
aerospace

Article

Stochastic Trajectory Generation Using Particle
Swarm Optimization for Quadrotor Unmanned
Aerial Vehicles (UAVs)

Babak Salamat * and Andrea M. Tonello

EcoSys Lab, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria;
andrea.tonello@aau.at
* Correspondence: babaksa@edu.aau.at; Tel.: +43-(0)-463-2700-3661

Academic Editors: David Anderson, Javaan Chahl and Michael Wing
Received: 22 March 2017; Accepted: 4 May 2017; Published: 8 May 2017

Abstract: The aim of this paper is to provide a realistic stochastic trajectory generation method
for unmanned aerial vehicles that offers a tool for the emulation of trajectories in typical flight
scenarios. Three scenarios are defined in this paper. The trajectories for these scenarios are
implemented with quintic B-splines that grant smoothness in the second-order derivatives of Euler
angles and accelerations. In order to tune the parameters of the quintic B-spline in the search
space, a multi-objective optimization method called particle swarm optimization (PSO) is used.
The proposed technique satisfies the constraints imposed by the configuration of the unmanned aerial
vehicle (UAV). Further particular constraints can be introduced such as: obstacle avoidance, speed
limitation, and actuator torque limitations due to the practical feasibility of the trajectories. Finally,
the standard rapidly-exploring random tree (RRT*) algorithm, the standard (A*) algorithm and the
genetic algorithm (GA) are simulated to make a comparison with the proposed algorithm in terms of
execution time and effectiveness in finding the minimum length trajectory.

Keywords: stochastic trajectory; unmanned aerial vehicle (UAV); multi-objective optimization;
obstacle avoidance; particle swarm optimization (PSO)

1. Introduction

In the last decade, unmanned aerial vehicles (UAVs), mostly known as an autonomous aerial
vehicles, have been used in numerous military, aerial photography, agricultural and surveillance
applications. UAVs can be classified into three significant groups: fixed-wing UAVs, rotary-wing UAVs
and hybrid-layout UAVs [1].

The advantages of fixed-wing UAVs are the high-speed and the ability to fly for long distances.
However, mechanical systems for landing and take-off, for example the landing gear, have to be
installed. Furthermore, spacious structures, e.g., landing strips, have to be built. In small areas
with obstacles, vertical take-off and landing (VTOL) and the ability to hover in a motionless spot
are crucial. Therefore, rotary-wing UAVs have more applications. In addition, VTOL UAVs have
greater maneuverability in indoor flight. Hybrid-layout UAVs have both long distance flight and
VTOL properties. On the other hand, they have complex mechanisms for changing from rotary wing
to fixed wing during the flight.

Considering harsh scenarios characterized by limited area [2], the presence of obstacles and
possible dynamic constraints, rotary-wing UAVs have been shown to give the best performance [3].
This is why we consider these specific types in this paper. In particular, a quadrotor UAV is assumed.
Its model structure is depicted in Figure 1. The aim is to derive a model to represent realistic trajectories
that such a UAV can follow. In particular, there exist several methods to generate trajectories, including

Aerospace 2017, 4, 27; doi:10.3390/aerospace4020027 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://dx.doi.org/10.3390/aerospace4020027
http://www.mdpi.com/journal/aerospace

Aerospace 2017, 4, 27 2 of 19

splines [4], rational functions [5], polynomial [6] and Bézier curves [7,8]. Likewise, another technique
for trajectory generation is to use analytical functions such as higher-order piecewise polynomials
to represent the evolution of the position over time [9]. Also, there are remarkable works in which
a collision-free path can be obtained using the standard rapidly-exploring random tree (RRT*) and
sampling-based algorithms [10,11]. In order to provide a method that can represent the variability of
the ensemble of flight trajectories followed by a UAV, it is of interest to define a stochastic approach.
In this respect, the Confined Area Random Aerial Trajectory Emulator (CARATE) proposed in [12]
stochastically generates a 3D path obtained from a variable length previous history of the trajectory and
a tunable set of random variables. CARATE is specifically designed to emulate stochastic trajectories
with a limited flight area. However, it does not consider the dynamics of the UAV and it is not
optimized to cope with harsh environmental constraints. In this paper, we tackle the limitations
above and we propose a novel stochastic trajectory generation method that: (1) takes into account
the dynamics of a quadrotor UAV, and (2) copes with environmental limitations. To do this, the
dynamic model of a quadrotor [13,14] is considered. Moreover, an analytic function (quintic B-spline)
is used to generate candidate trajectories. Nonetheless, the disadvantage of the deterministic functions
is that they are not able to satisfy all the constraints at the same time when planing the trajectory
in the search space. Therefore, the genetic algorithm (GA) may be used to obtain an optimized
trajectory [15]. Another approach uses swarm intelligence. In particular, particle swarm optimization
(PSO) is based on a simple mathematical model, extended by Kennedy and Eberhart in 1995 [16], to
describe the social behavior of birds and fish. PSO follows the basic principle of self-organization
which is used to characterize the dynamics of complex systems. PSO uses a model of social behavior
to unravel the optimization problems, in a cooperative and sagacious skeleton [17]. PSO is easy to
apply and is powerful in solving a diverse range of multi-objective optimization problems where GA
can not be used. Some other related papers based on particle swarm optimization for path planning
include [18,19]. Our approach, on the other hand, enjoys a specific method for solving the optimization
problem with constraints. We change the problem into one that considers a cost metric that includes a
violation function. The constraints, namely position, velocity, acceleration, Euler angles, torques and
obstacle avoidance are added in the violation function.

