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Abstract: Water resources systems planning, and control are significantly influenced by streamflow
forecasting. The streamflow in northern and north-central regions of Victoria (Australia) is influenced
by different climate indices, such as El Niño Southern Oscillation, Interdecadal Pacific Oscillation,
Pacific Decadal Oscillation, and Indian Ocean Dipole. This paper presents the development of the
ANN model using machine learning with the multi-layer perceptron and Levenberg algorithm for
long-term streamflow forecasting for three tributaries of Goulburn River located within Victoria
through establishing relationships between climate indices and streamflow. The climate indices were
used as input predictors and the models’ performances were analyzed through best fit correlation.
The higher correlation values of the developed models evident from Pearson regression (R) values
ranging from 0.61 to 0.95 reveal the models’ acceptability. The accuracies of ANN models were
evaluated using statistical measures such as Root Mean Square Error (RMSE), Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE). It is found that considering R, RMSE, MAE
and MAPE values, the ENSO has more influence (61% to 95%) on the streamflow of Goulburn River
tributaries than other climate drivers. Moreover, it is concluded that Acheron ANN models are the
best models that can be confidently used to forecast the streamflow even six-months ahead.

Keywords: long-term forecasting; streamflow; climate indices; neural network; multilayer perceptron;
Levenberg algorithm

1. Introduction

The climate, geology and topography are the primary characteristics of streams or
basins affecting streamflow. The streamflow is mostly affected by climate change, i.e.,
rainfall, droughts, atmosphere, as well as an increase in population. The increase in popu-
lation directly increases the water demands for irrigation and water supply systems. The
streamflow is a very important factor within long-term hydrologic variability, and the effect
of climate change has been altering this variable. The knowledge of variability and trend of
streamflow is important for water resource management and planning purposes [1]. The
main sources of streamflow forecasting are initial catchment conditions (preceding stream-
flow, preceding rainfall and soil moisture levels of groundwater) and climate variables or
climate drivers [2]. The large-scale climate indices or drivers have major influence on the
streamflow and rainfall because the climate indices fluctuate at very low frequencies [3,4].
Australia is encircled by the Pacific, Indian, and Southern Oceans and is influenced by
the climatic anomalies arising from these Oceans. The spatial and temporal variations
take place in climate drivers containing sea surface temperature and sea level pressure
anomalies. Furthermore, it is very difficult to integrate the initial conditions of catchments
to develop streamflow forecasting models. The south-east Australian climate is influenced
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by five major climate drivers, i.e., El-Niño Southern Oscillation (ENSO), Interdecadal Pacific
Oscillation (IPO), Pacific Decadal Oscillation (PDO), Southern Annual Mode (SAM) and
Indian Ocean Dipole (IOD), which are originating from the Pacific, Indian, and Southern
Oceans. These oceans have a large impact on the climate of south-east Australia [5]. El-Niño
Sothern Oscillation is the natural cycle in the Pacific Ocean’s temperature, cloud, and winds.
It is the leading interannual climate variability around the globe. It plays an important
role in global climate prediction. The El-Niño southern oscillation affects the sea surface
temperature (SST) and air pressure (A.P) over the streamflow. It also affects the dynamics
of atmosphere and ocean worldwide [5–7]. The climate conditions vary due to La Nina and
El-Niño events around the Pacific, including eastern Australia [8]. The ENSO events have a
significant impact on the climate of different countries around the world, i.e., Japan, New
Zealand, western coast of United states, Australia, and South China [6,9–11]. Furthermore,
ENSO and IOD have large-scale climate effects on India, Australia, and North and South
America. Several researchers observed the effect of climate drivers on the streamflow
and rainfall of Australia [12–14]. It is to be noted that due to numerous studies involving
these indices, it apparently seems that these indices are the main drivers of the rainfall
occurrences. In reality, these are not the main drivers, rather just some measures of selective
atmospheric variables. The main drivers of the rainfall are complex ocean–atmospheric
interactions, explanations of which are beyond the scope of this study.

