific parameters that describe the
properties of the algorithm were selected according to the literature stated before. The
system’s initial condition is set to be (0, 0, 0, 0), and the final state will be (1, 1, 1, 1) for the
roll, pitch, yaw, and altitude motions, respectively.

For evaluation purposes, there are five performance criteria used for the comparisons:
rise time, settling time, percentage overshoot, steady-state error, and RMSE of the system’s
response. The system’s response using the REA PD2-LQR controller in comparison with
various other algorithms is presented in Figure 8 for the roll, pitch, yaw, and altitude
motions. It could be evident that from the simulation result obtained in Table 3 and the step
response depicted in Figure 8 below, all of the controllers were able to drive the quadrotor
to the desired reference altitude and angle and manage to stabilize the system in a very fast
period with a good performance.

However, there is still a significant difference in the performance response among these
controllers. From these figures and table, we can see that the REA based controller produced
the best overall performance in all motion. In contrast, the worst overall performance can
be said to be GA based controller in roll, pitch, and altitude motion and DE based controller
in yaw motion.

Nevertheless, to properly visualize how much the proposed REA based controller can
improve the system’s performance, we need to calculate and show the percentage improve-
ment for better understanding. The REA based controller’s percentage improvement with
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respect to the other individual controllers is presented in Table 4 for the roll, pitch, yaw,
and altitude motion.
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From the table above, we can see that the improvement is very significant and very
good in terms of the rise time and settling time for all four motions. The REA based
controller seems to outperform all the other controllers. The overshoot and steady-state
error of a certain controller is minimal, and thus we can neglect these values or approximate
them to zero.

Finally, the value of RMSE for the REA based controller is not likely to have much
improvement, but if we look carefully, it only has a small difference; thus, it still can be
acceptable. For example, let us take the DE based controller for yaw motion with the
highest percentage increase; we can see that it is only 0.03501 indifferent with the REA
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based controller. Therefore, we can conclude that the REA based controller can produce a
better overall result than the other controllers.
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Figure 8. Comparison of the step response, (a) roll, (b) pitch, (c) yaw, and (d) altitude.
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Table 3. Performance comparison of the controller for all motion.

Motion Algorithm Rise Time, s Settling Time, s Overshoot, % Steady-State Error RMSE