Φ ϴ

ψ

M g
T

Figure 1. Reference frames of the unmanned aerial vehicle (UAV).

To validate the proposed method, three scenarios are defined:

1. Flight level (FL) trajectory;
2. Take-off→Mission→ Landing (TML);
3. Complex maneuvering in 3D space (CMS).

In each scenario, random trajectories are generated under certain constraints that can be imposed
with the given initial point (IP) and target point (TP) in three-dimensional coordinates.

Aerospace 2017, 4, 27 3 of 19

We organize the contents of this paper as follows. Section 2 describes the world frame, body
frame, dynamic model and the kinematics of the quadrotor. The trajectory modeling approach and
the description of the three considered scenarios is given in Section 3. In Section 4, we define the cost
function and the violation function related to the constraints and obstacle avoidance. Finally, examples
of realized trajectories are reported in Section 5. The conclusions follow.

2. Dynamic Model

In order to represent the dynamic model of a quadrotor, two coordinate systems will be introduced.
They describe the orientation and the motion of a quadrotor in the world frame and in the body frame.
The world frame is referred to as the inertial earth coordinate ó (north east down, NED) system. As can
be observed in Figure 1, the earth is assumed to be fixed. Therefore, the inertial earth frame can be
defined. The body coordinate o system is installed at the quadrotor’s center of gravity (CoG). Each
frame follows the right hand rule [20]. The notations used in this paper are reported in Table 1.

Table 1. List of notations.

Symbol Definition

ó(xe, ye, ze) Earth axes
NED North east down
o(xb, yb, zb) Body axes
φ Roll angle
θ Pitch angle
ψ Yaw angle
Euler angles [φ, θ, ψ]
[φ̇, θ̇, ψ̇]T Rate of change of Euler angles
[p, q, r]T Body angular rates
MT = M + Mr Overall mass of the UAV
Ixx, Iyy, Izz Moment of inertia
R Radius of central sphere
g Gravitational acceleration
Fi Force generated by ith rotor
Ti Torque generated by ith rotor
Ωi Angular velocity of ith rotor
U1, U2, U3, U4 Control inputs

The Euler angles are used to represent the orientation of the quadrotor which is considered as a
point mass, with respect to a fixed reference frame (body frame). The euler angle rates [φ̇, θ̇, ψ̇]T can be
represented in matrix form as follows [21]:φ̇

θ̇

ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)


p

q
r

 . (1)

The direction cosine matrix that allows to obtain a transform from the body frame to the world
frame is denoted with Cbn. Hence, Cbn consists of three sequential single-axis rotations through the
basic Euler angles R(x, φ), R(y, θ) and R(z, ψ) that represent the roll, pitch and yaw, respectively.
The direction cosine matrix Cbn can be obtained according to the relations below [22]:

R(x, φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (2)

Aerospace 2017, 4, 27 4 of 19

R(y, θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (3)

R(z, ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

1 0 1

 (4)

Cbn = R(x, φ)R(y, θ)R(z, ψ) . (5)

2.1. The Moment of Inertia

In this paper, the quadrotor is assumed to be a symmetric body. To define the moment of inertia,
we assume the quadrotor to consist of four rotors and a main body. The main body is a sphere with
radius R and a mass M. The four rotors are assumed to be a point mass Mr. Then, the point masses
are connected to the center of the sphere with radius l. Therefore, the inertia matrix is a diagonal
symmetric matrix:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (6)

with,

Ixx = Iyy =
2MR2

5
+ 2Mrl2 (7)

Izz =
2MR2

5
+ 4Mrl2 . (8)

2.2. Thrust and Torques

The translational position, velocity and acceleration of the point mass o represented in the inertial
frame ó, are:

ξ = [x, y, z]T (9)

ξ̇ = [ẋ, ẏ, ż]T (10)

ξ̈ = [ẍ, ÿ, z̈]T . (11)

According to Figure 1 the speed of each propeller can affect the motion of the quadrotor, so the
relation between the thrust and torque generated by each rotor can be expressed as follows [13]:

Fi = bΩ̇2
i , f or i = 1, 2, 3, 4 (12)

Ti = dΩ̇2
i , f or i = 1, 2, 3, 4 , (13)

while b and d are coefficients related to the Mach number, the Reynolds number and the angle of attack.
Also, the input torques ςi can be defined by:

ςi = (−1)i+1dΩ̇2
i , f or i = 1, 2, 3, 4 (14)

Aerospace 2017, 4, 27 5 of 19

2.3. Dynamic Model

The dynamic model of the quadrotor can be defined [13,14] according to the following relations:

ẍ = U1(cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))