The IOD is an atmospheric phenomenon similar to ENSO. It is evolved in the Indian
Ocean on an inter-annual time scale. The rainfall in Murray Darling Basin (MDB), Australia,
is affected due to IOD from the months of June to November. The IOD is the key climate
driver of Australia because of its significant influence in Australian agriculture [15]. The
IOD events have significant influences on the growing crops in winter season in the region.
The events generally start in the month of May or June and remain at their peak between
August and October; after this point, they quickly slow towards the end of spring, when
monsoons reach the southern hemisphere [16,17]. The ENSO is causing interannual vari-
ability in Australian rainfall and streamflow. Many authors showed the impact of ENSO on
streamflow and revealed that seasonal (spring) streamflow and rainfall can be predicted by
ENSO anomalies [6,18]. Moreover, a few researchers have showed the significant impact
of IPO on streamflow and rainfall variation on a decadal to multidecadal time scale. It
can increase or decrease the flood risks in New South Wales (NSW), Australia [4,19]. The
correlation of the lagged ENSO-streamflow data set can be used to develop seasonal stream-
flow forecasting models. The seasonal rainfall and streamflow forecasting is important for
the land and water resources management [18]. An earlier study found that the Bayesian
Joint probability modeling technique that used ENSO-SST indices shows close correlation
with higher lagged months. Whereas the indices from Indian and extratropical regions
or derivatives from atmospheric indices such as PDO and IOD tend to show the good
correlation only for one-month lag and with the increase in lag months, the correlation
between streamflow and climate indices is becoming weak [20]. This supports the view
that the PDO-Niño3.4, in combination, can be used for spring streamflow forecasting, with
Pearson regression (R) ranging from 0.25 to 0.45 [6]. In addition to this, the influences of
ENSO and IOD were analyzed on Victorian rainfall, and the study concluded that ENSO
and IOD have more influence on spring rainfall [21]. Moreover, ENSO and IOD also have
shown the inclusive influence on the rainfall and streamflow of NSW, but it is observed
that the IPO indices do not have much influence on the rainfall of NSW [5]. Furthermore, it
is investigated that PDO is not showing a good correlation with seasonal streamflow of
some stations of NSW, where correlations ranged from 0.20 to 0.25 [6]. A study determined
the relationship of seasonal streamflow to a reservoir in Sydney and individual Niño3.4
and PDO indices and revealed regression (R) values of −0.17 and −0.19, respectively [22].
On other hand, a study has shown a greater positive impact of PDO on the annual rain-
fall of Sydney in comparison to SOI [23]. In addition to this, another study also showed
the significant relationship between PDO and Australian summer monsoon but not for
NSW [12].
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Artificial Intelligence and machine learning techniques, such as extreme machine
learning, the fuzzy neural network model, the artificial neural network, wavelet, discrete
wavelet transform, Empirical Mode Decomposition (EMD), hybrid DWT, EMD-ANN
models, the regression model, M5 model tree, and Vector Support Machine (SVM), have
been extensively used for the last 15 years to resolve various water resources issues and
environment-related problems [14,24]. Nowadays, the artificial neural network is widely
used for hydrological modeling and its applications for predicting and forecasting the
streamflow [25–29], rainfall-runoff modeling [30], ground water level forecasting [31], and
evapotranspiration estimations [32,33].

For the study of trend and variability analysis, it is important to understand the behav-
ior of hydrological and climate variables over a long-term period. The oscillation modes
on temporal pattern in the time series of climate variation were analyzed by exploratory
analysis on raw data, and their structure and properties and quasi-periodic behavior were
determined by wavelet analysis [7]. In their study, the authors improved the wavelet
modeling framework for hydrological time series forecasting, which was found to be more
useful [34]. Various researchers used the hourly, daily, weekly, and seasonal streamflow
data to find the suitable variables for streamflow and rainfall forecasting [2,35,36], and many
others [12–14] have investigated the synchronized relation of a single climate variable with
daily, monthly, or seasonal streamflow and rainfall and revealed that the climate indices
have an impact on the streamflow of Australia. Contrastingly, very limited researchers
have developed a monthly streamflow relationship in different parts of Australia [37],
and no one has explored the teleconnection between continuous monthly streamflow and
climate indices of the studied rivers, especially within Australia. To further improve the
monthly forecasting capability, this research was carried out to establish teleconnections
between ENSO, IPO, PDO, and IOD indices and monthly streamflow. The paper describes
the long-term streamflow forecasting outcomes performed on three tributaries of Goulburn
River within MDB using continuous monthly streamflow and climate drivers as input data
for different ANN models.