Roll

REA 0.03361 0.05713 0.00000E+00 6.44466E-06 0.23449

PSO 0.08200 0.15520 0.00000E+00 3.20000E-03 0.22620

ABC 0.03441 0.05765 0.00000E+00 5.65577E-04 0.24068

GA 0.10570 0.19360 0.00000E+00 7.61930E-04 0.21840

DE 0.06060 0.11330 0.00000E+00 7.05810E-04 0.22930

MVO 0.09870 0.18210 0.00000E+00 1.50000E-03 0.21630

MFO 0.09909 0.18101 2.32631E-02 1.73851E-04 0.21664

FA 0.03422 0.05853 0.00000E+00 8.42488E-04 0.23436

STOA 0.03677 0.06488 0.00000E+00 2.30451E-03 0.23422

Pitch

REA 0.03361 0.05713 0.00000E+00 6.44466E-06 0.23449

PSO 0.08200 0.15520 0.00000E+00 3.20000E-03 0.22620

ABC 0.03441 0.05765 0.00000E+00 5.65577E-04 0.24068

GA 0.10570 0.19360 0.00000E+00 7.61930E-04 0.21840

DE 0.06060 0.11330 0.00000E+00 7.05810E-04 0.22930

MVO 0.09870 0.18210 0.00000E+00 1.50000E-03 0.21630

MFO 0.09909 0.18101 2.32631E-02 1.73851E-04 0.21664

FA 0.03422 0.05853 0.00000E+00 8.42488E-04 0.23436

STOA 0.03677 0.06488 0.00000E+00 2.30451E-03 0.23422

Yaw

REA 0.02294 0.03742 0.00000E+00 1.17230E-04 0.20431

PSO 0.08120 0.15000 0.00000E+00 2.40000E-03 0.18440

ABC 0.02400 0.04160 0.00000E+00 6.79900E-04 0.20090

GA 0.08390 0.15290 0.00000E+00 9.52840E-04 0.17360

DE 0.11720 0.21080 4.50000E-03 1.34400E-04 0.16930

MVO 0.03580 0.06770 0.00000E+00 1.60000E-03 0.19580

MFO 0.05722 0.10487 1.55229E-02 9.20977E-05 0.18574

FA 0.02437 0.04236 0.00000E+00 9.06897E-04 0.20156

STOA 0.02537 0.04526 0.00000E+00 7.96213E-04 0.19670

Altitude

REA 0.15748 0.26129 0.00000E+00 3.93389E-06 0.40235

PSO 0.16270 0.27240 1.71030E-05 8.18330E-10 0.39760

ABC 0.15810 0.26280 0.00000E+00 1.81070E-04 0.40250

GA 0.16879 0.28837 0.00000E+00 1.14450E-05 0.40447

DE 0.16090 0.27070 0.00000E+00 1.92650E-04 0.40040

MVO 0.15850 0.26310 2.94720E-06 6.36660E-11 0.39700

MFO 0.16196 0.27312 0.00000E+00 7.35813E-05 0.40057

FA 0.16110 0.26372 2.64186E-05 1.92583E-11 0.40152

STOA 0.15958 0.26455 1.52380E-04 3.30136E-09 0.40270

Note: The green value indicates good performance, while the red value indicates bad performance.
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Table 4. Percentage improvement of the REA based controller for all motions.

Motion Algorithm Rise Time Settling Time Overshoot Steady-State Error RMSE

Roll

PSO −59.01713 −63.19033 - −99.79860 3.66322

ABC −2.34674 −0.90504 - −98.86052 −2.57302

GA −68.20629 −70.49142 - −99.15417 7.36547

DE −44.54463 −49.57757 - −99.08691 2.26175

MVO −65.95142 −68.62789 - −99.57036 8.40786

MFO −66.08584 −68.43815 −100.00000 −96.29299 8.23617

FA −1.79735 −2.39915 - −99.23504 0.05346

STOA −8.60110 −11.94595 - −99.72035 0.11473

Pitch

PSO −59.01713 −63.19033 - −99.79860 3.66322

ABC −2.34674 −0.90504 - −98.86052 −2.57302

GA −68.20629 −70.49142 - −99.15417 7.36547

DE −44.54463 −49.57757 - −99.08691 2.26175

MVO −65.95142 −68.62789 - −99.57036 8.40786

MFO −66.08584 −68.43815 −100.00000 −96.29299 8.23617

FA −1.79735 −2.39915 - −99.23504 0.05346

STOA −8.60110 −11.94595 - −99.72035 0.11473

Yaw

PSO −71.75218 −75.05260 - −95.11540 10.79617

ABC −4.42820 −10.04543 - −82.75771 1.69643

GA −72.66123 −75.52577 - −87.69674 17.68902

DE −80.42898 −82.24805 −100.00000 −12.77503 20.67817

MVO −35.92952 −44.72511 - −92.67310 4.34532

MFO −59.91605 −64.31817 −100.00000 27.28919 9.99415

FA −5.87671 −11.66429 - −87.07347 1.36461

STOA −9.58509 −17.32273 - −85.27651 3.86803

Altitude

PSO −3.21109 −4.07913 −100.00000 480,621.16279 1.19500

ABC −0.39497 −0.57517 - −97.82742 −0.03694

GA −6.70340 −9.39138 - −65.62806 −0.52366

DE −2.12831 −3.47675 - −97.95801 0.48734

MVO −0.64634 −0.68854 −100.00000 6,178,842.43626 1.34794

MFO −2.77157 −4.33162 - −94.65369 0.44420

FA −2.25051 −0.92294 −100.00000 20,426,901.9929 0.20802

STOA −1.31845 −1.23301 −100.00000 119,059.40416 −0.08551

Note: The green value indicates the performance was improved, while the red value indicates the performance was not improved.

5.4. Robustness Test of REA Based PD2-LQR Controller

In this section, the REA-based controller’s robustness test under the presence of
unknown external disturbance and sensor noise will be presented. This simulation was
conducted to simulate the real-world application of the quadrotor. When flying in an
outdoor environment, the quadrotor is constantly subjected to unknown disturbance
such as wind gust [49]. It is also known that when implemented on a real quadrotor
system, the feedback data from the sensor are always noisy and distorted due to the
mechanical vibration produced by the electronic equipment [50]. Usually, the experimental
(disturbance present) data will diverge from the simulation data due to circumstances stated
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previously [51–54]. Hence these simulations were conducted with and without disturbance
and noise to see how much deviation there would be between the simulation results.