ÿ = U1(sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ))

z̈ = U1(cos(θ) cos(ψ))− g

ψ̈ = U2 + φ̇θ̇ I1

θ̈ = U3 + φ̇ψ̇I2

φ̈ = U4 + ψ̇θ̇ I3

(15)

where, 
U1 = F1 + F2 + F3 + F4

U2 = F4 − F2

U3 = F3 − F1

U4 = T2 + T4 − T1 − T3

(16)

In Equation (15), I1, I2 and I3 are equal to:
I1 = (Iyy − Izz)/Ixx

I2 = (Izz − Ixx)/Iyy

I3 = (Ixx − Iyy)/Izz

(17)

The inverse kinematics of our model that are referred to as control inputs of the quadrotor
according to Equation (15) are: 

U1 =
√

ẍ2 + ÿ2 + (g + z̈)2

U2 = ψ̈− φ̇θ̇ I1

U3 = θ̈ − φ̇ψ̇I2

U4 = φ̈− ψ̇θ̇ I3

(18)

Indeed, the quadrotor has four motors actuating the four rotors while our system has six degrees
of freedom. It can be deduced that our system is underactuated. In order to resolve the issue, we have
to identify the dependency in Equation (15), as proposed by [23]:{

ẍ cos(φ)− (z̈ + g) tan(θ) = 0

ẍ sin(φ)− ÿ cos(φ)− (
√

ẍ2 + ÿ2 + (g + z̈)2) sin(ψ) = 0 .
(19)

Equation (19) shows two nonholonomic constraints existing in the kinematics of the quadrotor.
Therefore, the angles θ and ψ can be derived from these nonlinear equations:θ = atan2(ẍ cos(φ) + ÿ sin(φ), z̈ + g)

ψ = arcsin(ẍ sin(φ)−ÿ cos(φ)√
ẍ2+ÿ2+(g+z̈)2

)
(20)

For calculating the torques, Equation (17) can be rearranged in matrix form so that:

U = Ξ Ω (21)

Aerospace 2017, 4, 27 6 of 19

where Ξ is:

Ξ =


b b b b
0 −bl 0 bl
−bl 0 bl 0
−bl bl −bl bl

 . (22)

The input torques Ui can be obtained by the actuators of the quadrotor. Exploiting
Equation (20), we can define the fitness function and boundary conditions in our model by
evaluating Γ(t) = (x(t), y(t), z(t), φ(t)), for t ∈ [0 T] and its time derivatives. We refer to Γ(t) as
the trajectory evolution.

3. Modeling of Three Representative Scenarios

Our goal is to develop a stochastic model for the trajectory evolution. Indeed, at a first glance
this can appear a difficult task since the UAV can follow a number of different trajectories and be in
various flying situations. Therefore, we propose to consider certain scenarios that can be representative
of certain flying operations. In each scenario, the trajectory evolution Γ(t) is represented with a
B-spline drawn from a certain random model. In more detail (Figure 2), the B-spline has order k
and it is defined by n + 1 control points [4]. In our model, the first and the last control point are
fixed and they correspond to the start and the end of the mission, respectively. In the search space
between these two points, additional control points are placed in order to generate the segments of
the B-spline curve. Each one of the control points is defined with coordinates in the search space,
which are {x(t), y(t), z(t), φ(t)} and each of them is generated stochastically as a uniform random
variable ranging between a lower and an upper limit that are distributed over time by the user. This
configuration enables a stochastic behaviour for Γ(t). Indeed, by changing the location of the control
points in the search space, a new path can be realized.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

si
ti

o
n

 [
m

]

B-spline with 8 control points of order 5

Upper Bound

Lower Bound

Start Point

End Point

Search Space

Figure 2. Evolution of the B-spline.

The mathematical model for a B-spline curve of degree k is defined by:

S(t) =
n

∑
i=0

Ni,k(t)Pi (23)

Aerospace 2017, 4, 27 7 of 19

where (P0, P1, ...Pn) are control points and Ni,k(t) are the basis functions defined using the Cox-de Boor
recursion formula [4]:

Ni,0(t) =

{
1, if ti ≤ t < ti+1

0, otherwise

(24)

Ni,j(t) =
t− ti

ti+1 − ti
Ni,j−1(t) +

ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t) .

The reason for using the B-spline is that unlike the global property of the Bezier curve, it has
the local property [24]. Furthermore, the order of the B-spline is very important to generate feasible
trajectories that fulfill constraints and obtain trajectory continuity and smoothness. To do so, we use
fourth-order B-splines (quadratic) and fifth-order B-splines (quintic) in the considered scenarios.

3.1. Scenario One (FL)

According to the aeronautical literature [25], the flight level (FL) is expressed as a vertical altitude
with zero roll, pitch and yaw at sea level pressure. For this scenario a fourth-order B-spline with four
control points is considered. More details on the FL can be found in Section 4.