2. Materials and Methods
2.1. Study Area

For this study, three tributaries of Goulburn River (37◦32′–38◦9′ S, 145◦2′–146◦11′ E) were
selected because of its prominence within Goulburn Broken catchment in the state of Victoria
(Figure 1). The Australian economy heavily depends on farming products irrigated nearby
in the Murray–Darling Basin (MDB), and the MDB contributes AUD 24 billion in food and
fiber per year. It contributes approximately 40% of agricultural production and irrigates 65%
of the land in Australia [38]. The Goulburn is 654 km long and flows into Murray River, the
largest river of Australia. It is rich with environmental, cultural, and recreational values and
flows in the western direction, across a widespread agriculture valley. The Goulburn River is
used for multiple purposes, including supplies for the irrigation, for water supply to the small
towns and for ecological outcomes [15,16]. The Goulburn River is fed by high annual rainfall
and snow melt on average 63 inches from mountains. The Goulburn River catchment climate
is pleasant and semi-arid. The monthly mean maximum temperature of catchment in the
summer season is around 30 ◦C and in winter is 14 ◦C, whereas the monthly mean minimum
temperature ranges from around 14 to 2 ◦C. In this study, two regions of Victoria have been
selected: one is north-central and the other is northern. The three stations that have been
selected from the north-central region are Acheron, Rubicon, and Yea; Goulburn station was
selected from the northern region [16,39–41]. These rivers are at the downstream of Hume
reservoir and mostly serve agricultural and irrigation purposes for the yield production [16].
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Figure 1. Map of the Goulburn River catchment including its tributaries.

2.2. Data Description

The aim of this study is to analyze the correlation between streamflow and climate
drivers using machine learning techniques to predict and forecast the streamflow of Goul-
burn River and its main tributaries. In this study, streamflow and climate indices data over
the last 48 years (1974 to 2022) were used. Additionally, the data set was distributed as
15% for the training period, 15% for the validation period and 70% for the testing period.
The simulation results are from the testing period. The mean discharge data in cumec
(m3/s) were used to balance the missing values. The historical monthly streamflow data of
selected stations were collected from different websites, the details of which are given in
Table 1. The monthly climate indices data were used to check the effects of climate drivers
on streamflow. The climate indices data were obtained from different sources, as shown in
Table 2. Figure 2 shows the flow diagram of research methodology.
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Table 1. Overview of the selected discharge stations [16,42].

Station No. Latitude Longitude River Name & Data Source

405209 37.32◦ S 145.71◦ E
Acheron River at Taggerty

https://realtimedata.waternsw.com.au/ #

https://data.water.vic.gov.au/static.htm #

405217 37.38◦ S 145.47◦ E Yea River at Devlins Bridge
https://data.water.vic.gov.au/static.htm #

405241 37.29◦ S 145.82◦ E Rubicon River
https://data.water.vic.gov.au/static.htm #

# Accessed on 10 February 2023.

Table 2. Overview of climate indices and data source.

Predictors Predictor Definition Origin Data Source

NIÑO3
Average SST anomaly over

central Pacific Ocean
(5◦ S–5◦ N, 90◦–150◦ W)

Pacific Ocean HadISSTI1
(http://climexp.knmi.nl/) *

NIÑO3.4
Average SST anomaly over

central Pacific Ocean
(5◦ S–5◦ N, 120◦–170◦ W)

Pacific Ocean HadISSTI1
(http://climexp.knmi.nl/) *

NIÑO4
Average SST anomaly over

central Pacific Ocean,
(5◦ S–5◦ N, 150◦–200◦ W)

Pacific Ocean HadISSTI1
(http://climexp.knmi.nl/) *

IPO

SST anomaly in North and
South Pacific Ocean,

(Includes south of 20◦ N
latitude)

Pacific Ocean HadISSTI1
(http://climexp.knmi.nl/) *

PDO
SSTA anomaly in North

Pacific Ocean,
(North of 20◦ N latitude)

Pacific Ocean ERSST
(http://climexp.knmi.nl/) *

IOD
West pole index (10◦ S–10◦ N,
50◦–70◦ E)—East pole Index

(10◦ S–0◦ N, 90◦–110◦ E)
Indian Ocean HadISSTI1

(http://climexp.knmi.nl/) *

* Accessed on 8 January 2023.

Figure 2. Flow diagram of research methodology.

https://realtimedata.waternsw.com.au/
https://data.water.vic.gov.au/static.htm
https://data.water.vic.gov.au/static.htm
https://data.water.vic.gov.au/static.htm
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
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2.3. Artificial Neural Network

In this study, monthly streamflow and climate indices data were used to explore the
correlation of streamflow and climate indices up to six months ahead.

There are several techniques that can be used to recognize the relationships between
two, or more than two, parameters. The neural network fitting tool (ANN nftool) is
nowadays used to determine the correlation between the dependent and independent
variables and to check the performance of the model for the accuracy analysis [21,42].

2.3.1. Input Selection

The most important step of ANN model development is a proper selection of input,
which requires concentration on input and target selection determined on an ad-hoc basis
or using scientific knowledge [14,43]. The variability in input selection can affect the ANN
modeling and forecasting accuracy assessment, which are the two variables used as an input
in this study for machine learning ANN modeling. The monthly lagged climate indices
data set includes EL Niño Southern Oscillation (ENSO), Interdecadal Pacific Oscillation
(IPO), Pacific Decadal Oscillation (PDO) and Indian Ocean Dipole (IOD), which are input
indicators, named the first variable, and the monthly lagged streamflow data set used as a
target, named the second variable. These variables are used as a six-month lagged data
set in one month, three months, and six months, respectively, for long-term streamflow
forecasting. The ANN modeling has the ability to set the non-stationary, noise complexity
in the data set and make a good connection between model input data and the target data
set to generalize the ANN model performance and correlation to achieve optimum output.