In the first test, it is assumed that the quadrotor is flying in an environment where it
was constantly subjected to an unknown external disturbance throughout the flight time.
The external disturbance force used for the simulation was modeled using a sinusoidal
wave function with the amplitude of 1 and the frequency of 8 Hz, as shown in Equation (14).
The use of this type of wind gust profile is because according to [55], this type of wind
gust profile and step gust profile occurs relatively often in nature. Both step and sinusoidal
functions can be used to construct an arbitrary wind gust profile. The choice of the
amplitude and the frequency of the modeled disturbance were based on various researchers’
work, as shown in Table A5 in the Appendix C. Based on Table A5, we can see that the
amplitude and frequency used were as low as 0.002 and π/100, respectively, while the
highest values were up to 60 and 10, respectively. Therefore, an amplitude of 1 and 8 Hz
frequency have been chosen for this work, which is within the prescribed ranges mentioned
earlier. This model is sufficient to be used for approximating the external disturbance face
by the quadrotor [49,56]. The external disturbance was injected into both the altitude and
attitude subsystem. The plot of the disturbance’s model is presented in Figure 9.

d(t) = 1sin(8t) (14)

The step response of the system using the proposed REA based PD2-LQR controller
subjected to the unknown external disturbance are shown in Figure 10a–d, for the roll,
pitch, yaw, and altitude motion respectively.

From these figures, it is observed that there is a little bit of attenuation in the system’s
response around the desired reference point. This attenuation occurs because of the time-
varying disturbance that we have defined earlier. However, the controller could still
control and stabilize the quadrotor within the desired reference altitude and angle without
any severe degradation in its performance. Suppose we can see from the altitude and
attitude error response of the system in Figure 11. In that case, the error produced is not
too significant, and the deviation is only around ±0.01◦ for roll, pitch, and yaw motion,
respectively, and ±0.03 m for the altitude motion.

In the second test, we assume that the system is contaminated with the noisy signal
coming back from the feedback loop sensor. White Gaussian noise with a zero mean value
and variance of 0.01 was applied [57] to simulate the sensor noise present in the feedback
signal. The generated noise was fed into the feedback loop for both the altitude and attitude
subsystems. The plot for the generated sensor noise is presented in Figure 12.
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Figure 9. Unknown external disturbance variation over time.
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Figure 10. The step response of the system in the presence of unknown external disturbance, (a) roll,
(b) pitch, (c) yaw, and (d) altitude motion.
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Figure 11. The error response of the system in the presence of unknown external disturbance, (a) roll,
(b) pitch, (c) yaw, and (d) altitude motion.
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Figure 12. Sensor noise signal.

The step responses of the system using the proposed REA based PD2-LQR controller
subjected to the sensor noise present in the system are shown in Figure 13a–d for the roll,
pitch, yaw, and altitude motion respectively. From these figures, it is observed that the
system is a little bit attenuating around the desired reference point since it was constantly
exposed to the sensor noise. Nonetheless, the controller could still control and stabilize the
quadrotor within the desired reference altitude and angle without a significant deterioration
in its performance. Suppose we can see from the altitude and attitude error response of the
system in Figure 14. In that case, the error produced is not too large, and the deviation is
only around ±0.3◦ for roll, pitch, and yaw motion, respectively, and also ±0.3 m for the
altitude motion.
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Figure 13. The step response of the system in the presence of sensor noise, (a) roll, (b) pitch, (c) yaw,
and (d) altitude motion.
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Figure 14. The error response of the system in the presence of sensor noise, (a) roll, (b) pitch, (c) yaw,
and (d) altitude motion.

5.5. Summary

In the previous subsections, the simulation result of the controllers in all four motions,
roll, pitch, yaw, and altitude has been presented and discussed. In the first subsection,
a comparative study between the proposed algorithm, REA, with eight well-known al-
gorithms like PSO, ABC, GA, DE, MVO, MFO, FA, and STOA has been made in order to
demonstrate the effectiveness of the propose algorithm over other algorithms in terms of
the exploitation and exploration capability, convergence speed, and the accuracy of the
algorithm in finding the optimal solution. The results show that REA delivered a very
competitive result compared to the eight other well-known metaheuristic algorithms such
as PSO, ABC, GA, DE, MVO, MFO, FA, and STOA.