3.2. Scenario Two (TML)

In all kind of UAVs, take-off, mission and landing (TML) are crucial. The challenge in modeling
this scenario is the tuning of the parameters of the B-spline in a way that: (1) the velocity profiles of
the trajectories during take-off and landing are zero (rest-to-rest manoeuvre); (2) the absolute value
of the velocity should be less than 1.5 m/s; (3) the Euler angles during take-off and landing are zero
(rest-to-rest manoeuvre); and (4) the quadrotor reaches the specific altitude (10 m) during the flight
time. Clearly, other constraints can be defined. For simplicity, the surface of the ground is assumed to
be horizontal. The length and duration of the trajectory between take off and landing can be made
variable. Further details about modeling this scenario are reported in Section 4 and numerical examples
in Section 5.

3.3. Scenario Three (CMS)

The third considered scenario highlights the ability of our approach to model trajectories that
comprise obstacle avoidance procedures. Static obstacles with different size can be defined in the
flight space. In particular, we consider three obstacles. Finding a safe and short trajectory in the search
space with obstacles becomes a challenging problem in path planning. On the other hand, according
to the configuration of our quadrotor, the feasibility of these trajectories is also significant. Boundary
constraints for complex maneuver in 3D space are defined in Equation (25). More details are reported
in Section 5.

4. Trajectory Realization under Practical Constraints

As discussed previously, the trajectory evolution is Γ(t) = (x(t), y(t), z(t), φ(t)) with input
controls Λ(t) = (ς1(t), ς2(t), ς3(t), ς4(t)). Also, the dynamics of a quadrotor and environmental
constraints add mathematical constraints to the generation of feasible quadrotor trajectories. In the
following discussion, the constraints will be defined. Therefore, our problem is to determine the

Aerospace 2017, 4, 27 8 of 19

optimal coefficients of the B-spline under particular constraints. The boundary constraints in our
scenarios are: 

ξ(0) = Γ(start) and ξ(T) = ξ(end)

ξ̇(0) = 0 and ξ̇(T) = 0

ξ̈(0) = 0 and ξ̈(T) = 0

Λmin
i ≤ Λt

i ≤ Λmax
i

dmin = min(d)

(25)

where dmin is the minimum Euclidian distance between the UAV and a given a generic obstacle.
It means that for dmin ≥ 0, the UAV will not crash during the flight. We solve this problem with the
PSO algorithm in Section 4.2.

4.1. Design of Trajectory with Minimum Length

The aim of this paper is generating stochastic trajectories. However, in path planning when
the search space is populated with generic obstacles, finding the short and safe path among these
trajectories becomes significant. We can therefore consider the problem of designing the shortest
path trajectory. This translates into the definition of a cost function that equals the length of the path
as follows:

Ji =
√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (26)

where we have discretized the time evolution so that the coordinates at time instant i are denoted
with xi = x(iT), yi = y(iT), zi = z(iT) and the sampling period is T. Our problem is a multi-objective
optimization problem that has a cost function with boundary constraints. To proceed, we write it
as a problem without constraints, however it includes a violation function P(Υ) to obtain the new
cost function.

Ĵ =
1
N
(

N

∑
i=1

Ji +
N

∑
i=1

M

∑
Υ=1

Pi(Υ)) (27)

where N denotes the total number of samples considered in the overall trajectory. i represents the
time index. J is the cost function that is equal to the length of the path. Pi(Υ) is the violation at time i
for constraint Υ. The constraints Υ are the position, velocity, acceleration, Euler angles, torques and
obstacle avoidance. Two important properties for the violation function are P(0) = 0 and P(Υ) ≥ 0.
In order to satisfy the boundary constraints in Equation (25), the violation function for less, more and
equal constraints can be defined respectively as follows:

Pi(Υ) =


max(f (Υ)

f0(Υ)
− 1, 0) for f (Υ) ≤ f0(Υ)

max(1− f (Υ)
f0(Υ)

, 0) for f (Υ) ≥ f0(Υ)

| (f (Υ)
f0(Υ)

− 1) | for f (Υ) = f0(Υ)

(28)

where Υ refers to a certain constraint as already explained. In addition, f (Υ) and f0(Υ) represent the
physical quantity and target constraint respectively. Now with the violation functions definition in
Equation (28), the boundary conditions in Equation (25) can be satisfied. For obstacle avoidance, the
Euclidian distance between the edge of the object and the quadrotor is used [26]. The whole algorithm
is sketched in Figure 3.

Aerospace 2017, 4, 27 9 of 19

Start

Create Model
(Configuration)

Parse Solution
Discretize the

trajectory in time
step

Connect to PSO

If violation is
zero

The dynamic of
the trajectory is

feasible

End

The dynamic of
the trajectory is

not feasible
YesNo

Sum with cost function as a penalty value

Figure 3. Flowchart of trajectory generation algorithm. PSO: particle swarm optimization.

4.2. Basics of PSO

Particle swarm optimization (PSO) is an intelligent optimization algorithm. It belongs to the
class of algorithms called metaheuristics. PSO is based on the paradigm of swarm intelligence and
it is inspired by social behavior of animals like fish and birds [16]. PSO is a simple yet powerful
optimization algorithm and it is successfully applied to multiple applications in various fields of
science and engineering like machine learning, mesh processing, data mining and many other fields.

