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Abstract: This study introduces a multivariate extension to the class of stochastic volatility models,
employing integrated nested Laplace approximations (INLA) for estimation. Bayesian methods for
estimating stochastic volatility models through Markov Chain Monte Carlo (MCMC) can become
computationally burdensome or inefficient as the dataset size and problem complexity increase.
Furthermore, issues related to chain convergence can also arise. In light of these challenges, this
research aims to establish a computationally efficient approach for estimating multivariate stochastic
volatility models. We propose a multifactor formulation estimated using the INLA methodology,
enabling an approach that leverages sparse linear algebra and parallelization techniques. To evaluate
the effectiveness of our proposed model, we conduct in-sample and out-of-sample empirical analyses
of stock market index return series. Furthermore, we provide a comparative analysis with models es-
timated using MCMC, demonstrating the computational efficiency and goodness of fit improvements
achieved with our approach.

Keywords: multivariate stochastic volatility; integrated nested laplace approximations; Bayesian
methods; computational efficiency

1. Introduction

In economics, especially in the field of finance, time series modeling recurrently
involves incorporating patterns of dependence in the conditional variance. In financial
series, the so-called conditional volatility models are of particular interest, as variance plays
a considerable role in determining asset prices, measuring risk and in the construction
of tools to hedge them. By understanding the underlying factors driving the volatility
dynamics, policymakers can implement measures to mitigate systemic risks and enhance
financial stability. This may involve implementing macroprudential policies aimed at
reducing excessive volatility and preventing financial crises.

However, as it is a latent process, conditional volatility is not easily estimated using
conventional tools, which would include, for example, maximum likelihood estimators. In
response, the literature presents the development of different paths regarding the treatment
given to the assumed volatility process.

Among the proposed methods, one notable class is the family of univariate ARCH
models (Autoregressive Conditional Heteroskedasticity), originally proposed by Engle
(1982) and generalized into the univariate GARCH class (Generalized Autoregressive
Conditional Heteroskedasticity) by Bollerslev (1986).

Another significant class of models treats conditional volatility as a stochastic process,
commonly referred to as stochastic volatility (SV) models. Introduced by Taylor (1986)
using a nonlinear state-space representation with the log-variance following an AR(1)
process, univariate SV models offer certain advantages over the univariate ARCH class.
They do not necessitate the assumption of a deterministic structure for latent variance,
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and using autoregressive formulations for the conditional variance, they allow for a more
straightforward multivariate extension using formulations based on vector autoregressive
(VAR) models and common factor structures. However, SV models come with greater
complexity in their estimation due to the presence of latent variables in the likelihood of
the process.

In the frequentist perspective, significant development centers around the quasi-
maximum likelihood method based on prediction error decomposition via the Kalman
Filter, independently proposed by Nelson (1988) and Harvey et al. (1994). Alternatively,
Bayesian estimation techniques are particularly interesting because latent processes can
be treated as additional parameters to be estimated. Refer to Kim and Shephard (1998) for
the original Bayesian inference of SV models and, more recently, Kastner and Frühwirth-
Schnatter (2014), both of which rely on Markov Chain Monte Carlo (MCMC) algorithms.

From an applied standpoint, simulation-based methodologies like MCMC can pose
computational challenges, especially as the volume of data involved in the estimation
grows in terms of dimensionality and the number of observations. These algorithms are
susceptible to chain convergence issues, as highlighted by Rajaratnam and Sparks (2015),
in addition to facing computational inefficiency due to the iterative and non-parallelizable
nature of the method, resulting in longer execution times. Consequently, stochastic volatility
models may become less appealing or even computationally prohibitive when dealing with
very long series or multivariate formulations.

Martino et al. (2011) propose an alternative approach to Bayesian estimation of stochas-
tic volatility models using integrated nested Laplace approximations (INLA), originally
introduced by Rue et al. (2009). This approach allows for the estimation of parameters and
latent variables through precise deterministic approximations to the posterior distributions,
provided that the model can be approximated by a Gaussian Markov random field. No-
tably, Chaim and Laurini (2019) highlights that the INLA method, based on an analytical
approach, eliminates the need for simulation procedures, rendering it immune to issues
related to chain convergence.

As the formulation used can be represented as a Gaussian Markov Random Field,
it allows a representation using a conditional Markov structure (Rue and Held 2005).
The Markov property allows for representing the model’s precision matrix with a sparse
matrix, which allows for the use of sparse linear algebra with relevant computational gains.
Another important point is that Laplace approximations are numerically parallelizable,
which allows all the computational power to be exploited using multiple processors.

The literature using this methodology has primarily focused on the analysis of the
univariate case, where a single asset is considered in the state space formulation. However,
extending the estimation of multivariate stochastic volatility models via integrated nested
Laplace approximations is a natural progression, considering that works like Martino et al.
(2011) only examine the bivariate case. Nevertheless, the dimensionality of the problem
poses critical implications for the use of INLA in these models. As noted by Martino et al.
(2011), the informational gain (greater volume of data and additional dimension) may
lead to a substantial increase in estimation time, potentially undermining the efficiency of
this tool.

One possible solution is to search for a more parsimonious parameterization, which
allows the number of parameters to be estimated not to grow too much as the number of series
analyzed also increases. Factor models fulfill exactly this role, as Asai et al. (2006) observes.

This study aims to develop a practical framework for estimating multivariate stochas-
tic volatility models using a shared factors structure. The proposed formulation is based
on a structure of common factors, where the log-volatility of each series is given by the
combination of latent factors through a structure of estimated factor loadings. This structure
can be implemented directly using the INLA methodology, taking advantage of all the
computational gains related to the use of integrated Laplace approximations for parameters
and latent factors, and also through the representation of sparse matrices and parallelism
in the evaluation of the model that is possible through the Gaussian Markov Random Field
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representation of the proposed model. Through in-sample and out-of-sample analyses, we
show the computational, fitting and forecasting gains derived from the proposed specifi-
cation, compared to univariate specifications and the alternative multifactor formulation
proposed by Kastner et al. (2017).

Our empirical focus centers on analyzing daily returns from stock exchange indices
across various global regions. The primary objective is to uncover volatility interdepen-
dencies within these specified datasets while evaluating potential accuracy improvements
compared to conventional univariate models. Additionally, we seek to assess the computa-
tional efficiency of our approach in comparison to commonly used MCMC algorithms.

The main contribution of the method is an efficient computational implementation
for factor models of stochastic volatility, bypassing the computational cost and possible
convergence problems existing in Bayesian estimations using MCMC. In this way, the pro-
posed method can be used as an efficient computational tool for estimating risk, measured
by conditional variance, in multivariate problems, with applications in portfolio allocation,
construction of tail risk measures and hedging procedures.

This work is organized into five sections, beginning with this introductory section.
Section 2 provides a comprehensive review and discussion of existing literature concerning
the estimation of stochastic volatility models, and the use of INLA (Integrated Nested
Laplace Approximations), with a particular emphasis on the multivariate aspect within the
context of factor modeling. In Section 3, we offer a detailed exposition of the methodology
to be employed, accompanied by an introduction to the datasets that will underpin the
evaluation of our proposed models. The results of our analysis are presented in Section 4,
with in- and out-of-sample analysis using real data, preceding the final Section 5 where we
succinctly summarize the key findings.

2. Literature Review

Our exploration begins with the early developments in the estimation of SV mod-
els, followed by an examination of the integration of Bayesian methodologies and the
application of the integrated nested Laplace approximation (INLA) method. Conclud-
ing this section, we provide an overview of the literature pertaining to multivariate and
factorial models.

2.1. Stochastic Volatility Models

In general, the literature on stochastic volatility, especially concerning its theoreti-
cal foundations and principles, is well-established. Recent advancements are primarily
associated with estimation methods. Taylor (1986) introduced the concept of stochas-
tic volatility in the univariate case, assuming log-normal returns and a latent process
of (log-)volatility. The unobservable nature of this process initially led to a search for
methodological developments to overcome the limitations of traditional techniques, such
as maximum likelihood. In this context, Bayesian inference techniques, in conjunction
with Markov Chain Monte Carlo (MCMC) methods, gained popularity, fostering dedicated
literature aimed at proposing more efficient alternatives. One such alternative is integrated
nested Laplace approximations (INLA), introduced by Rue et al. (2009) and applied to
stochastic volatility by Martino et al. (2011). This framework appears to offer accuracy at
least on par with MCMC, as evidenced by Ehlers and Zevallos (2015), while also providing
advantages in terms of estimation efficiency.