Next, after we found that the proposed algorithm can provide a satisfactory perfor-
mance compared to other algorithms when tested on the 23 benchmark test functions
as provided in Appendix A, we then implemented all of the algorithm on the proposed
PD2-LQR controller. Similarly, a comparative study between the proposed REA PD2-LQR
controller and other algorithms based PD2-LQR controller has been conducted. The perfor-
mance of the controllers was evaluated based on the rise time, settling time, percentage
overshoot, steady-state error, and RMSE of the system’s response. Based on the findings,
we can realize that the proposed controller can give a superior performance than the other
controller. Moreover, the proposed algorithm can provide an optimal solution for the
controller’s parameters which led to a better system’s response.

The rise time produce by the REA based controller is 0.03361 s, 0.03361 s, 0.02294
s, and 0.15748 s in roll, pitch, yaw, and altitude motion, respectively, with the settling
time of 0.05713 s (roll/pitch), 0.03742 s (yaw), and 0.26129 s (altitude). The REA based
controller produced no overshoot in all four motions (0%). However, it is worth noting that
some other controllers like PSO, ABC, GA, DE, MVO, FA, and STOA based controller also
produce no overshoot in roll and pitch motion, PSO, ABC, GA, MVO, FA, and STOA based
controller in yaw motion, and ABC, GA, DE, and MFO based controller in altitude motion.
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Concerning the steady-state error, the proposed REA based controller only has the
best performance in roll and pitch motion with an error of 6.44466E-06, respectively. In
contrast, in the yaw and altitude motion, it was dominated by MFO based controller with
9.20977E-05 and FA based controller with 1.92583E-11, respectively. In terms of RMSE,
MVO based controller outperformed REA based controller in roll, pitch, and altitude
motion with 0.21630, 0.21630, and 0.39700, respectively, while DE based controller in yaw
motion with 0.16930.

On evaluating the worst performance, it is observed that in terms of the rise time,
GA and DE based controller is the worst with 0.10570 s in roll/pitch motion, and 0.16879s
in altitude motion for GA based controller, while 0.11720 s in yaw motion for DE based
controller. In addition, the same controller also has the worst settling time with 0.19360s in
roll/pitch motion (GA), 0.28837 s in altitude motion (GA), and 0.21080s in yaw motion (DE).
The highest overshoot is produced by MFO based controller with 2.32631E-02%, 2.32631E-
02%, and 1.55229E-02% in roll, pitch, and yaw motion, while STOA based controller is the
highest in the altitude motion with 1.52380E-04%.

As to steady-state error, it is found that PSO based controller has the highest error
in roll (3.20000E-03), pitch (3.20000E-03), and yaw (2.40000E-03), respectively while DE
is the highest in altitude motion with an error of 1.92650E-04. Lastly, in RMSE, ABC,
REA, and GA based controllers produce the highest error in roll/pitch, yaw, and altitude,
respectively. These values are 0.24068 (ABC)(roll/pitch), 0.20431 (REA)(yaw), and 0.40447
(GA)(altitude). If we can notice that the RMSE of the proposed REA based controller is the
worst in yaw motion, the highest difference is only 0.03501 with the best controller, which
is very minimal; thus, it can still be accepted.

Finally, in order to test the robustness of the proposed controller, a simulation with
the present of the unknown external disturbance such as wind gust and sensor noise was
conducted to simulate the real-world condition. The external disturbance was modeled
using a sinusoidal wave function with the amplitude of 1 and a frequency of 8Hz. The
sensor noise was modeled using white Gaussian noise with a zero mean value and variance
of 0.01. The external disturbance and the sensor noise were applied for the simulation
period. The simulation result shows that the proposed controller can still work effectively
even under these condition with minimal error produce.

This study only conducted a simulation work to prove the REA PD2-LQR controller’s
superior performance. According to several studies that compare simulation and exper-
imental work, it is found that the performance has some differences when a real imple-
mentation is done. Still, the differences between these two works are not too significant.
Therefore, we present some references that work on simulation and experimental study of
the quadrotor control and stabilization to support our findings further.

Raza and Gueaieb [51] presented their findings that the pitch and roll angle are within
(−3, +4)◦ for simulation, while (−8, +7) and (−6, +12)◦ in pitch and roll, respectively, for
experimental work. Li and Li [58] found that the quadrotor’s attitude angle fluctuated at
±5◦ from a 0.1◦ reference angle. In work done by Burggräf, Pérez Martínez [52], the stabi-
lization time for the attitude angle is around 1.3 s for simulation, while for an experiment, it
takes 2.2 s to stabilized. Rich and Elia’s [53] results show that simulation and experimental
work is almost the same, with approximately less than 10 s to settle at the desired altitude.
Hong and Nguyen [54] did the position control of the quadrotor using a gain-scheduling
PD controller. They found that the time taken to reach the desired reference is 9.55 s for
simulation while 17.5 s for experimental.