PSO contains a population of candidate solutions called a swarm. According to Figure 4, every
particle p(n) is a candidate solution to the optimization problem. Any particle has a position in the
search space of the optimization problem. The search space is the set of all possible solutions to the
optimization problem. PSO allows for efficiently finding an optimal solution under a target function
with multiple constraints in the problem at hand.

g (n)-x (n)

X (n)

i i

i

g(n)

V (n)i

P (n)-x (n)

P (n)i

ii

v (n+1)i

x (n+1)i

Figure 4. Mathematical model of PSO.

Aerospace 2017, 4, 27 10 of 19

To proceed, we consider particles for the position vector x and the velocity vector v. Therefore,
the updating realization for the particles includes [16]:

xi+1(n) = xi(n) + vi(n + 1) (29)

vi+1(n) = ωvi(n) + r1c1(pi(n)− xi(n)) + r2c2(gi − xi(n)) (30)

where i denotes the time index. n = {1, ..., L} is the particle index, and L is the number of considered
particles. ω, c1 and c2 are real valued coefficients. c1 is the personal learning coefficient and c2 is
the global learning coefficient. w is an inertial coefficient. c1 and c2 are acceleration coefficients.
On the other hand, r1, r2 are random numbers uniformly distributed in the range from zero to one
(r1, r2 ∼ U(0, 1)). pi(n) is the best personal position of the particle of index n at time i, while gi is the
best collective position of all particles at time i in the swarm. It should be noted that in the original
version of PSO proposed in 1995, there was no inertia term. However, in 1998 Shi and Eberhart added
the inertia term to the standard PSO [27].

5. Numerical Generator and Results

In this section, first we report a summary of example parameters to be used to generate trajectories
in the three considered scenarios. The proposed algorithm can be used for any configuration of UAVs,
but herein, we focus on a quadrotor. A number of parameters is initially fixed as shown in Table 2 [13].
Furthermore, in each flight scenario the start point, end point and a number of control points are
defined by the user. We also report the number of particles and the number of iterations run by the PSO
for the generation of trajectories with a certain number of control points. The details for each scenario
are given in Table 3. The number of iterations listed in Table 3 to obtain the minimum length path are
needed for the convergence. The average cost metric as a function of the iterations will be shown in
Sections 5.1–5.3 for Scenarios 1, 2 and 3, respectively. The execution time has been computed for a
simulation setup with an Intel i5 CPU with 3.3 GHz, and RAM of 4GB using MATLAB 2016b. Finally,
we demonstrate the performance of our method in comparison with the standard (A*) algorithm, the
standard rapidly-exploring random tree (RRT*) algorithm and the genetic algorithm (GA) for obtaining
the minimum length path in 2D.

Table 2. Physical parameters of the quadrotor.

Symbol Unit

MT 0.65 Kg
l 0.232 m
g 9.806 m/s2

R 0.15 m
Ixx 0.07582 Kg m2

Iyy 0.07582 Kg m2

Izz 0.1457924 Kg m2

b 3.13× 10−5 Ns2

d 7.5× 10−7 Nms2

Λmax = −Λmin 0.04 Nm
φmax = −φmin 0.1 Rad
θmax = −θmin 0.1 Rad
ψmax = −ψmin 0.1 Rad

Inertia Weight (ω) 1
c1 2
c2 2

Aerospace 2017, 4, 27 11 of 19

Table 3. Solution details.

Scenarios Control Points Swarm Size Iterations Execution Time

Scenario 1 4 50 250 5.090549 (s)
Scenario 2 5 100 400 6.572763 (s)
Scenario 3 5 100 450 7.464875 (s)

5.1. Scenario 1 (FL)

Figure 5 shows a number of realizations of possible trajectories generated by the algorithm.
Among these trajectories one is chosen based on the constraints set in Equation (25) in order to isolate
the one with least distance. The initial and final position can be chosen by the user. In this specific
example the initial position of our quadrotor is Γinitial = (0, 0, 25, 0) in meters. The final position is
Γ f inal = (20, 0, 25, 0). The fourth-order B-spline is considered for this scenario. Figure 6 shows the
minimum length trajectory that is obtained from the PSO. Furthermore, the details about positions,
actuators torques, control efforts, translational velocities and the acceleration obtained with the PSO
are given in Figures 7–10. Figure 11 shows the average cost metric (Equation (27)) as a function of
iterations. The convergence is achieved in about 250 iterations. PSO algorithm converges quickly to
the optimal solution. The minimum length of the trajectory for this scenario obtained via simulation is
J = 20 m and the total flight time is 20 s.

X [m]

Y [m]

25

20
0

152
101

0 5
-1 0

-2

Stochastic realization for (FL)

20

Z
 [

m
]

40

End mission

Start mission

Figure 5. Stochastic realization for flight level (FL).

Y [m]

X [m]

30

200
1

10

100.5

20Z
 [

m
]

0

30

-0.5

40

0-1

50

Flight level
Start Mission
End Mission
Control point

Characteristics

Flight level

Figure 6. Three-dimensional flight level (FL) trajectory.