2.3.2. Artificial Neural Network Model Structure Development

The ANN modeling approaches have the ability to determine the nonlinear and
non-stationary relationship between input and output parameters [44]. The ANN is a
decision-making technique that consists of weights (connections) and simple neurons,
which helps to process the information to find the relationship between input and outputs.
The mostly useful ANN architecture in hydrological modeling is connected to multi-layer
perceptrons, is called the feed forward network and has been used in this study. It consists
of three layers, i.e., input layers, number hidden layers and output layers. The number
of input and output data built the input and output neurons. The input layer works to
process the received data for the next process. The hidden layers are of great importance to
multi-layer perceptrons because they can solve the more complex problems by increasing
the number of neurons in the hidden layers. The desired output of the model is an output
neuron. The AINN model development process (i) determines the suitable input data
set, (ii) finds hidden layers and helps to finalize the number of neurons, and (iii) trains,
validates, and tests the network [21]. Mathematically, MLP can be found under:

y = f ∑n
j=1 wj pj + b, (1)

where wj denotes the weight vector and pj is the input vector (j = 1, 2, 3, 4, . . . , n); b is
the bias; f is the transfer function; and y is the output [14,21]. The tangent sigmoid is
more effective than the logistic sigmoid function for streamflow forecasting and faster for
training data sets [14,45–47]. The f 1 is supposed as a tangent sigmoid transfer function in
this study, which is nonlinear function, and f 2 is supposed as a linear purlin function and
defined for any variable as under.

f1 =
2

1 + e−2s − 1, (2)

f2(s) = S (3)

The Levenberg Marquardt algorithm was used in this study to train the ANN mod-
els [31]. The ANN models can be overfitted to avoid this problem of early stop technique
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for training and validating the model. With the help of this technique, the network can stop
the training when the error over validation set starts to increase but the error over training
set is still decreasing. Therefore, by applying this technique network, overfitting can be
avoided [7,48].

2.3.3. Artificial Neural Network Model Performance

The developed model performance was checked with Pearson regression R values.
Regression R values in this research are used to measure correlation between observed
and ANN forecasted values. The developed models with values near to one show the
close correlation, and if the generated values are significantly less than one they show the
random correlation [21,47]. Mathematically, R2 can be calculated as under [21]:

R2 =

 ∑n
j=1
(
Yj − Y

)(
Fj − F

)√
∑n

j−1
(
Yj − Y

)2
∑n

j−1
(
Fj − F

)2

, (4)

where Yj is the observed flow, Fj is the forecasted flow, n is the number of data points, Y is
the average of observed flow, and F is the average of forecasted flow.

2.3.4. Statistical Accuracy of Developed Models

The accuracy of developed models was performed by statistical analysis. There
are various methods to check the accuracy of ANN models. The Mean Square Error
(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) were used in this study. The MSE and RMSE give an average
squared difference between output and targets, whereas MAE and MAPE are used for the
comparison of the models with each other and find the best fit model [21,24,46].

Mathematically, MSE and RMSE can be calculated as under [21,24,46]:

MSE =
1
n
+ ∑n

j=1

(
yj − Fj

)2
, (5)

RMSE =

√√√√ 1
n
+

n

∑
j=1

(yj − Fj)
2

(6)

The MLP was trained using the back error propagation algorithm. In this technique,
the network-connecting weights repeat the cycle to obtain the best fit coefficient correlation
and minimize errors, i.e., RMSE and MSE.