Fang and Gao [59] found that all the attitude angles are within ±0.1 radian and the
steady-state error of the altitude is ≈0 for the simulation, while the experimental results
show that the attitude is almost the same as the simulation, which is also within±0.1 radian
and the altitude has maximum 5 cm deviation. Mohammadi and Shahri [60] found that all
the attitude angles are within ≈±1◦. The steady-state error of the altitude is within ≈0.1 m
for the simulation. At the same time, the experimental results show that the roll angle is
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within ≈(+2, −1)◦, the pitch, and yaw angle is within ≈(+1.5, −1)◦, and the altitude is
within ≈(−0.03, +0.04) meter.

In Tan and Lu [61], findings show that the roll and pitch angles are stabilized within
≈0◦, and the yaw angle is within ≈±0.05◦ for the simulation, while the experimental
results show that the roll and pitch angles are stabilized within ±1◦, and the yaw angle
is within ±3◦. Kim and Nguyen [62] presented findings which show that all the attitude
angles are stabilized within ≈0 radians for the simulation, while the experimental result
shows that the roll angle is stabilized within ≈±0.02 radian, the pitch angle is within
≈±0.05 radian, and the yaw angle is less than ≈0.1 radian.

Abbasi [63] presented that all the attitude angle are stabilized within ≈0 radians for
the simulation, while the experimental results show that the roll angle is stabilized within
less than ≈±5◦ (0.09 radian) and the pitch angle is within less than ≈±3◦ (0.05 radian). In
Xuan-Mung and Hong [64], the altitude error converges to zero within ≈21 s after step
input is commanded at 5 s for the simulation. The experimental results show that the
quadrotor reaches the desired altitude within ≈45 s after step input is commanded at 10 s.
There is a 19 s difference between the simulation and experiment.

In Martins and Cardeira [65], the root mean square error of the x/y/z position and
yaw angle are 0.0865 m, 0.0714 m, 0.0556 m, and 0.0095◦ respectively for the simulation,
while the experimental results are 0.1010 m, 0.0781 m, 0.0570 m, and 0.2244◦ respectively.
Wu and Hu [66] presented that all the attitude angles are stabilized within ≈0 radians
for the simulation. Simultaneously, the experimental results show that the roll angle is
stabilized within less than ≈(+0.4, −0.3) radian, the pitch angle is within less than ≈(+0.1,
−0.5) radian. The yaw angle is less than ≈±4 radian.

Choi and Ahn [67], found that the position and attitude angle are stabilized within
≈0 m and degree error respectively for the simulation, while the experimental result show
that the x/y position has maximum peak error of less than ≈1.5 m, the altitude error is
less than 0.1 m, the roll angle is stabilized within less than ≈(+3, −5)◦, and the pitch angle
is within less than ≈±0.3◦. Lu and Liu [68] found the quadrotor successfully tracks the
desired trajectory with almost zero tracking error for the simulation. Simultaneously, the
experimental results show tracking error is produced but still within the acceptable range.

Feng [69] found that the roll and pitch angles are stabilized within ≈0 radians for the
simulation, while the experimental results show that the roll and pitch angles are stabilized
within less than ≈±0.05 and ≈±0.02 radians respectively. In summary, based on these
references that work on both simulation and experimental studies, we can conclude that the
deviation between the performance in simulation and experiment is not too significant or
too severe. Hence, when the proposed controller based on a simulation work implemented
on a real platform, it can still be stable even with marginal degrees/meters of error.