Starting from a sequence {rt}T
t=1 of returns, the SV model of Taylor (1986) model can

be represented as follows:

rt = exp{ht/2}εt, εt ∼ N(0, 1) (1)

ht = µ + ϕ(ht−1 − µ) + ηt, ηt ∼ N(0, [(1 − ϕ2)τh]
−1) (2)
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Log-variance, ht, is assumed to be a stationary first-order autoregressive process,
whose dynamics are configured by the parameters µ (long-term average), ϕ (related to
autoregressive persistence) and τh (marginal precision of the log-variance of ht).

An immediate challenge arises from the unobservable nature of log-volatility. Fol-
lowing Taylor’s (1986) formulation, it is suggested to estimate µ, ϕ, and τ (= τh[1 − ϕ2])
using sample moments, but not ht. The impossibility of employing a maximum likelihood
estimator is noted since it would necessitate dealing with a multiple integral with a di-
mension equal to the sample size to marginalize the latent variance vector. Harvey (1989)
proposed a frequentist approach to address the issue of estimating the latent variable in
the model. This approach involves a quasi-maximum likelihood estimator (referred to as
“quasi-maximum likelihood”) based on prediction error decomposition via the Kalman
Filter. To achieve this, the square of the log-returns is linearized, involving an average
decomposition along with a first-order autoregressive process, thereby imposing a linear
representation of the state space for the model.

Alternatively, Sandmann and Koopman (1998) discussed a methodology that replaces
quasi-likelihood with a simulated version, called Monte Carlo Maximum Likelihood
(MCML), which also allows for the application of the Kalman Filter in the decomposi-
tion of the prediction error. Andersen et al. (1999), on the other hand, returned to the class
of estimators that aim to explore the moments of the sample, using the Efficient Method
of Moments (EMM), in which the derivative of the log-likelihood function (score vector)
provides the moment conditions. In the authors’ study, the EMM estimator achieves the
efficiency of maximum likelihood estimators in large samples.

2.2. Multivariate and Factor Models

Since the inception of stochastic volatility models first proposed by Taylor (1986), sev-
eral extensions have emerged, introducing a wider array of specifications and facilitating
the multivariate analysis of conditional volatility patterns. Building upon the work of Har-
vey et al. (1994), multivariate SV modeling has gained momentum and undergone further
developments, incorporating appropriate functional forms to capture specific stylized facts
and presenting a more efficient approach to estimation and parameterization.

Amid these developments, the concept of factor structures has been introduced into
the realm of multivariate stochastic volatility models, with greater emphasis given by
Jacquier et al. (1995). These factor structures addressed the computational complexity
associated with the high dimensionality inherent to multivariate volatility modeling.

Harvey et al. (1994) laid the groundwork for what they referred to as a multivariate
generalization of stochastic variance models. Drawing from the multivariate representation
of ARCH models and the associated restrictions proposed by Bollerslev (1990), Harvey
et al. (1994) assumed a set of equations to describe the model:

rit = εit(exp{hit})1/2, i = 1, . . . , N; t = 1, . . . , T (3)

hit = γi + φihit−1 + zit (4)

where rit is the observation of the i-th series in the period t and the vectors εt = (ε1t, . . . , εNt)
′

and zt = (z1t, . . . , zNt)
′ of errors follow a multivariate normal distribution with zero mean

and covariance matrices Σε and Ση , respectively. It is also assumed that Σε has each element
of its main diagonal equal to 1 and its other entries denoted by ρij. For estimation, the
authors adopt a frequentist strategy, using a quasi-maximum likelihood estimator by means
of the Kalman filter.

From a Bayesian perspective, the work carried out by Martino (2007) and Martino et al.
(2011) introduced an estimation scheme based on the INLA methodology for the multivari-
ate case. As opposed to the univariate formulation, adopted in the vast majority of works
in which INLA is used, the multivariate model is capable of capturing a greater variety of
data characteristics, for example, the spillover volatility effect, in which knowledge about
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one asset could help make predictions about another. Martino (2007) proposed a bivariate
extension, written as

rt = Ωtεt, εt ∼ N(0, Σε) (5)

ht = ν + Φ(ht−1 − ν) + ηt, ηt ∼ N(0, Ση) (6)

where rt = {rt1, rt2} are the observed log-returns on t, εt = {εt1, εt2} and ηt = {ηt1, ηt2}
are bivariate noise terms and ht = {ht1, ht2} are the latent volatilities. Furthermore,

Φ =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
Ωt =

(
exp{h1t/2} 0

0 exp{h2t/2}

)
(7)

Ση =

(
1/τη1 ρη/√τη1 τη2

ρη/√τη1 τη2 1/τη2

)
Σε =

(
1 ρε

ρε 1

)
(8)

A generalization to larger dimensions was presented by Shapovalova (2021), who
noted that this methodology might lose some of its computational efficiency advantages
when applied to higher-order multivariate specifications.

Beyond the basic model, a variety of functional forms and specifications are possible,
each making different assumptions about the correlation between volatilities and imposing
distinct restrictions and parameterizations. Asai et al. (2006) identified and categorized
these variants into four groups: asymmetric models, time-varying correlation models,
factor models, and alternative specification models.

The first category of Multivariate Stochastic Volatility (MSV) models incorporates the
asymmetries observed in the behavior of asset returns. Specifically, it accounts for the
tendency for negative and positive variations to have different impacts on the volatility
of the series, a concept known as the leverage effect, first identified by Black (1976). This
phenomenon, which deals with a negative correlation between volatility and past returns
was introduced to the stochastic volatility context by Harvey and Shephard (1996) and
explored within the context of multivariate modeling by Danıelssonn (1998).

A second group of MSV models aimed to capture conditional correlations subject to
variations over time, relaxing the assumption of constant correlations assumed in Harvey
et al.’s (1994) basic model. One of the ways to do this, as proposed by Yu and Meyer (2006),
is to use a Fisher transform for the correlation parameter.

So far, the categories we have discussed have been primarily driven by the goal of
enhancing modeling flexibility rather than advancing computational efficiency in model
estimation. Factor models, on the other hand, are designed to provide more parsimonious
formulations with regard to the number of parameters involved in the problem. Asai et al.
(2006) classified this category of Multivariate Stochastic Volatility (MSV) models into two
types: multiplicative and additive models.

The first additive factor model can be traced back to Harvey et al. (1994) and was later
expanded upon by Jacquier et al. (1995). This model begins with a factor-based structure for
the (m × m) covariance matrix and k active factors. The problem is formulated as follows:

rt = ∆Ft + Σ− 1
2 ϵt (9)

Ft ∼ Nk(0, Ht) (10)

log hit = αi + δi log hi,t−1 + σivvt, (11)

In these equations, Ht = diag(ht), with ht denoting the k univariate hit processes, and
∆ = (∆1, . . . , ∆k) represents a (m × k) matrix of factor loadings. The error term ϵt follows a
normal distribution with zero mean and an identity covariance matrix of order m, with pa-
rameters given by Σ. The authors estimated this model using Bayesian techniques, breaking
down the posterior distribution π(F, ∆, ω|y) into conditional distributions and employing
a Metropolis–Hastings Markov Chain Monte Carlo (MCMC) sampling algorithm.
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When compared to the basic MSV model by Harvey et al. (1994), the additive factor
model stands out due to the fact that the number of parameters to be estimated grows
only linearly as more return series are introduced into the analysis, i.e., as the dimension
increases. In fact, Asai et al. (2006) demonstrated that, for the one-factor case, there are
a total of 5m − 1 parameters, where m represents the number of series. This makes the
estimation of multivariate stochastic volatility models using methods involving simulation
and chain convergence less computationally expensive.

Another aspect of factor models that moved in the same direction is the class of
multiplicative models, partly inspired by the work of Quintana and West (1987). According
to Asai et al. (2006), this class of MSV model involves separating log-returns into two
components: a noise vector and a common factor.