Aerospace 2017, 4, 27 12 of 19

0 10 20
Time [s]

0

2

4

6

8

10

12

14

16

18

20

X
 [

m
]

North

0 10 20
Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
 [

m
]

East

0 10 20
Time [s]

0

5

10

15

20

25

30

35

40

45

50

Z
 [

m
]

Down

NED
Start Mission
End Mission

Characteristics

Figure 7. North east down (NED) for FL.

0 10 20
Time [s]

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

T
o

rq
u

e
1

[N
.m

]

0 10 20
Time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

T
o

rq
u

e
2

[N
.m

]

0 10 20
Time [s]

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

T
o

rq
u

e
3

[N
.m

]

0 10 20
Time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

T
o

rq
u

e
4

[N
.m

]

Figure 8. Evolution of actuators torques for FL.

0 10 20
Time [s]

9.81

9.8105

9.811

9.8115

9.812

9.8125

9.813

9.8135

9.814

9.8145

9.815

U
1

[N
]

0 10 20
Time [s]

-1

-0.5

0

0.5

1

1.5

U
2

[N
]

10-14

0 10 20
Time [s]

-6

-4

-2

0

2

4

6

U
3

[N
]

10-7

0 10 20
Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
4

[N
]

Figure 9. Control efforts for FL.

Aerospace 2017, 4, 27 13 of 19

0 5 10 15 20
Time [s]

0

0.5

1

1.5

2

V
x

[m
/s

]
0 5 10 15 20

Time [s]

-0.5

0

0.5

V
y

[m
/s

]

Velocity and Acceleration profiles
Start Mission
End Mission

0 5 10 15 20
Time [s]

-0.5

0

0.5

V
z

[m
/s

]

0 5 10 15 20
Time [s]

-0.5

0

0.5

ax
 [

m
/s

2]
Figure 10. Translation of velocities and acceleration in FL.

0 1000 2000 3000 4000 5000 6000
Iteration

0

100

200

300

400

500

600

700

A
ve

ra
g

e
co

st

Figure 11. Average cost function vs. iteration for FL.

5.2. Scenario 2 (TML)

In Figures 12–16, we report an example of trajectory belonging to the Scenario 2 (TML).
In particular, the starting point is Γinitial = (0, 0, 0, 0) and the landing point is Γlanding = (8, 6, 0, 0).
The maximum altitude during the flight time is 10 m. Also, Figure 17 shows the minimum length
trajectory (J = 33.9608 m) which is obtained after 100 iterations of the PSO algorithm. Figure 15
represents the inertial frame for the velocity components, which are less than 1.5 m/s according to our
constraints definition in scenario two and the total flight time is 23 s.

0
8

2

4

6

Z
 [

m
] 6

8

4 10

10

8
62

4
20 0

TML
Start Mission
End Mission

Characteristics

X [m]

Landing Region

Y [m]

Figure 12. Three-dimensional take-off, mission and landing (TML) trajectory.

Aerospace 2017, 4, 27 14 of 19

0 5 10 15 20 25

Time [s]

-0.01

-0.005

0

0.005

0.01

R
ad

Phi
Theta
Psi

Figure 13. Roll, pitch and yaw angle for TML.

0 10 20 30
Time [s]

0

1

2

3

4

5

6

7

8

9

X
 [

m
]

North

0 10 20 30
Time [s]

0

1

2

3

4

5

6

Y
 [

m
]

East

0 10 20 30
Time [s]

0

1

2

3

4

5

6

7

8

9

10

Z
 [

m
]

Down

NED
Start Mission
End Mission

Figure 14. North east down NED for TML.

0 5 10 15 20 25

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

V
x

[m
/s

]

0 5 10 15 20 25

Time [s]

0

0.1

0.2

0.3

0.4

0.5

V
y

[m
/s

]

0 5 10 15 20 25

Time [s]

-2

-1

0

1

2

V
z

[m
/s

]

0 5 10 15 20 25

Time [s]

-0.1

-0.05

0

0.05

0.1

ax
 [

m
/s

2
]

Velocity and acceleration profiles
Start Mission
End Mission

Figure 15. Translation of velocities and acceleration for TML.

Aerospace 2017, 4, 27 15 of 19

0 10 20 30

Time [s]

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8
10-3Torque 1 [N.m]

0 10 20 30

Time [s]

5.8

5.9

6

6.1

6.2

6.3

6.4
10-3 Torque 2 [N.m]

0 10 20 30

Time [s]

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8
10-3 Torque 3 [N.m]

0 10 20 30

Time [s]

5.8

5.9

6

6.1

6.2

6.3

6.4
10-3Torque 4 [N.m]

Figure 16. Evolution of actuators torques for TML.

0 1000 2000 3000 4000 5000 6000
Iteration

0

100

200

300

400

A
ve

ra
g

e
co

st

Figure 17. Average cost function vs. iteration for TML.