3. Results
3.1. Performance of Artificial Neural Network Developed Models

In this study, the ANN fitting tool was used to check the effect of climate indices
on streamflow by using the different lag months, i.e., one, three, and six, to forecast the
streamflow. The climate indices and streamflow data set have been used for these rivers as
an input and target for long-term streamflow forecasting, respectively. The regression (R)
and MSE analysis are performed using nftool to investigate the effect of climate indices on
streamflow. The ANN model has generated the regression plot and error histogram graphs,
which facilitate the evaluation of the accuracy of ANN models for long-term monthly
streamflow forecasting. The coefficient correlation regression R analysis is performed in
series to evaluate the ANN-developed models. The climate indices ENSO (Niño3, Niño3.4
and Niño4), IPO, PDO and IOD have been used for the streamflow forecasting of Acheron,
Rubicon, and Yea Rivers. Initially, the simulation process using “nftool” is performed for
the Acheron, Rubicon, and Yea Rivers.
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Achieved regression (R) values are presented in Table 3. ‘R’ values for the simulated
results of Acheron River models with ENSO indices for one, three, and six-months lags
were ranging from 0.7 to 0.75 using Niño3, 0.7 to 0.90 using Niño3.4 and 0.80 to 0.95 using
Niño4. However, regression values for the simulated results for Acheron River models with
IPO, PDO and IOD even with one-month lag were quite low (0.4 using IPO, 0.07 using PDO
and 0.3 using IOD). Regression values for the simulated results of Rubicon River models for
one, three, and six-month lag were ranging from 0.71 to 0.83 using Niño3, 0.70 to 0.77 using
Niño3.4 and 0.5 to 0.75 using Niño4. Again, regression values for the simulated results of
Rubicon River models for IPO, PDO and IOD even with one-month lag were quite low (0.4
using IPO, 0.05 using PDO and 0.32 using IOD). Regression values for the simulated results
of Yea River models with ENSO indices for one, three, and six-month lag were ranging
from 0.65 to 0.75 using Niño3, 0.6 to 0.7 using Niño3.4 and 0.7 to 0.75 using Niño4 indices.
Similar to Acheron River and Rubicon River, regression values for the simulated results
of Yea River models for IPO, PDO and IOD with one-month lag were low (0.5 using IPO,
0.014 using PDO and 0.3 using IOD).

Table 3. Correlation values between streamflow and climate indices for testing period.

Station NIÑO3 NIÑO3.4 NIÑO4 IPO PDO IOD

Acheron River
0.72 ′

0.71 ′′

0.7 ′′′

0.9 ′

0.82 ′′

0.70 ′′′

0.94 ′

0.91 ′′

0.80 ′′′

0.4 ′

-
-

0.07 ′

-
-

0.32 ′

-
-

Rubicon River
0.78 ′

0.77 ′′

0.73 ′′′

0.83 ′

0.73 ′

0.73 ′′′

0.71 ′

0.70 ′′′

0.5 ′′′

0.4 ′

-
-

0.05 ′

-
-

0.32 ′

-
-

Yea River
0.72 ′

0.70 ′′

0.65 ′′′

0.7 ′

0.65 ′′

0.61 ′′′

0.71 ′

0.70 ′′

0.5 ′′′

0.5 ′

-
-

0.014 ′

-
-

0.3 ′

-
-

′ For one lag month, ′′ For three lag months, ′′′ For six lag months.

The results show strong correlations of streamflow with ENSO climate indices for all
the rivers (Acheron, Rubicon, and Yea) with one-month lag. The results are even promising
with three and six-month lagged values. For three-month lag, a maximum correlation of
0.91 was achieved for Acheron River with Niño4. Moreover, for six-month lag, a maximum
correlation of 0.8 was achieved for Acheron River with Niño4. Among the indices, the
Niño4 was found to be most effective for Acheron River and Yea River, whereas Niño3.4
was found to be most effective for Rubicon River.

3.2. Statistical Error Assessment of ANN Models

The developed models were evaluated statistically. The Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Per-
centage Error (MAPE) of generated models were calculated to check the performance of
the models as given in Table 4. The lower errors in MSE and RMSE show the performance
level of the model, whereas the MAE and MAPE are used to compare the models with
each other. In general, the error measures are higher for higher lagged months, which is
logical. Conforming the regression values for Acheron River, minimum error statistics
(MSE, RMSE and MAE) were achieved with Nino3.4 and Nino4. However, in regard to
MAPE, the minimum values were achieved with Nino3.4 and Nino3. Figures 3–5 show
the scatter plots of the predicted values compared to observed values for Acheron River
at different lag months using effective indices: Nino3 (Figure 3), Nino3.4 (Figure 4) and
Nino4 (Figure 5).
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Table 4. Statistical performances of the developed models for testing period.