6. Conclusions

This paper presented an optimization algorithm called a Random Explosion Algorithm
(REA). This algorithm’s fundamental idea is based on a simple concept of an explosion that
will produce a randomly dispersed fragment around the initial particle within the explosion
radius when a particle is exploded. The algorithm was tested on the 23 benchmark
test functions to evaluate the algorithm’s performance in exploration, exploitation, local
optima avoidance, and convergence behavior. The results show that REA delivered a very
competitive result compared to the eight other well-known metaheuristic algorithms such
as PSO, ABC, GA, DE, MVO, MFO, FA, and STOA. About the first benchmark functions
(unimodal benchmark functions), REA has a superior exploitation capability to exploit
the optimum value of the functions. The second benchmark functions (multimodal and
fixed dimensional multimodal benchmark functions) have confirmed that REA could
explore the promising region in the search space and escape the local optima and seek
the global optimum. The convergence analysis has proved that the REA could converge
faster and accurately toward the global optimum than the other algorithms. Besides that,
we also implemented the algorithm for the quadrotor control application. The proposed
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REA based controller’s performance in terms of the rise time, settling time, percentage
overshoot, steady-state error, and RMSE of a system’s response has been compared and
evaluated with the other optimization-based controller stated before. The simulation result
shows that the proposed REA based controller gives the best control performance in terms
of the rise time, settling time, and percentage overshoot in all four motions (roll, pitch,
yaw, altitude), while producing small steady-state error and RMSE as other controller.
Finally, the proposed controller’s robustness test has also been conducted to simulate the
real-world application where the quadrotor is always subjected to an unknown external
disturbance and suffers from the sensor noise coming from the mechanical vibration in the
electronic part. The external disturbance was modeled using the sinusoidal wave function
with an amplitude of 1 and a frequency of 8 Hz. The sensor noise was modeled using white
Gaussian noise with a zero mean value and variance of 0.01. Under this set of conditions,
the simulation result shows that the proposed controller can still work effectively with
only minimal error produces. The errors are ±0.01◦ for the roll, pitch, and yaw motion and
±0.03 m for the altitude motion under the presence of external disturbance, while ±0.3
degrees/meters in all four motion when subjected to the sensor noise. In conclusion, based
on these findings, we can say that the proposed REA algorithm and REA based controller
are suitable and can be used for the controller’s parameter tuning and quadrotor control
and stabilization. More so since it can provide a further improvement to the quadrotor’s
system performance in all four motion with an excellent overall result.
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Appendix A

Table A1. Unimodal benchmark function.

Function Dim Range fmin

F1(x) = ∑n
i=1 x2

i 10 (−100, 100) 0
F2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| 10 (−10, 10) 0

F3(x) = ∑n
i=1

(
∑i

j−1 xj

)2 10 (−100, 100) 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 10 (−100, 100) 0
F5(x) = ∑n−1

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

10 (−30, 30) 0

F6(x) = ∑n
i=1([xi + 0.5])2 10 (−100, 100) 0

F7(x) = ∑n
i=1 ix4

i + random(0, 1) 10 (−1.28, 1.28) 0
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Table A2. Multimodal benchmark function.

Function Dim Range fmin

F8(x) = ∑n
i=1−xi sin

(√
|xi|
)

10 (−500, 500) −418.9829 × Dim

F9(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

10 (−5.12, 5.12) 0

F10(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e 10 (−32, 32) 0

F11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 10 (−600, 600) 0

F12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+∑n

i=1 u(xi, 10, 100, 4)yi = 1 + xi+1
4

u(xi, a, k, m) =


k(xi − a)m xi > a

0 − a < xi < a
k(−xi − a)m xi < −a

10 (−50, 50) 0

F13(x) = 0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi, 5, 100, 4)
10 (−50, 50) 0

F14(x) = −∑n
i=1 sin(xi)·

(
sin
(

i·x2
i

π

))2m
, m = 10 10 (0, π) −4.687

F15(x) =
[
e−∑n

i=1 (xi/β)2m
− 2e−∑n

i=1 x2
i

]
· ∏n

i=1 cos2 xi, m = 5 10 (−20, 20) −1

F16(x) =
{[

∑n
i=1 sin2(xi)

]
− exp

(
−∑n

i=1 x2
i
)}
· exp

[
−∑n

i=1 sin2√|xi|
]

10 (−10, 10) −1

Table A3. Fixed-dimension multimodal benchmark function.

Function Dim Range fmin

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
2 (−65.536, 65.536) 1

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 (−5, 5) 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 (−5, 5) −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 (−5, 5) 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 (−2, 2) 3

F19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij

(
xj − pij

)2
)

3 (0, 1) −3.86

F20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij

(
xj − pij

)2
)

6 (0, 1) −3.32

F21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 (0, 10) −10.1532

F22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 (0, 10) −10.4029

F23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 (0, 10) −10.5364
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Table A4. Minimization results for the Unimodal, Multimodal, and Fixed-dimension Multimodal benchmark functions. Results were averaged from 10 individual runs, with a population
size of N = 30 and the maximum number of iterations of T = 1000.