5.3. Scenario 3 (CMS)

In Figure 18, the search space is populated with three generic spherical objects that act as obstacles
for the quadrotor and thus hinder their path. These obstacles can be either positioned arbitrarily
by the user or randomly generated by the algorithm. In this specific case they were generated by
the user. For CMS, a stochastic realization as a set of trajectories is shown in Figure 18. The start
point is Γinitial = (0, 0, 0, 0) and the end point is Γ f inal = (8, 6, 0, 0). Simulation results for the cost
function and the actuator torques are shown in Figures 19 and 20. Also, the minimum path after
150 iterations and the total flight time are J = 23.495, and 23 s, respectively. Furthermore, the minimum
length path obtained with PSO and time histories of the attitude angle of the quadrotor are shown in
Figures 21 and 22, respectively.

Aerospace 2017, 4, 27 16 of 19

-2
8

0

2

4

6

6

8

4 9

10

872 6540 321-2 0

Z [m]

Y [m] X [m]

 Stochastic CMS

 Start Mission

 End Mission

Obstacle 2

Obstacle 3

Obstacle 1

Figure 18. Stochastic complex maneuvering in 3D space (CMS).

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

200

400

600

800

1000

1200

A
ve

ra
g

e
co

st

Figure 19. Average cost function vs. iteration for CMS.

0 10 20 30
Time [s]

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8

T
o

rq
u

e
1

[N
.m

]

10-3

0 10 20 30
Time [s]

5.8

5.9

6

6.1

6.2

6.3

6.4

T
o

rq
u

e
2

[N
.m

]

10-3

0 10 20 30
Time [s]

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8

T
o

rq
u

e
3

[N
.m

]

10-3

0 10 20 30
Time [s]

5.8

5.9

6

6.1

6.2

6.3

6.4

T
o

rq
u

e
4

[N
.m

]

10-3

Figure 20. Evolution of actuator torques for CMS.

Aerospace 2017, 4, 27 17 of 19

80
67

2

6
5

4

44

Z
 [

m
]

3

6

2 2

8

1
0

10

0-1

CMS
Start mission
End mission
Obstacle 1
Obstacle 2
Obstacle 3

Characteristics

Y [m]
X [m]

Figure 21. Complex maneuvering in 3D space (CMS).

0 5 10 15 20 25
Time [s]

-0.01

-0.005

0

0.005

0.01

0.015

R
ad

Phi
Theta
Psi

Figure 22. Roll, pitch and yaw angle for CMS.

5.4. PSO vs. A*, RRT* and GA

As already mentioned before, to illustrate the effectiveness of the proposed method, we consider
three different methods named the RRT* algorithm, the A* algorithm and the GA to obtain the
minimum path in 2D that obeys several constraints. The search space is also surrounded by four
obstacles. As shown in Table 4 and Figure 23, the results for the proposed method show that it has a
faster convergence time and it finds a path with smaller length and collision avoidance. The optimum
length for our method is 14.2095 m. Also, it is noticeable that the execution-time for the A* algorithm
is 0.02315 s. The execution time does not consider the part for the construction of the B-spline curves.

0 2 4 6 8 10
X [m]

0

2

4

6

8

10

Y
 [

m
]

Obstacle 1
Obstacle 2
Obstacle 3
Obstacle 4
Our method
Control-Point
Start mission
End mission
GA method
A star method
RRT star

Figure 23. Optimal path by rapidly-exploring random tree (RRT*), standard (A*) algorithm, genetic
algorithm (GA) and the PSO.

Aerospace 2017, 4, 27 18 of 19

Table 4. Comparision Results.

Parameters RRT* A* GA PSO + B-Spline

Length (m) 18.1265 16.5563 17.2111 14.2095
Execution time (s) 17.343599 0.02315 9.230695 1.544244

6. Conclusions

In this paper, a new methodology has been proposed for stochastic modeling and generating
trajectories followed by a UAV. The approach is based, firstly, on modeling a certain flight scenario.
Then, the evolution of the trajectory is obtained using a B-spline with a certain order and setting some
control points. A PSO multi-objective optimization algorithm is used to not only tune the parameters of
the B-spline function, but also to guarantee that the trajectories are dynamically feasible. The trajectories
can also model an obstacle avoidance situation. This has been realized by defining a violation
function to avoid collision during the flight time with obstacles at certain positions. A numerical
simulator has been implemented to emulate the reference scenarios. The simulator can be configured
to allow variability and representativity of the flight scenario. Several trajectory examples have been
shown to verify the trajectory smoothness and fulfillment of practical constraints introduced by the
UAV dynamics.

Author Contributions: Babak Salamat developed the UAV trajectory optimization procedure under feasibility
constraints, obtained the numerical results and prepared the paper. Andrea M. Tonello conceived the overall UAV
random trajectory generation concept, supervised the development of the model, results and paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Austin, R. Unmanned Aircraft Systems: UAVS Design, Development and Deployment, 1st ed.; Wiley: Chichester,
UK, 2010.

2. Majka, A. Trajectory Management of the Unmanned Aircraft System (UAS) in Emergency Situation. Aerospace
2015, 2, 222–234.

3. Suicmez, E.C.; Kutay, A.T. Optimal path tracking control of a quadrotor UAV. In Proceedings of the 2014
International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014;
pp. 115–125.

4. Sprunk, C. Planning Motion Trajectories for Mobile Robots Using Splines; Student Project; University of Freiburg:
Freiburg, Germany, 2008.