Asai et al. (2006) also discusses alternative specifications. The authors enumerate four
alternative formulations for MSV models which rely on exponential matrix transformation,
Cholesky decomposition, Wishart autoregressive process, and the observed range. In
the first two cases, the motivation is to guarantee the construction of positive matrices
defined for the covariance Σt, through the attribution of matrix exponential properties and
Cholesky decomposition.

Another important category of approximate Bayesian inference methods is rooted in
Variational Bayes (VB) techniques Tan and Nott (2018). VB frames the task of estimating
the posterior distribution as an optimization problem, approximating the posterior density
with a simpler distribution characterized by unknown parameters. This simplification
often takes the form of a multivariate Gaussian distribution with an unknown mean and
covariance matrix. Such an approach offers substantial computational advantages over
traditional Markov Chain Monte Carlo (MCMC) methods. Moreover, VB can be integrated
with sequential methods, facilitating parameter and latent state updates as new data points
are observed. The application of Variational Bayes in the estimation of factor Stochastic
Volatility (SV) models has been proposed in Gunawan et al. (2021), showcasing notable
improvements in computational efficiency along with favorable fitting and prediction
performance compared to MCMC-based approaches.

2.3. Bayesian Estimation and Integrated Nested Laplace Approximations (INLA)

In parallel with frequentist developments, several Bayesian estimation techniques have
been proposed, capitalizing on the flexibility of Bayesian inference methods when dealing
with models that include latent variables treated as additional parameters. However,
MCMC approaches can encounter typical challenges such as slow chain convergence,
owing to the high correlation among components of the latent volatility variable.

In addition to convergence issues, MCMC can also suffer from computational ineffi-
ciencies when applied to very large samples. Martino et al. (2011) suggested an alternative
approach for estimating stochastic volatility models using integrated nested Laplace ap-
proximations (INLA), a methodology originally introduced by Rue et al. (2009). As long as
models can be approximated or represented as Gaussian Markov random fields (GMRF)
(see Rue and Held (2005) for the definition and properties of GMRF) both parameters and
latent factors can be estimated. The advantage of this approach lies in its utilization of
analytical calculations (eliminating the need for simulations) with sparse matrices and
operations that are easily parallelizable.

As demonstrated by Rue et al. (2009), through conditional representation, the precision
matrix Q is typically sparse, with only O(n) of the n2 entries being non-zero in most cases.
Furthermore, it can be factorized as LLT , where L represents the lower Cholesky triangle,
inheriting the sparsity of the precision matrix.

Starting with the standard model of stochastic volatility, which includes the equations
for rt and ht, the proposition of Martino et al. (2011) is extended by assigning a Gaussian
prior distribution to the mean parameter µ, with zero mean and known variance. Conse-
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quently, the standard model can be interpreted as a latent Gaussian model in which the
latent field x is defined as:

x = {h1, ..., hn, µ} ∼ N(0, Q−1(θ1)), (12)

and θ1 = {τh, ϕ} are parameters behind volatility. The latent Gaussian field determined
by |x| is partially observed through the conditionally independent data set r = {r1, ..., rn},
where n denotes the number of observations, with likelihood

π(r|x, θ2) =
n

∏
t=1

π(rt|h, θ2), (13)

and θ2 are process parameters εt ∼ N(0, 1). Considering θ = {θ1, θ2}, stochastic volatility
models can be evaluated by calculating the marginal distributions

π(x, θ|r) ∝ π(θ)π(x|θ)
n

∏
t=1

π(rt|ht, θ). (14)

The INLA approach can then be used to perform inference on marginals of π(x, θ|r),
allowing accurate approximations for π(ht|r), π(µ|r) and π(θj|r), due to its Gaussian
approximation for densities given by the form

π(x|r, θ) ∝ exp{−1
2

xTQx + ∑ gt(ht)}, (15)

where gt(ht) = log π(rt|ht, θ). In the context of stochastic volatility models and the formu-
lations discussed by Martino et al. (2011), the precision matrix Q is tridiagonal, in addition
to having the last row and the last column with non-zero values. Still, the vast majority of
entries in this matrix continue to consist of zeros, so that Q is sparse.

Given this structure, the model can be estimated using the INLA methodology pro-
posed in Rue et al. (2009). For space reasons, we do not present the INLA methodology, but
details can be obtained in Rue et al. (2009) and recent developments in the implementation
of the method in Van Niekerk et al. (2023)

In general, there is a consensus regarding the speed advantages of INLA over MCMC,
as explicitly measured in studies like Rue et al. (2009) and Chaim and Laurini (2019). In the
former work, taking into account code compilation time, INLA was approximately eight
times faster in each estimation compared to MCMC. In the latter study, which analyzed
the computational cost of SV models, the computation gains were on the order of 25 times,
marking a substantial difference. In terms of estimation accuracy, Ehlers and Zevallos (2015)
found improvements associated with the INLA method, particularly when calculating
a Value-at-Risk (VaR) metric, comparing it with a quasi-maximum likelihood estimator.
Similarly, Chaim and Laurini (2019) investigated the method’s accuracy for series with long
memory, this time in comparison to traditional MCMC techniques, and found comparable
performance between the two.

Furthermore, there has been a growing body of literature focusing on the practical
applications of the INLA methodology, with an emphasis on implementations in the R
language, using the R-INLA package1. Among these contributions, Ruiz-Cárdenas et al.
(2012) introduced a general computational approach for Bayesian inference using R-INLA
for time series models, expanding the range of dynamic models accessible through the tool.
Martins et al. (2013) documented some of the functionalities and resources added to the
package since its initial versions. Specifically, within the context of stochastic volatility models,
Ravishanker et al. (2022) has provided practical estimation guides and code examples for
execution in R, covering modeling with both Gaussian errors and heavy-tailed distributions,
such as Student’s t distribution.
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3. Proposed Model and Methodological Aspects

Seeking to achieve the objectives of establishing a feasible and efficient way of es-
timating multivariate stochastic volatility models, we adapt the methodology based on
integrated nested Laplace approximations for the case of multifactor formulations. In prin-
ciple, such models can be built using formulations close to the univariate case, increasing
the number of observation (state) equations and incorporating latent factor structures.

3.1. Benchmark and Starting Point

The work starts from a specification similar to that presented by Kastner et al. (2017)
and Hosszejni and Kastner (2021), which served as a benchmark model. The authors build
a structure for efficient estimation via MCMC of a model with m series and k factors. They
are defined as

rt|β, Λ, ft, Σ̄t ∼ Nm(β + Λft, Σ̄t) (16)

ft|Σ̃t ∼ Nr(0, Σ̃t) (17)

β = (β1, . . . , βm)′ is a vector with the mean parameters, ft = ( f1t, . . . , fkt)
′ is a vector of

latent factors and Λ is a m × k matrix of factor loadings. The following diagonal covariance
matrices are also assumed:

Σ̄t =

exp{h̄1t} . . . 0
...

. . .
...

0 . . . exp{h̄mt}

, Σ̃t =

exp{h̃1t} . . . 0
...

. . .
...

0 . . . exp{h̃rt}

, (18)

h̄it ∼ N (µ̄i + ϕ̄i(h̄i,t−1 − µ̄i), σ̄2
i ), i = 1, . . . , m, (19)

h̃jt ∼ N (µ̃j + ϕ̃j(h̃j,t−1 − µ̃j), σ̃2
j ), j = 1, . . . , r. (20)

For identification reasons concerning the time-varying covariance matrix2 (Σt), we
impose some restrictions on parameters, such as setting the level of log-variances to zero,
that is, µ̃j = 0 (j = 1, . . . , r). In addition, Kastner et al. (2017) frees the loading matrix Λ, in
order to identify only sign changes between its elements. See Frühwirth-Schnatter et al.
(2023) for further discussion of identification structures in factor models.

To proceed with the estimation, Kastner et al. (2017) defined the prior distributions
for the mean parameters, unobserved variances and factor loadings. In the case of β,
Gaussian distributions are chosen, with β j ∼ N(bβ, Bβ), where bβ is a vector of means
and Bβ is a variance-covariance matrix. Regarding the latent variance parameters, notably
the persistence of the series (ϕ̄i and ϕ̃j), a prior of type (ϕ + 1)/2 ∼ B(aϕ, bϕ), that is, the
Beta distribution. The choice is justified by the objective of avoiding non-stationarity in the
variance process, which implies limiting ϕ to the interval (−1, 1). According to Hosszejni
and Kastner (2021), since financial series tend to present very persistent variances, with
values of ϕ close to 1, it is possible to establish an informative prior distribution by choosing
aϕ ≥ 5 and bϕ ≈ 1.5, such that higher values for ϕ would be more likely.