Station Climate Indices MSE RMSE MAE MAPE

Acheron River

NIÑO3
30.48 ′

30.57 ′′

32.0 ′′′

5.52 ′

5.53 ′′

5.66 ′′′

3.60 ′

3.60 ′′

3.74 ′′′

62.63 ′

62.74 ′′

66.11 ′′′

NIÑO3.4

0.0 ′ 0.0 ′ 2.03 ′ 17.85 ′

21.1 ′′ 4.59 ′′ 2.37 ′′ 19.99 ′′

24.4 ′′′ 4.94 ′′′ 2.43 ′′′ 93.4 ′′′

NIÑO4

0.0 ′ 0.0 ′ 0.89 ′ 143.45 ′

4.80 ′′ 2.19 ′′ 1.06 ′′ 153.47 ′

33.82 ′′′ 5.81 ′′′ 3.97 ′′′ 153.5 ′

IPO 60.23 ′ 7.76 ′ 5.97 ′ 43.39 ′

PDO 63.55 ′ 7.97 ′ 6.18 ′ 41.0 ′

IOD 63.55 ′ 7.97 ′ 6.18 ′ 43.74 ′

Rubicon River

NIÑO3

2.4 ′ 1.5 ′ 1.1 ′ 40.67 ′

2.75 ′′ 1.66 ′′ 1.1 ′′ 47.0 ′′

4.0 ′′′ 2.0 ′′′ 1.17 ′′′ 35.76 ′′′

NIÑO3.4

1.75 ′ 1.32 ′ 0.84 ′ 61.54 ′

1.91 ′′ 1.38 ′′ 0.90 ′′ 69.73 ′′

3.11 ′′′ 1.76 ′′′ 1.17 ′′′ 81.00 ′′′

NIÑO4

3.44 ′ 1.85 ′ 1.29 ′ 89.9 ′

4.03 ′′ 2.0 ′′ 1.45 ′′ 93.37 ′′

5.72 ′′′ 2.39 ′′′ 1.80 ′′′ 95.5 ′′′

IPO 2.39 ′ 5.70 ′ 1.90 ′ 114.94 ′

PDO 6.19 ′ 2.49 ′ 1.97 ′ 121.39 ′

IOD 5.76 ′ 2.40 ′ 1.89 ′ 131.53 ′

Yea River

NIÑO3

5.47 ′ 2.34 ′ 1.25 ′ 122.28 ′

6.45 ′′ 2.54 ′′ 1.53 ′′ 127.43 ′′

6.69 ′′′ 2.58 ′′′ 1.64 ′′′ 130.64 ′′′

NIÑO3.4

6.28 ′ 2.51 ′ 1.55 ′ 112.16 ′

6.97 ′′ 2.64 ′′ 1.67 ′′ 124.84 ′′

7.38 ′′′ 2.71 ′′′ 1.74 ′′′ 104.47 ′′′

NIÑO4

5.29 ′ 2.30 ′ 1.20 ′ 222.97 ′

5.67 ′′ 2.32 ′′ 1.25 ′′ 309.59 ′

5.38 ′′′ 2.38 ′′′ 1.39 ′′′ 277.37 ′′′

IPO 9.29 ′ 3.04 ′ 2.16 ′ 37.63 ′

PDO 10.95 ′ 3.30 ′ 2.51 ′ 309.59 ′

IOD 10.08 ′ 3.17 ′ 2.31 ′ 277.37 ′

′ For one lag month, ′′ For three lag months, ′′′ For six lag months.
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For Rubicon River, minimum error measures (MSE, RMSE and MAE) were achieved
with Nino3.4, which also conforms with the achieved regression values. Only for MAPE
were the minimum values achieved with Nino3. Figures 6–8 show the scatter plots of the
predicted values compared to the observed values for Rubicon River at different lag months
using different indices: Nino3 (Figure 6), Nino3.4 (Figure 7) and Nino4 (Figure 8).
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Figure 8. Scatter plots of observed and modeled streamflow of Rubicon River using Nino4 at different
lag months: (a) one lag month; (b) three lag months; (c) six lag months.

For Yea River, the minimum error statistics (MSE, RMSE and MAE) were achieved with
Nino4, which conforms with the regression values achieved for the same river. However,
in regard to MAPE values, the minimum values were achieved with Nino3.4. Figures 9–11
show the scatter plots of the predicted values compared to the observed values for Yea
River at different lag months using different indices: Nino3 (Figure 9), Nino3.4 (Figure 10)
and Nino4 (Figure 11).
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Figure 10. Scatter plots of observed and modeled streamflow of Yea River using Nino3.4 at different
lag months: (a) one lag month; (b) three lag months; (c) six lag months.
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Figure 11. Scatter plots of observed and modeled streamflow of Yea River using Nino4 at different
lag months: (a) one lag month; (b) three lag months; (c) six lag months.

In general, the MSE, RMSE, MAE and MAPE values for the models using IPO, PDO
and IOD were much higher compared to the models with ENSO indices. Due to higher
errors and lower regression values, IPO, PDO and IOD were not used for subsequent time
series comparison, as mentioned in the following section.