5. Montés, N.; Mora, M.C.; Tornero, J. Trajectory Generation based on Rational Bezier Curves as Clothoids.
In Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 505–510.

6. Babel, L. Three-dimensional Route Planning for Unmanned Aerial Vehicles in a Risk Environment. J. Intell.
Robot. Syst. 2013, 71, 255–269.

7. Jayasinghe, J.A.S.; Athauda, A.M.B.G.D.A. Smooth trajectory generation algorithm for an unmanned
aerial vehicle (UAV) under dynamic constraints: Using a quadratic Bezier curve for collision avoidance.
In Proceedings of the 2016 Manufacturing Industrial Engineering Symposium (MIES), Colombo, Sri Lanka,
22 October 2016; pp. 1–6.

8. Tsai, Y.J.; Lee, C.S.; Lin, C.L.; Huang, C.H. Development of Flight Path Planning for Multirotor Aerial
Vehicles. Aerospace 2015, 2, 171–188.

9. Cruz, A.B.; Montaño, J.C.; Mier, P.G. TG2M: Trajectory Generator and Guidance Module for the Aerial
Vehicle Control Language AVCL. In Proceedings of the 40th International Symposium on Robotics, Barcelona,
Spain, 10–14 March 2009.

10. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. (IJRR)
2011, 30, 846–894.

11. Barbehenn, M. A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices.
IEEE Trans. Comput. 1998, 47, 263.

Aerospace 2017, 4, 27 19 of 19

12. Papaiz, A.; Tonello, A. Azimuth and Elevation Dynamic Tracking of UAVs via 3-Axial ULA and Particle
Filtering. Int. J. Aerosp. Eng. 2016, 2016, 1–9.

13. Sanca, A.S.; Alsina, P.J.; Cerqueira, J.J.F. Dynamic Modelling of a Quadrotor Aerial Vehicle with Nonlinear
Inputs. In Proceedings of the 2008 IEEE Latin American Robotic Symposium, Salvador, Bahia, Brazil,
29–30 October 2008 ; pp. 143–148.

14. Mohammadi, M.; Shahri, A.M. Modelling and decentralized adaptive tracking control of a quadrotor UAV.
In Proceedings of 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM),
Tehran, Iran, 13–15 Febuary 2013.

15. Galvez, R.L.; Dadios, E.P.; Bandala, A.A. Path planning for quadrotor UAV using genetic algorithm.
In Proceedings of the 2014 International Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment and Management (HNICEM), Puerto Prinsesa, Palawan,
Philippines, 12–16 November 2014; pp. 1–6.

16. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, 1995 (MHS ’95), Nagoya, Japan,
4–6 October 1995.

17. Kennedy, J. The particle swarm: Social adaptation of knowledge. In Proceedings of the IEEE International
Conference on Evolutionary Computation, Indianapolis, IN, USA, 13–16 April 1997.

18. Kang, H.I.; Lee, B.; Kim, K. Path Planning Algorithm Using the Particle Swarm Optimization and the
Improved Dijkstra Algorithm. In Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational
Intelligence and Industrial Application, Wuhan, China, 19–20 December 2008; Volume 2, pp. 1002–1004.

19. Wang, Q.; Zhang, A.; Qi, L. Three-dimensional path planning for UAV based on improved PSO algorithm.
In Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China,
31 May–2 June 2014; pp. 3981–3985.

20. Cook, M.V. Flight Dynamics Principles; Elsevier: Amsterdam, The Netherlands, 2007.
21. Tang, Y.R.; Li, Y. Dynamic modeling for high-performance controller design of a UAV quadrotor.

In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China,
8–10 August 2015; pp. 3112–3117.

22. Nemra, A.; Aouf, N. Robust INS/GPS Sensor Fusion for UAV Localization Using SDRE Nonlinear Filtering.
IEEE Sens. J. 2010, 10, 789–798.

23. Jolly, A.C. Trajectory Generation by Piecewise Spline Interpolation; Techinical Report; U.S. Army Missile
Command: Redstone Arsenal, AL, USA, 1976.

24. Prautzsch, H.; Boehm, W.; Paluszny, M. Bézier and B-Spline Techniques; Springer: Berlin/Heidelberg, Germany;
New York, NY, USA, 2002.

25. Eshelby, M.E. Aircraft Performance; Elsevier: Oxford, UK, 2000.
26. Jamieson, J.; Biggs, J. Path Planning Using Concatenated Analytically-Defined Trajectories for Quadrotor

UAVs. Aerospace 2015, 2, 155.
27. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International

Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence (Cat.
No. 98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dynamic Model
	The Moment of Inertia
	Thrust and Torques
	Dynamic Model

	Modeling of Three Representative Scenarios
	Scenario One (FL)
	Scenario Two (TML)
	Scenario Three (CMS)

	Trajectory Realization under Practical Constraints
	Design of Trajectory with Minimum Length
	Basics of PSO

	Numerical Generator and Results
	Scenario 1 (FL)
	Scenario 2 (TML)
	Scenario 3 (CMS)
	PSO vs. A*, RRT* and GA

	Conclusions