The distributions for the log-variance volatility, σ, and its initialization parameter, h0,
are also specified. The gamma and normal distributions are used, respectively, in such a
way that:

σ2 ∼ G(1
2

,
1

2Bσ
) (21)

h0 ∼ N(µ,
σ2

(1 − ϕ2)
), (22)

assuming h stationary, an assumption that can be relaxed by defining a prior of the type
h0 ∼ N(µ, Bh), with Bh representing a constant variance. Finally, regarding the prior behind
the loading matrix Λ, independent and zero-centered Gaussian distributions are adopted
(Λij ∼ N[0, BΛ]), and are an important point for identifying the factor variance, as reported
by Kastner et al. (2017).
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The estimation of parameters through MCMC sampling employs a Metropolis–Hastings
scheme, bolstered by interweaving strategies from ASIS3, aimed at mitigating issues related to
slow chain convergence. Practical implementation can be carried out in the R programming
language using the factorstochvol package (See Hosszejni and Kastner 2021). This package
facilitates the easy configuration of hyperparameters, model identification structure, and
sampler adjustments, as well as enabling predictions within and outside the observed sample.
The sampler is coded in C++, offering superior execution speed for the draw stage (draws),
which is typically computationally intensive.

From a theoretical standpoint, Kastner et al. (2017) presented an algorithm for condi-
tional MCMC sampling in four steps, commencing with the selection of initial values for µi,
ϕi, σi, Λ, h, and f. In the first stage, the m idiosyncratic variances hi,• = (hi0, . . . , hiT)

′ are es-
timated, still in the univariate context, alongside the parameters µi, ϕi, and σi (i = 1, . . . , m).
Similarly, this process is repeated for the r factor variances, along with their parameters
ϕm+j and σm+j, with j = 1, . . . , R. The second step entails sampling for each row Λi,• of
the factor loadings matrix, beginning with Λi,•|f, yi,•, hi,•. It is important to note that this
step involves estimating m multivariate regressions, each with dimension r̃ and based on T
observations, where r̃ represents the number of unconstrained elements in Λi,•.

Following this initial sampling process, new samples are drawn for each element on
the main diagonal of Λ using the interweaving approach, either in relation to the equation
of state for the factors or concerning latent volatilities. The first case is referred to as shallow
interweaving, while the second is termed deep interweaving, as defined in Kastner and
Frühwirth-Schnatter (2014). Both strategies aim to accelerate the convergence of Markov
chains by re-sampling the parameters conditioned on latent variables of the model in a
reparametrized version of the model, with deep interweaving generally preferred in most
cases. Finally, the last step of the algorithm involves drawing samples for ft from ft|Λ, yt, ht
(t = 1, . . . , T), entailing the estimation of an additional T r-dimensional multivariate
regressions, each with the number of observations equal to m, representing the number of
series in the analysis.

It is worth noting that in step 1, m + r univariate stochastic volatility models are used,
which Kastner et al. (2017) combine with two other observation equations:

log(yit − Λi,•ft)
2 = hit + log ε2

it, i = 1, . . . , m (23)

log f 2
jt = hm+j,t + log ξ2

jt, j = 1, . . . , r, (24)

and εit and ξ jt are, respectively, innovation terms associated with yt and ft. The iteration
of the algorithm then results in samples from the joint posterior distribution, with the
discarding of the burn-in samples in order to avoid any influences from initial values.

3.2. Proposed Formulation

In the context of this study, an alternative formulation has been chosen, where the
factor loadings are directly estimated within the latent volatility equations. In general
terms, the proposed model, featuring m series and k factors, is represented as follows:

rt = Ωtεt, εt ∼ N(0, Σε) (25)

σt = α + γht + ηt, ηt ∼ N(0, Ση), (26)

where σt = (σ1t, . . . , σmt)′ represents a vector containing the m log volatilities, α =
(α1, . . . , αm)′ denotes a mean parameter, and γ is a m× k matrix of factor loadings. Diagonal
covariance matrices Σε and Ση are permitted, indicating independent stochastic volatility
processes. As for the factor log volatilities, denoted by ht = (h1t, . . . , hkt)

′, we have:

ht = Φ(ht−1) + ξt, ξt ∼ N(0, Σh), (27)
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where Φ = diag(ϕ1, . . . , ϕk) represents a diagonal matrix of persistence parameters, and
thus a univariate first-order autoregressive structure for each factor. The relationship be-
tween the return equations, represented by the vector rt = (r1t, . . . , rmt)′, and the volatilities
for each asset is expressed through the matrix Ωt, which is of size m × m:

Ωt =


exp{σ1t/2} 0 . . . 0

0 exp{σ2t/2} . . . 0
...

...
. . .

...
0 0 . . . exp{σmt/2}

. (28)

The selected functional forms maintain the desirable properties of the modeling
approach using INLA. As argued by Martino (2007), there is a possibility of losing the
computational advantage associated with the method in its original form, due to the curse
of dimensionality. Therefore, more parsimonious models can help mitigate inefficiencies
arising from the dimensionality increase, potentially yielding benefits from increased
information compared to univariate modeling. Furthermore, these proposed models can
be implemented using the R-INLA package and its existing functionalities.

For the estimation process, we begin with two fundamental identification restrictions:
the number of factors must be less than or equal to the number of return series (k ≤ m), and
for one of these series, the load parameters (γij) are fixed on unitary values. Following the
implementation procedure of the INLA methodology, the proposed model is reinterpreted
as a Gaussian Markov random field model in three stages, as adopted by Martino (2007).
In the first stage, a likelihood model is defined:

π(r|σ, h, θ1) = ∏ π(rt|σt, ht, θ1), (29)

where θ1 is a vector of hyperparameters related to volatility.
Next, the latent fields referring to σt and ht are modeled. Then we have:

σt |ht, α, θ2 ∼ N(α + γht, Ση) (30)

ht|ht−1, θ3 ∼ N(Φht−1, Σh), (31)

with θ2 and θ3 as hyperparameter vectors associated with their respective covariance
matrices (Ση and Σh), Gaussian prior distributions are assumed for the mean parameters
(α), centered on zero. Consequently, as demonstrated by Martino (2007), the average
volatility can be incorporated into the latent field by calculating the following density:

π(σ, α|θ1) = π(α)
T

∏
t=1

π(σ|ht, θ1) ∝ |Q|1/2 exp
[
−1

2
(σ′, α′)Q(σ′, α′)′

]
, (32)

where Q represents the precision matrix, and (σ′, α′) denotes the latent field for volatility.
The sparsity of Q offers computational efficiency, a property explored in greater detail by
Rue and Held (2005) and Rue et al. (2009).

In the final stage, a prior π(θ) is established for the hyperparameter vectors θ =
(θ1, θ2, θ3). In this context, the study assumes distributions in line with the proposals by
Martino (2007) wherever applicable, particularly regarding parameters related to the factor
structure. However, for compatibility with the R-INLA package, the precision parameter (τ)
is handled in terms of its natural logarithm (log-precision), representing a non-informative
prior for the precision, and the persistence parameter (ϕ) is transformed using a function
defined between −1 and 1, as follows:

ln(τk) ∼ logGamma(1, 0.00005), (33)

ln
(

1 + ϕk
1 − ϕk

)
∼ N(0, 0.15), (34)
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the prior distributions of the other parameters are Gaussian. Given the latent field x =
(σ′, α′), the estimation via INLA involves building an approximation for π(xt|r) from
π(θ|r) and from π(xt|θ, r).

To obtain the joint posterior distribution in relation to the hyperparameters, we start
from the following Gaussian approximation for the complete conditional density of x:

π̃G(x|r, θ) = K̄ exp
{
−1

2
(x − ν)′[Q + diag(C)](x − ν)

}
, (35)

K̄ is a normalization constant, ν corresponds to the mode of π(x|r, θ) and diag(C) is a band
matrix with width equal to the number of series m, due to the Markov structure derived
from the conditional density, which can be written as:

C =


C1 0 . . . 0
0 C2 . . . 0
...

. . .
...