F
REA PSO ABC GA DE MVO MFO FA STOA

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

U
ni

m
od

al

F1 9.72E-58 2.40E-58 1.82E-08 2.62E-08 8.79E-17 2.14E-17 6.76E-02 1.36E-01 1.13E-43 3.57E-43 4.08E-03 1.48E-03 2.52E-29 6.14E-29 7.58E-18 2.63E-18 6.58E-38 1.28E-37
F2 7.91E-30 9.88E-31 6.42E-06 6.62E-06 3.12E-16 6.94E-17 3.71E-03 6.53E-03 2.01E-28 4.21E-28 1.69E-02 4.40E-03 1.32E-18 1.91E-18 6.80E-10 8.94E-11 5.21E-22 5.92E-22
F3 1.08E-57 1.81E-58 2.22E-02 2.21E-02 1.97E+01 1.64E+01 2.23E+02 1.19E+02 1.85E-04 3.46E-04 2.79E-02 1.93E-02 1.37E-06 2.29E-06 1.24E-17 3.71E-18 1.20E-23 2.88E-23
F4 1.81E-29 1.56E-30 2.00E-02 1.82E-02 5.97E-03 2.09E-03 1.19E+00 3.94E-01 1.47E+00 1.47E+00 4.66E-02 1.92E-02 2.53E-01 5.14E-01 1.62E-09 2.55E-10 2.45E-14 3.67E-14
F5 4.81E+00 1.71E+00 5.68E+00 1.62E+00 1.24E-01 1.51E-01 3.03E+01 2.80E+01 4.73E+00 2.44E+00 6.40E+01 9.78E+01 2.89E+01 5.21E+01 5.93E-01 1.51E+00 7.19E+00 4.23E-01
F6 0.00E+00 0.00E+00 6.83E-08 1.22E-07 9.84E-17 5.24E-17 2.20E-02 2.34E-02 9.27E-20 2.93E-19 3.97E-03 2.37E-03 9.49E-31 1.38E-30 8.23E-18 2.58E-18 1.25E-01 1.76E-01
F7 1.34E-04 6.06E-05 1.36E-03 6.20E-04 9.02E-03 4.40E-03 4.28E-03 5.70E-03 1.81E-03 6.87E-04 2.13E-03 1.13E-03 6.52E-03 4.18E-03 1.90E-04 2.23E-04 7.70E-04 6.85E-04

M
ul

ti
m

od
al

F8 −3.10E+02 3.85E+02 −2.78E+02 3.24E+02 −4.19E+02 9.59E-13 −3.67E+02 9.99E+01 −3.80E+02 1.55E+02 −3.00E+02 2.62E+02 −3.30E+02 3.53E+02 −3.55E+02 2.77E+02 −2.64E+02 2.48E+02
F9 1.60E+01 6.25E+00 6.88+E00 2.46E+00 0.00E+00 0.00E+00 2.31E-03 4.13E-03 3.29E+00 3.81E+00 1.56E+01 6.29E+00 1.91E+01 8.15E+00 8.16E+00 3.03E+00 6.97E-01 2.20E+00
F10 4.44E-15 0.00E+00 4.43E-05 3.12E-05 7.64E-15 2.02E-15 3.87E-02 5.68E-02 7.13E-11 2.25E-10 2.51E-02 5.34E-03 5.51E-15 1.72E-15 1.10E-09 1.84E-10 3.98E+00 8.40E+00
F11 2.62E-01 1.48E-01 1.69E-01 9.87E-02 1.72E-03 5.45E-03 6.11E-02 3.76E-02 3.72E-02 2.01E-02 3.61E-01 1.23E-01 2.13E-01 1.55E-01 6.08E-02 1.32E-02 2.25E-02 5.29E-02
F12 4.71E-32 1.15E-47 3.77E-10 4.12E-10 7.88E-17 2.13E-17 2.43E-04 2.01E-04 4.76E-32 1.23E-33 1.36E-04 7.16E-05 9.33E-02 2.10E-01 7.03E-20 1.97E-20 2.81E-02 1.50E-02
F13 1.35E-32 2.89E-48 3.49E-09 7.31E-09 9.41E-17 1.39E-17 4.71E-03 5.50E-03 1.40E-32 1.56E-33 1.82E-03 3.55E-03 4.39E-03 5.67E-03 3.99E-19 5.62E-20 1.33E-01 7.34E-02