3.3. Time Series Comparison and Discussion

To visualize a deeper comparison of the modeled results, time series plots are also
compared, where both the simulated and observed streamflow values are plotted with time.
Figures 12–14 show the time series comparisons of observed flows and simulated flows
using different ENSO indices. From primary observations (as mentioned in the earlier
sections), the developed Acheron River model is the best model, with the highest regression
correlations as 0.90 and 0.94 using Niño3.4 and Niño4, respectively, and with MSE (0.00
and 0.00) and RMSE (0.00 and 0.00) for one-month lag, as shown in Tables 3 and 4. The
Acheron River models using ENSO also show strong correlations with higher lag months in
comparison to other models; however, correlations with 1-month lag is always better than
the correlations with 3 or 6-month lag. Figure 12 shows the comparisons of observed and
simulated time series values for Acheron River using ENSO indices: Nino3 (Figure 12a),
Nino3.4 (Figure 12b) and Nino4 (Figure 12c). From the figures, it is clear that the model
using Nino3.4 produced the closest predictions to the observed values with 1-month lag.
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Figure 12. Comparison of observed and simulated streamflow time series for Acheron River at 1, 3,
and 6-month lag using ENSO indices as an input: (a) Nino3; (b) Nino3.4; (c) Nino4.

Figure 13 show the time series comparisons of observed flows and simulated flows for
Rubicon River using different ENSO indices: Nino3 (Figure 13a), Nino3.4 (Figure 13b) and
Nino4 (Figure 13c). Again, the model using Nino3.4 produced the closest predictions to the
observed values with 1-month lag.

Figure 14 shows the time series comparisons of observed flows and simulated flows
for Yea River using different ENSO indices: Nino3 (Figure 14a), Nino3.4 (Figure 14b) and
Nino4 (Figure 14c). For Yea River, the model using Nino3 produced the closest predictions
to the observed values with 1-month lag. Even simulations with 3-month lagged values
produced very close results. Such shifting in the dominance of different indices is likely
with the change of geographical location, i.e., the same index is not likely to be dominating
the rainfall/streamflow in all the locations.
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Figure 13. Comparison of observed and simulated streamflow time series for Rubicon River at 1,3
and 6-month lag using ENSO indices as an input: (a) Nino3; (b) Nino3.4; (c) Nino4.
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Table 3. Correlation values between streamflow and climate indices for testing period. 

Station NIÑO3 NIÑO3.4 NIÑO4  IPO PDO IOD 

Acheron River 

0.72 ′ 

0.71 ″ 

0.7 ″′ 

0.9 ′ 

0.82 ″ 

0.70 ″′ 

0.94 ′ 

0.91 ″ 

0.80 ″′ 

0.4 ′ 

- 

- 

0.07 ′ 

- 

- 

0.32 ′ 

- 

- 

Rubicon River 

0.78 ′ 

0.77 ″ 

0.73 ″′ 

0.83 ′ 

0.73 ′ 

0.73 ″′ 

0.71 ′ 

0.70 ″′ 

0.5 ″′ 

0.4 ′ 

- 

- 

0.05 ′ 

- 

- 

0.32 ′ 

- 

- 

Yea River 

0.72 ′ 

0.70 ″ 

0.65 ″′ 

0.7 ′ 

0.65 ″ 

0.61 ″′ 

0.71 ′ 

0.70 ″ 

0.5 ″′ 

0.5 ′ 

- 

- 

0.014 ′ 

- 

- 

0.3 ′ 

- 

- 

′ For one lag month, ″ For three lag months, ″′ For six lag months. 
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Figure 14. Comparison of observed and simulated streamflow for Yea River at 1, 3 and 6-month lag
using ENSO indices as an input: (a) Nino3; (b) Nino3.4; (c) Nino4.

3.4. Discussions

Developed ANN models perform well in predicting monthly streamflow for three
rivers in Victoria, although apparently scatter plots do not look very promising. ENSO-
based indices (Nino3, Nino3.4 and Nino4) are found to have good correlations with the
monthly streamflows of the studied rivers. The prediction of streamflow one month ahead
can be achieved for Acheron River with Nino4 having a correlation value of “0.94”. For
the same river, even a prediction six months ahead can be achieved with a correlation
coefficient of “0.80”. For Yea River, predictions both one month and six months ahead can
be achieved with a correlation coefficient of “0.74”. For both Acheron and Yea Rivers, the
highest correlations achieved were with the Nino4, whereas, for Rubicon River, the highest
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correlations achieved were with Nino3.4. In general, it is known from previous studies that
ENSO-based indices have good correlations with the rainfalls of the study region. However,
correlations vary with the different ENSO indices. As such, this study reveals particular
indices, which are dominant for the selected rivers.