0 . . . CT

, (36)

where Ct contains the 2d order terms in the Taylor expansion ∑ log π(rt|xt, θ1) around ν
in the Hessian. In this way, the joint posterior for θ can be approximated through the
following relationship:

π̃(θ|r) ∝
π(r|x, θ)π(x|θ)π(θ)

π̃G(x|θ, r)

∣∣∣∣
x=ν(θ)

. (37)

The approximation for π(xt|θ, r), on the other hand, follows a Gaussian strategy but
can take advantage of the results obtained in the evaluation stage π̃(θ|r). In particular,
we take π̃G(x|θ, r) as the mean parameter for the distribution, leaving only the values for
the marginal variances, represented by σ2

G. The calculation is performed according to the
recursive methods proposed by Rue and Martino (2007), allowing the approximation to be
given by:

π̃G(x|θ, r) = N(xt; ν[θ], σ2
G[θ]). (38)

It is worth pointing out, however, that, according to the authors, this approximation
is not accurate in some situations, especially when there are extreme values for θ. Its
merit lies in constituting a faster alternative to other more precise ways of performing the
calculation, which is especially interesting in the context of models in which dimensionality
is a relevant issue.

Finally, π(xt|r) can be approximated, once π(θ|r) and pi(xt|θ, r), through a numerical
integration of the type:

π̃(xt|r) = ∑
n

π̃(xt|θn, r)π̃(θn|r)∆n, n ∈ {1, . . . , N}, (39)

to be performed on a set of points (grid) for θ, with the weights ∆n being equal to 1
for equidistant points. However, in order to speed up the approximation process, we
adopt an approach based on the empirical Bayes procedure, in which only one integration
point equivalent to the posterior mode of hyperparameters is used. In general terms, the
term π̃(xt|θn, r) is replaced by π̃(xt|θ∗, r), with θ∗ being the mode of π̃(θ|r). According to
Martino (2007), the approach is highly accurate when the distribution of the hyperparameter
vector conditional on the log-returns is regular.

3.3. Practical Implementation

From the perspective of practical implementation, the R-INLA package allows more
efficient strategies to be defined from a computational point of view with the help of the
argument control.inla, which controls the way in which numerical approximations and
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integrations are computed. Among the options of interest for the work, the integration
approach via the empirical Bayes procedure is achieved through the command control.inla
= list(int.strategy = “eb”), while the Gaussian approximation for π(xt|θ, r) is chosen by
the argument strategy = “gaussian”. The complete list of arguments considered in the
estimation can be seen in the code used:

inla(
formula,
family = rep("stochvol", m),
data = data,
control.inla = list(stupid.search = TRUE,

reordering = "metis",
strategy = "gaussian",
int.strategy = "eb"),

control.predictor = list(compute = TRUE)
)

In addition to the settings already mentioned regarding the strategies for obtaining
approximations, one more argument is defined, referring to the reordering algorithm
chosen for the precision matrix. The option is to use the METIS implementation4, which
aims to evaluate sparse matrices efficiently, both in terms of storage needs and processing
capacity. The fact that METIS reordering is perfectly suited to parallelization stands out,
reinforcing the efficiency aspect of matrix operations.

The model is estimated using a multiple likelihood structure, with the same config-
uration for vectors and indices, regardless of the number of factors taken into account in
the analysis. Assuming a general case involving m series, k factors and n observations for
each return series we have, as a starting point, the creation of a return matrix of dimensions
(m + 1)n × m, organized as follows:

R =



NA NA . . . NA
...

...
...

NA NA . . . NA
r1,1 NA . . . NA

...
...

...
rn,1 NA . . . NA
NA r1,2 . . . NA

...
...

...
NA rn,2 . . . NA

...
...

...
NA NA . . . r1,m

...
...

...
NA NA . . . rn,m



, (40)

rt,i refers to the log-return of asset i, for the period t, and null entries in the matrix are
denoted by NA. It should also be noted that the first n lines of R correspond to null values,
such that the first entry referring to a return, r1,1 , appears in line n + 1 of the matrix, since
in this representation the first n lines of R represent the unobserved values of the latent
factors, treated as missing values and estimated by the Bayesian inference procedure. This
formulation implies that the latent factors will be associated with all observed series via
the factor loadings structure as copies weighted by the parameters representing the factor
loadings of these unobserved variables.
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Three other groups of indices are constructed, in parallel, with the purpose of estimat-
ing the fixed and random effects of the linear dynamic model. Regarding the fixed effects,
we have the following m vectors:

a1 = (NA, . . . , NA︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, NA, . . . , NA︸ ︷︷ ︸
(m−1)n

)′ (41)

a2 = (NA, . . . , NA︸ ︷︷ ︸
n

, NA, . . . , NA︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, NA, . . . , NA︸ ︷︷ ︸
(m−2)n

)′ (42)

...

am = (NA, . . . , NA︸ ︷︷ ︸
n

, NA, . . . , NA︸ ︷︷ ︸
(m−1)n

, 1, . . . , 1︸ ︷︷ ︸
n

)′, (43)

where the first n elements are left as null values and, for each vector ai (i ∈ {1, . . . , m}), a
sequence of 1’s with dimension n and starting from element number ni + 1. Furthermore,
other k identical indices associated with the evolution of the factors are added and initialized
as follows:

f1 = (1, . . . , n, NA, . . . , NA︸ ︷︷ ︸
m.n

)′ (44)

...

fk = (1, . . . , n, NA, . . . , NA︸ ︷︷ ︸
m.n

)′, (45)

the first n elements being the sequence from 1 to n, in a structure that is repeated for all fj,
with j = {1, . . . , k}. Finally, the random effects with respect to log variances are captured
by a set of mk vectors, constructed as:

cf1,j = (NA, . . . , NA︸ ︷︷ ︸
n

, 1, . . . , n, NA, . . . , NA︸ ︷︷ ︸
(m−1)n

)′ (46)

cf2,j = (NA, . . . , NA︸ ︷︷ ︸
n

, NA, . . . , NA︸ ︷︷ ︸
n

, 1, . . . , n, NA, . . . , NA︸ ︷︷ ︸
(m−2)n

)′ (47)

...

cfm,k = (NA, . . . , NA︸ ︷︷ ︸
n

, NA, . . . , NA︸ ︷︷ ︸
(m−1)n

, 1, . . . , n)′, (48)

Even if it is true that for the same index i of assets, cfi,j = cfi,s, ∀j, s ∈ {1, . . . , k}, it is
possible to use the same definition of indices for any number k ≤ m of factors as long as
this last vector structure is created according to the case in which there are as many factors
as series in the analysis (m = k), taking the number of vectors to m2. An adjustment would
be necessary, however, in the sense of manually assuming that the factors disregarded in
the estimation are set to zero, that is, that they have a log-precision set at a high value and
their persistence parameter is fixed and equal to zero. See Ruiz-Cárdenas et al. (2012) for
details on this structure.

Once the necessary vectors have been constructed, the formula that will enable the
estimation of the model is written based on the return matrix and the indices created. In the
context of the R-INLA package, terms related to random effects are indicated by the function
f(), which takes as arguments the respective index vector, a string of characters informing
the model that describes it and additional specifications about parameters. Taking the
general case where m = k, the formula can be written as:
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formula = R ~ -1 + a_1 + ... + a_m +
f(f_1, model="ar1",constr=T) + ... +
f(f_m, model="ar1",constr=T) +
f(cf_1.1, copy="f_1", fixed=T, initial=1) +
f(cf_2.1, copy="f_1", fixed=F, hyper=list(...)) + ... +
f(cf_m.1, copy="f_1", fixed=F, hyper=list(...)) + ... +
f(cf_m.m, copy="f_m", fixed=F, hyper=list(...))

In this formulation, the models behind the indices of each log-volatility vector are
constructed as copies of the structure established for a vector of indices associated with the
factors through the attribute copy, which allows for the inclusion of a shared component
between more than one linear predictor. Furthermore, it is observed that the models for
the vectors of the group cfi,j have, for each factor j, one of its terms (the first, in this case)
presenting fixed hyperparameters, respecting restrictions imposed on factor loadings. For
the group of fj, it is necessary to define the argument “model = “ar1””, which determines a
first-order autoregressive structure for the factor log variances.