Fi
xe

d-
di

m
en

si
on

M
ul

ti
m

od
al

F14 9.98E-01 0.00E+00 4.06E+00 2.52E+00 9.98E-01 1.05E-16 9.98E-01 1.44E-10 9.98E-01 0.00E+00 9.98E-01 4.70E-12 1.79E+00 1.30E+00 9.98E-01 2.67E-16 1.59E+00 9.58E-01
F15 3.07E-04 5.71E-20 4.32E-03 8.46E-03 6.37E-04 9.97E-05 1.40E-03 5.48E-04 5.88E-04 4.32E-04 6.70E-03 9.43E-03 3.02E-03 6.10E-03 3.07E-04 1.86E-09 1.05E-03 3.74E-04
F16 −1.03E+00 0.00E+00 −1.03E+00 0.00E+00 −1.03E+00 1.96E-16 −1.03E+00 2.52E-06 −1.03E+00 0.00E+00 −1.03E+00 1.10E-07 −1.03E+00 0.00E+00 −1.03E+00 1.66E-16 −1.03E+00 4.31E-07
F17 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 3.54E-07 3.98E-01 0.00E+00 3.98E-01 2.10E-07 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 2.04E-05
F18 3.00E+00 4.68E-16 3.00E+00 2.09E-16 3.00E+00 4.53E-06 3.00E+00 2.47E-07 3.00E+00 1.48E-15 3.00E+00 9.97E-07 3.00E+00 1.55E-15 3.00E+00 7.40E-16 3.00E+00 7.04E-06
F19 −3.86E+00 4.68E-16 −3.86E+00 8.24E-16 −3.86E+00 5.34E-16 −3.86E+00 1.01E-04 −3.86E+00 9.36E-16 −3.86E+00 2.85E-07 −3.86E+00 9.36E-16 −3.86E+00 4.91E-16 −3.85E+00 2.31E-05
F20 −3.20E+00 9.26E-08 −3.29E+00 5.74E-02 −3.32E+00 3.63E-16 −3.07E+00 6.70E-01 −3.26E+00 6.27E-02 −3.25E+00 6.17E-02 −3.23E+00 6.52E-02 −3.27E+00 6.14E-02 −3.01E+00 1.43E-01
F21 −1.02E+01 1.87E-15 −6.90E+00 3.54E+00 −1.02E+01 1.87E-15 −7.17E+00 3.86E+00 −1.02E+01 5.92E-16 −7.62E+00 2.67E+00 −7.39E+00 3.01E+00 −1.02E+01 2.37E-15 −5.50E+00 4.31E+00
F22 −1.04E+01 0.00E+00 −7.67E+00 3.58E+00 −1.04E+01 5.13E-12 −8.11E+00 3.70E+00 −1.04E+01 2.37E-15 −7.81E+00 3.43E+00 −8.21E+00 3.54E+00 −1.04E+01 1.57E-15 −6.45E+00 5.05E+00
F23 −1.05E+01 0.00E+00 −6.71E+00 4.05E+00 −1.05E+01 3.19E-15 −1.00E+01 1.70E+00 −1.05E+01 1.87E-15 −9.46E+00 2.27E+00 −8.47E+00 3.39E+00 −1.05E+01 1.32E-15 −7.25E+00 4.38E+00

Note: The green value indicates the algorithm’s best minimum value, while the red value indicates the worst value obtained by the algorithm.
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Appendix C

Table A5. Review of Sinusoidal wind gust profile.

References
Sinusoidal Wind Gust Profile

Amplitude Frequency

Yang and Yan [70] 0.002–0.01 π/100
Khebbache and Tadjine [71] 0.004–0.008 0.1

Razmi and Afshinfar [72] 0.01 0.01
Dong and He [73] 0.1–0.15 0.1π

Barikbin and Fakharian [56] 0.1–0.2 0.3–0.5
Alkamachi and Erçelebi [74] 0.2 0.5

Li, Ma [75] 0.2 1.5–2
Doukhi and Lee [49] 0.8 0.6

Zhen, Qi [76] 1 1
Nadda and Swarup [77] 1 2

Budiyono, Kang [78] 1 ≈0.16
Luque-Vega, Castillo-Toledo [79] 1 0.1

Ru and Subbarao [80] 1 10
Fethalla, Saad [81] 1–2.5 0.1–4

Wang and Chen [82] 10–60 1.2–3
Ha and Hong [83] (3t + 5), (2t) 1–2
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