Comparisons of time series graphs reveal that models are capable of simulating
continuous monthly streamflow for the selected rivers, especially with a one-month lag
period. It is obvious that with the increases in lag months, a model’s capability deteriorates.
Usually, such long-term predictions for rainfall are more accurate. However, for streamflow
to achieve a higher accuracy is more difficult, as rainfall is a natural phenomenon, which is
likely to be related with some natural indices (as selected in this study and many others).
Contrastingly, streamflow is a final outcome of rainfall after having several influences by
catchment characteristics, which are likely to be altered by human activities. As such, it is
more difficult to predict streamflow with the aid of such natural indices. The developed
models were capable of capturing most of the peaks and troughs of the time series, although
there are some discrepancies, which is acceptable for a complex phenomenon such as
streamflow. In this study, the correlations were established only with a single index, whereas
some regions might be affected by more than one index. It is likely that consideration of
multiple indices for such model generation would help to improve the prediction accuracy,
which is recommended to be a future study.

As the significance of other non-ENSO indices (IPO, PDO and IOD) were found to
be not very strong, the time series comparisons using these indices were not performed.
In Figures 12c and 14b, some of the simulated graphs appeared to be an almost straight
line and horizonal. This reveals the insignificance of those indices for the prediction of
streamflow in the respective river (i.e., Nino4 for Acheron River and Nino3.4 for Yea River)
for the mentioned lagged months.

4. Conclusions

Although seasonal streamflow forecasting has been attempted a lot, continuous stream-
flow forecasting is rarely practiced. Moreover, all the works on continuous streamflow
forecasting were probabilistic estimations. Contrastingly, this paper presents continuous
streamflow forecasting with a deterministic approach. To accomplish this, a machine learn-
ing ANN technique was used to develop suitable models using dominating climate indices.
Previous studies have shown that climate indices have strong effects on streamflow. In this
study, the performance of generated models is analyzed based on regression values and
different statistical error parameters (MSE, RMSE, MAE and MAPE) for three tributaries of
Goulburn River. It is concluded from this study that:

• For all the stations, ENSO-based indices are having significant influence on the stream-
flow and are able to predict streamflow a few months ahead.

• PDO is found to have the least influence on the streamflow of the selected stations.
• IPO shows moderate (regression values 0.4~0.5) influence on the streamflow of the

selected stations; however, this was far below the ENSO-based indices.
• Models for both the Acheron River and Rubicon River show the best performance in

predicting streamflow up to 6 months in advance. However, dominating combination
of indices are different for Acheron River and Rubicon River.

• For Acheron River, Niño3.4 and Niño4 indices were found to be more significant.
The correlations between simulated and observed streamflow are 0.90 and 0.94 using
Niño3.4 and Niño4, respectively. Corresponding estimation errors are MSE as 0.00
and 0.00, RMSE as 0.00 and 0.00, MAE as 2.03 and 1.06, and MAPE as 37.63 and 17.85,
respectively, for one lag month. For 3-month lag, the correlations between predicted
and observed streamflow are 0.91 and 0.82 using Niño4 and Niño3.4, respectively.

• For Rubicon River, Niño3 and Niño3.4 indices were found to be more significant.
The correlations between simulated and observed streamflow are 0.78 and 0.83 using
Niño3 and Niño3.4, respectively. Corresponding estimation errors are MSE as 2.4
and 1.91, RMSE as 1.5 and 1.38, MAE as 1.1 and 0.9, and MAPE as 39.76 and 40.67,
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respectively, for one lag month. For 3-month lag, the correlations between predicted
and observed streamflow are 0.77 and 0.73 using Niño3 and Niño3.4, respectively.

• For the predictions 6 months ahead, the Acheron River showed the highest perfor-
mance, with a regression correlation of 0.8 using Niño3. However, with the Rubicon
River model, for 6-month lag a regression correlation of 0.73 was achieved with Niño3
and Niño3.4.

• The regression values for the Yea River models using ENSO indices varied from 0.7 to
0.74 for 1-month lag. For six-month lag, the regression values varied from 0.61 to 0.74.
For all the studied cases (for Yea River), the most influencing index was Niño4.

• The time series comparisons for the models with higher correlation values were
also found to be good, except that in some cases models were unable to predict the
peak values. This is due to the fact that the streamflow is not only dependent on a
particular climate index; it is also affected by some other local parameters. In some
cases, influences of other local parameters may become superior and discrepancy with
the solely index-based models may underperform.

• The performances of the developed models ascertain that such machine-learning-based
models using climate indices can be used for other ungauged stations for long-term
streamflow forecasting within the region. However, the current study was performed
with a single index. It is likely that consideration of a combined effect of multiple
indices will provide even better performance. As such, it is recommended that a future
study be performed with combined indices, i.e., examining the effect of combined
indices on streamflow.
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