4. Results

In this section, we analyze the empirical results of estimating the proposed multivariate
model, considering specifications with one to four latent factors, using the representation
given by the Equations (25) and (26). We compare these results with models estimated
using Markov Chain Monte Carlo (MCMC) using the multifactor representation proposed
by Kastner et al. (2017) and also with the results of a univariate-based specification. The
comparison is based on both in-sample and out-of-sample fit measures, as well as model
selection metrics using information criteria.

4.1. Data Description

The empirical part of the work makes use of daily data for stock exchange index
quotes5, over the same time interval. The log-returns for indices representing different
markets and from different parts of the globe were selected as variables, namely: Dow Jones
Industrial (United States), Ibovespa (Brazil), Índice de Precios y Cotizaciones (Mexico),
FTSE 100 (England) and SSE Composite Index (China). In Table 1, these indices are listed,
and abbreviations are given to them in order to facilitate their identification and denotation.

Table 1. Market index abbreviations.

Abbreviations Corresponding Index

DJI Dow Jones Industrial Average
BOV Bovespa Index
IPC S&P/BMV Índice de Precios y Cotizaciones
LSE FTSE 100
SSE Shanghai Stock Exchange Composite Index

The analysis covers the daily closing returns of each index from January 2010 to
February 2023, representing a sample of 2737 observations for each variable. This time
span ensures a sufficient volume of data for the number of series analyzed, facilitating an
adequate assessment of the proposed model in terms of computational efficiency. Figure 1
displays the index returns between the specified dates.

The selected indices are widely used in the global financial market and represent
various regions worldwide. Additionally, they consider the potential for interaction among
them in terms of contagion and spillover effects on the price volatility of traded assets.
For indices like Ibovespa and Dow Jones Industrial, Achcar et al. (2012) highlight the
significance of their relationship in establishing investment references for emerging markets.

Table 2 provides descriptive statistics associated with the log returns of the selected
indices, including mean, median, standard deviation, skewness, kurtosis, and the number
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of observations. A Jarque–Bera test is also conducted, with the computed values presented
in the table. In all cases, the null hypothesis of Gaussian distribution is rejected at a
significance level of 1%.
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Figure 1. Returns of the analyzed indices.

Table 2. Descriptive statistics of market indices.

DJI BOV IPC LSE SSE

Mean 0.042 0.017 0.018 0.012 0.0001
Median 0.074 0.039 0.022 0.055 0.041
Standard Deviation 1.660 0.017 1.045 1.109 1.406
Skewness −0.509 −0.496 −0.366 −0.606 −0.594
Kurtosis 14.763 12.315 6.343 12.450 9.175
Jarque-Bera 15,894 ** 10,005 ** 1335 ** 10,349 ** 4508 **
Sample Size 2737 2737 2737 2737 2737

Note: ** represents p-value < 0.01.

4.2. Empirical Analysis

To analyze the results obtained from the formulation of stochastic volatility models
based on the proposed multifactor structure, we examine various specifications for the
latent factor structure. We initiate with a structure featuring only one factor and gradually
expand the latent factor structure until we reach a model with four factors, using the model
represented by Equations (25) and (26) with varying numbers of latent factors. Additionally,
we estimate a model based on univariate stochastic volatility (SV) models, which is based
on assuming that each observed series only depends on a single latent factor that is unique
to this series, but where we estimate these five univariate SV processes jointly using INLA.
We compare the in and out of the sample performance of the multivariate factor structure
proposed by Kastner et al. (2017) using MCMC methods.
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Tables 3–6 provide a summary of the Bayesian posterior distribution of estimated
parameters using INLA for the models with one to four latent factors, while Table 7 presents
the results for the specification based on univariate SV models. In each table, we present the
mean, standard deviation, quantiles at 0.25, 0.5, and 0.975, and the mode of the posterior
distribution for each model parameter. Furthermore, we include the marginal likelihood
(MLIK), the Deviation Information Criterion (DIC), and the Widely Applicable Information
Criterion (WAIC), also known as the Watanabe–Akaike information criterion, for each
model. The DIC and WAIC are information criteria frequently used in the context of
Bayesian estimation, being a generalization of the Akaike information criterion (AIC).
See Ando (2007); Spiegelhalter et al. (2014) for the definition and properties of DIC and
Watanabe (2010) for the WAIC.

Table 3. Posterior distribution of estimated parameter—stock index data—Bayesian INLA method—
one factor.

Mean SD 0.025q 0.5q 0.975q MODE

h1
τ1 0.755 0.058 0.647 0.753 0.876 0.748
ϕ1 0.705 0.030 0.644 0.706 0.762 0.706

DJI α1 −0.534 0.031 −0.594 −0.534 −0.474 −0.534
γ1,1 1.000

BOV α2 0.641 0.029 0.584 0.641 0.699 0.641
γ2,1 0.609 0.030 0.549 0.609 0.666 0.611

IPC α3 −0.292 0.030 −0.351 −0.292 −0.234 −0.292
γ3,1 0.703 0.031 0.641 0.703 0.765 0.703

LSE α4 −0.387 0.030 −0.446 −0.387 −0.328 −0.387
γ4,1 0.859 0.033 0.794 0.858 0.923 0.858

SSE α5 0.337 0.031 0.275 0.337 0.398 0.337
γ5,1 0.706 0.036 0.635 0.705 0.777 0.705

MLIK −20,277.92 DIC 39,490.52 WAIC 39,673.61
Note: hi denotes the latent factor i, τi denotes the marginal precision for the factor hi , ϕi the persistence parameters
for this factor and γk,i denotes the factor loading for the factor i for the series k.

Table 4. Posterior distribution of estimated parameter—stock index data—Bayesian INLA method—
two factors.

Mean SD 0.025q 0.5q 0.975q Mode

h1
τ1 0.743 0.054 0.641 0.741 0.853 0.740
ϕ1 0.688 0.039 0.606 0.690 0.760 0.693

h2
τ2 22.435 4.464 15.145 21.933 32.647 20.859
ϕ2 0.980 0.004 0.971 0.980 0.987 0.981

DJI
α1 −0.569 0.031 −0.629 −0.569 −0.509 −0.569

γ1,1 1.000
γ1,2 1.000

BOV
α2 0.630 0.029 0.572 0.630 0.687 0.630

γ2,1 0.615 0.031 0.553 0.615 0.676 0.616
γ2,2 0.415 0.145 0.138 0.412 0.708 0.399

IPC
α3 −0.340 0.030 −0.399 −0.340 −0.281 −0.340

γ3,1 0.753 0.035 0.684 0.753 0.823 0.753
γ3,2 0.019 0.172 −0.324 0.021 0.353 0.028

LSE
α4 −0.405 0.030 −0.464 −0.405 −0.346 −0.405

γ4,1 0.840 0.043 0.755 0.840 0.926 0.840
γ4,2 1.139 0.161 0.824 1.138 1.459 1.133
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Table 4. Cont.

Mean SD 0.025q 0.5q 0.975q Mode

SSE
α5 0.256 0.029 0.199 0.256 0.313 0.256

γ5,1 0.293 0.050 0.194 0.293 0.392 0.293
γ5,2 3.521 0.203 3.126 3.519 3.928 3.511

MLIK −20,086.77 DIC 39,045.88 WAIC 39,131.66
Note: hi denotes the latent factor i, τi denotes the marginal precision for the factor hi , ϕi the persistence parameters
for this factor and γk,i denotes the factor loading for the factor i for the series k.

Table 5. Posterior distribution of estimated parameter—stock index data—Bayesian INLA method—
three factors.

Mean SD 0.025q 0.5q 0.975q Mode

h1
τ1 54.085 13.234 32.795 52.497 84.573 49.422
ϕ1 0.983 0.005 0.971 0.984 0.992 0.985

h2
τ2 2.851 0.203 2.467 2.847 3.264 2.842
ϕ2 0.713 0.056 0.593 0.716 0.813 0.721

h3
τ3 111.147 43.714 52.792 102.427 221.472 86.726
ϕ3 0.969 0.013 0.937 0.971 0.988 0.975

DJI

α1 −0.585 0.030 −0.644 −0.585 −0.526 −0.585
γ1,1 1.000
γ1,2 1.000
γ1,3 1.000

BOV
α2 0.592 0.029 0.536 0.592 0.649 0.592

γ2,1 0.009 0.478 -0.957 0.018 0.925 0.055
γ2,2 1.185 0.100 0.990 1.184 1.385 1.180
γ2,3 3.989 0.484 3.094 3.971 4.995 3.888

IPC

α3 −0.338 0.029 −0.396 −0.338 −0.281 −0.338
γ3,1 −0.544 0.376 −1.306 −0.536 0.173 −0.503
γ3,2 1.476 0.086 1.310 1.475 1.650 1.469
γ3,3 1.282 0.369 0.579 1.275 2.031 1.242

LSE

α4 −0.413 0.030 −0.471 −0.413 −0.355 −0.413
γ4,1 1.440 0.250 0.947 1.440 1.931 1.441
γ4,2 1.686 0.096 1.498 1.685 1.877 1.683
γ4,3 −0.100 0.363 −0.859 −0.085 0.568 −0.016

SSE

α5 0.247 0.029 0.191 0.247 0.303 0.247
γ5,1 5.178 0.560 4.093 5.172 6.297 5.147
γ5,2 0.654 0.133 0.397 0.652 0.921 0.645
γ5,3 2.789 0.524 1.780 2.781 3.843 2.747

MLIK −20,058.90 DIC 38,917.84 WAIC 38,972.25
Note: hi denotes the latent factor i, τi denotes the marginal precision for the factor hi , ϕi the persistence parameters
for this factor and γk,i denotes the factor loading for the factor i for the series k.

We initiated a comprehensive analysis, focusing on the overall model fit, which was
measured by marginal likelihood, and model fit was penalized by model complexity, as
measured by DIC and WAIC criteria. As expected, the marginal likelihood indicates a
better fit for the more complex models, with the model featuring four factors achieving
the highest value, calculated as −19,966.49. Additionally, it is worth noting that the model
with a single common factor obtains a marginal likelihood of −20,277.92, surpassing that
of the model based on univariate stochastic volatility (SV) models, which is calculated as
−20,513.56. This indicates that the common factor structure provides an advantage over
univariate SV models when considering this model fit criterion.
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Table 6. Posterior distribution of estimated parameter—stock index data—Bayesian INLA method—
four factors.

Mean SD 0.025q 0.5q 0.975q Mode

h1
τ1 12.430 6.381 4.313 11.046 28.697 8.742
ϕ1 0.986 0.007 0.969 0.988 0.995 0.990

h2
τ2 4.752 1.477 2.501 4.536 8.255 4.133
ϕ2 0.944 0.019 0.898 0.947 0.973 0.952

h3
τ3 82.015 39.479 31.571 73.512 182.888 59.412
ϕ3 0.969 0.010 0.945 0.970 0.984 0.973

h4
τ4 2.376 0.467 1.568 2.338 3.399 2.275
ϕ4 −0.000 0.058 −0.115 0.000 0.113 0.002

DJI

α1 −0.585 0.030 −0.644 −0.585 −0.526 −0.585
γ1,1 1.000
γ1,2 1.000
γ1,3 1.000
γ1,4 1.000

BOV

α2 0.559 0.030 0.501 0.559 0.617 0.559
γ2,1 0.127 0.400 −0.652 0.124 0.923 0.113
γ2,2 0.920 0.170 0.581 0.921 1.252 0.926
γ2,3 3.173 0.520 2.195 3.158 4.239 3.092
γ2,4 0.852 0.096 0.661 0.852 1.041 0.854

IPC

α3 −0.371 0.031 −0.431 −0.371 −0.311 −0.371
γ3,1 0.030 0.358 −0.679 0.032 0.732 0.037
γ3,2 1.333 0.207 0.923 1.334 1.738 1.337
γ3,3 1.330 0.773 −0.136 1.311 2.906 1.230
γ3,4 0.960 0.124 0.714 0.961 1.202 0.964

LSE

α4 −0.416 0.030 −0.475 −0.416 −0.357 −0.416
γ4,1 0.994 0.172 0.653 0.995 1.328 1.000
γ4,2 1.515 0.140 1.245 1.514 1.795 1.507
γ4,3 0.126 0.524 −0.889 0.120 1.173 0.097
γ4,4 0.986 0.132 0.723 0.988 1.242 0.994

SSE

α5 0.198 0.033 0.133 0.198 0.262 0.198
γ5,1 2.257 0.541 1.210 2.251 3.338 2.225
γ5,2 0.175 0.231 −0.280 0.175 0.631 0.174
γ5,3 2.789 0.524 1.780 2.781 3.843 2.747
γ5,4 0.778 0.194 0.393 0.778 1.157 0.782

MLIK −19,966.49 DIC 38,738.78 WAIC 38,766.12
Note: hi denotes the latent factor i, τi denotes the marginal precision for the factor hi , ϕi the persistence parameters
for this factor and γk,i denotes the factor loading for the factor i for the series k.

The DIC and WAIC information criteria also favor more complex models, with the
model featuring four latent factors emerging as the best model according to these two
criteria. It has DIC and WAIC values of 38,738.78 and 38,766.12, respectively. Even when ac-
counting for greater complexity in the model, models with more latent factors demonstrate
a superior fit.

To perform an in-sample disaggregated comparison for each analyzed series and to
verify the results of the adjustment of the multifactor models estimated by Markov Chain
Monte Carlo (MCMC) using the structure proposed in Kastner et al. (2017), we present
Table 8. The table includes the mean error (ME), root mean squared error (RMSE), and
mean absolute deviation (MAE) between the absolute value of each return series (taken
as a proxy for the true unobserved volatility) and the volatility estimated by the models
in our analysis. Bold values denote the best results for each measure in all analyses. We
consider the multifactor models with one to four latent factors using INLA estimation,
the models with one to four latent factors using MCMC estimation in the context of the
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factorial structure proposed in Kastner et al. (2017), and finally, the estimation based on
univariate SV models using INLA.

We observe a greater heterogeneity of results. In terms of mean error, the outcomes
suggest that specifications with two and three latent factors estimated using INLA perform
better for the first four series (DJI, BOV, IPC, and LSE). For SSE, a better result is obtained
using specifications with three and four factors estimated using MCMC.

Table 7. Posterior distribution of estimated parameter—stock index data—Bayesian INLA method—
univariate based.

Mean SD 0.025q 0.5q 0.975q Mode

DJI
α1 −0.432 0.030 −0.491 −0.432 −0.372 −0.432
τ1 0.880 0.108 0.686 0.873 1.112 0.859
ϕ1 0.940 0.011 0.918 0.941 0.960 0.941

BOV
α2 0.687 0.029 0.631 0.687 0.744 0.687
τ2 2.483 0.366 1.822 2.462 3.259 2.433
ϕ2 0.947 0.011 0.922 0.948 0.966 0.950

IPC
α3 −0.207 0.030 −0.265 −0.207 −0.149 −0.207
τ3 1.989 0.298 1.477 1.964 2.648 1.909
ϕ3 0.951 0.012 0.925 0.953 0.971 0.955

LSE
α4 −0.308 0.031 −0.368 −0.308 −0.248 −0.308
τ4 1.139 0.128 0.904 1.133 1.409 1.122
ϕ4 0.920 0.013 0.892 0.920 0.943 0.921

SSE
α5 0.267 0.029 0.209 0.267 0.325 0.267
τ5 1.429 0.255 0.997 1.406 1.996 1.359
ϕ5 0.973 0.007 0.956 0.974 0.985 0.975

MLIK −20,513.56 DIC 40,074.53 WAIC 40,321.50
Note: hi denotes the latent factor i, τi denotes the marginal precision for the factor hi , ϕi the persistence parameters
for this factor and γk,i denotes the factor loading for the factor i for the series k.

Table 8. In-sample error measures.

ME RMSE MAE

DJI INLA Univariate 0.16179 0.63807 0.47200
One Factor 0.12713 0.55916 0.41633
Two Factors 0.11568 0.53136 0.39540

Three Factors 0.11171 0.52809 0.39005
Four Factors 0.11539 0.52391 0.38893

MCMC One Factor 0.19101 0.65880 0.49337
Two Factors 0.18940 0.64406 0.47940

Three Factors 0.18913 0.64344 0.47912
Four Factors 0.19591 0.63696 0.47890

BOV INLA Univariate 0.27936 1.01011 0.78037
One Factor 0.21693 1.05141 0.77320
Two Factors 0.20624 1.03920 0.76373

Three Factors 0.49439 1.31151 0.90572
Four Factors 0.32892 1.02122 0.76642

MCMC One Factor 0.30308 1.01262 0.78455
Two Factors 0.30528 1.00775 0.78124

Three Factors 0.30382 1.00492 0.77968
Four Factors 0.31048 0.97835 0.77221
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Table 8. Cont.

ME RMSE MAE

IPC INLA Univariate 0.18642 0.64376 0.50878
One Factor 0.13233 0.61804 0.48149
Two Factors 0.11898 0.58556 0.45410

Three Factors 0.24431 0.72142 0.47428
Four Factors 0.17556 0.59656 0.43844

MCMC One Factor 0.19705 0.63481 0.50413
Two Factors 0.20154 0.63808 0.50714

Three Factors 0.20117 0.63447 0.50472
Four Factors 0.20492 0.63665 0.50711

LSE INLA Univariate 0.16986 0.66251 0.49167
One Factor 0.12472 0.62571 0.46429
Two Factors 0.11625 0.61862 0.45643

Three Factors 0.17439 0.63547 0.46184
Four Factors 0.22010 0.72893 0.47460

MCMC One Factor 0.22477 0.69420 0.52310
Two Factors 0.22524 0.69771 0.52726

Three Factors 0.22409 0.69629 0.52645
Four Factors 0.21856 0.67850 0.51148

SSE INLA Univariate 0.26609 0.97774 0.74471
One Factor 0.82887 2.43031 1.17799
Two Factors 6.13572 31.41839 6.52991

Three Factors 0.68351 1.98957 1.02639
Four Factors 0.29664 0.93203 0.71260

MCMC One Factor 0.29663 0.93203 0.71259
Two Factors 0.29666 0.92906 0.71075

Three Factors 0.26168 0.82650 0.61935
Four Factors 0.26077 0.82176 0.61520

Concerning the adjustment results using RMSE, Table 8 reveals that models estimated
using INLA with two factors exhibit the best performance for IPC and LSE. For BOV, the
estimation by MCMC with two factors is preferable. In the case of DJI, the best result is
achieved with the four-factor specification using INLA. For SSE, the four-factor model
using MCMC performs the best by this criterion.

The results using the MAE criterion follow a similar pattern. The model with two
factors estimated by INLA is selected as the best for BOV and LSE. For DJI and IPC, the
four-factor specification using INLA is favored, while the SSE series benefits the most from
the four-factor model estimated using MCMC.

To illustrate the fit of the multifactor models, we present Figures 2 and 3, displaying
the estimated volatility for the four series using the most general models based on four
latent factors. The gray line represents the absolute returns and the red lines the posterior
mean of fitted volatilities for INLA and MCMC methods. In general, we can observe that
the estimated volatility adequately tracks the movement in absolute returns, both in periods
of low and high market volatility.

Finally, we illustrate the temporal evolution of the estimated latent factors in Figure 4,
which shows the posterior mean of the latent factors for the model with four latent factors
(Table 6), and a credibility interval of 95% constructed using the 2.5% and 97.5% percentiles
of the posterior distribution of each latent factor. The black line represents the posterior
mean and red lines the 2.5% and 97.5% percentiles of the credibility interval. We can note
that the factors capture different persistence patterns, with factors 1, 2 and 3 associated with
persistence values close to one in the autoregressive structure of the process, and factor
four capturing shocks with almost zero persistence in the conditional volatility series.
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Figure 2. Volatilities estimated via INLA vs. absolute returns.
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Figure 3. Volatilities estimated via MCMC vs. absolute returns.
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Figure 4. Estimated factors—INLA with four factors.

4.3. Computational Cost

A relevant aspect to consider is the computational cost associated with each estimation.
Table 9 displays the elapsed time for estimation (in seconds) for each model for three sample
sizes with 500, 1000 and 2714 observations, the last value corresponding to the sample of
the analyzed data in the empirical section. Notably, INLA-based estimation demonstrates
a significantly reduced computational cost compared to MCMC estimation using the
algorithm and specification proposed by Kastner et al. (2017), especially for models with
fewer latent factors.

Table 9. Computational cost.

Time in Seconds

Sample Size 500 1000 2714
Univariate Factors—INLA 3.53 5.14 13.67
One Factor—INLA 2.56 5.59 8.22
Two Factors—INLA 7.78 12.00 41.64
Three Factors—INLA 13.94 33.08 75.58
Four Factors—INLA 19.46 100.47 269.68
One Factor—MCMC 38.12 75.76 197.90
Two Factors—MCMC 170.78 342.01 799.46
Three Factors—MCMC 194.30 391.87 923.77
Four Factors—MCMC 211.82 423.32 1036.11

In the larger sample size, for instance, for single-factor models, MCMC estimation
takes 14.47 times longer than INLA estimation in the large sample analysis. However,
this cost reduction becomes less pronounced for more complex models. In the case of
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models with four factors, the computational cost of MCMC estimation is approximately
3.84 times higher.

Comparing the sample sizes the computational cost of the INLA method appears to
grow faster with an increasing number of factors compared to the MCMC-based method,
but continues to be significantly lower in all analyses. It is essential to note that evaluating
the effective cost of MCMC estimation in real situations can be more complex, as it depends
on the convergence properties of the chains. In this experiment, we used chains of size
40,000, discarding the first 3500 samples. Still, for other models and sample sizes, the choice
of the number of MCMC samples may differ.

The elapsed times were measured on a server with the following configuration: an
Intel(R) Xeon(R) W-2265 processor with 24 threads running at 3.50 GHz and 128 GB of
RAM memory. We used INLA version 23.09.09 (built on 9 September 2023). An important
note is that we did not utilize the PARDISO sparse linear algebra library to speed up INLA
calculations due to licensing restrictions at the time of writing the article.

4.4. Out-of-Sample Volatility Forecasting

To assess the predictive performance of the factor models of stochastic volatility, we
conducted an out-of-sample forecast analysis, comparing the predictions of the factor
models with one to four factors and the univariate stochastic volatility (SV)-based model
estimated using INLA.

In this experiment, we generated out-of-sample predictions, forecasting one and five
steps ahead, for the last 22 observations in our sample. We did this by employing a rolling
sample approach, incrementing one observation at each step in the estimation sample.
As with the in-sample analysis, we report the mean error (ME), root mean squared error
(RMSE), and mean absolute error (MAE) between the predicted volatility values generated
by each model and the absolute values of each series, serving as a proxy for true unobserved
volatility, comparing the INLA and MCMC approaches.

Tables 10 and 11 provide a summary of the predictive results obtained in this analysis.
For the one-step-ahead forecast (Table 10), the results reveal a heterogeneous outcome
regarding the best model for this horizon. For DJI, the three-factor model is favored, and
for SSE, the four-factor model is chosen, both using the INLA approach. Remarkably, all
three criteria consistently select the best model for each series. The specification based on
univariate SV using INLA is chosen for IPC and LSE, while for BOV, the one-factor model
estimated using MCMC is selected.

In the case of the five-step-ahead forecast horizon, as presented in Table 11, the results
suggest a better performance of more complex models, with the exception of the LSE and
BOV series. Once again, the three criteria are consistent across all series, except for BOV.
The INLA-based four-factor model is selected for DJI, and SSE, while the three-factor model
using INLA is chosen for CPI. Conversely, the best model for LSE is based on a specification
relying on univariate SV models using INLA, and for BOV the univariate models using
MCMC are selected by the ME and MAE criteria, and the one-factor model using MCMC
by the MSE criterion.

We finish the analysis of the predictive performance with a comparison of the predic-
tive result for the multi-step forecasts for the last 22 observations in the sample without
the use of rolling samples, comparing the predictive densities using the Log-Predictive
Likelihood (Gelman et al. 2014), again comparing the factor models proposed in the article
with the formulation proposed by Kastner et al. (2017). In this analysis, we compared the
predictive density for predictions 1, 5, 10 and 22 steps ahead, through the construction
of the predictive log-likelihood obtained using the model predictions in a multivariate
Gaussian distribution function. The advantages of this method are that it does not de-
pend on any proxy for unobserved variance, and it allows evaluating predictions for all
series simultaneously. Table 12 show the results of this analysis.
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Table 10. Out-of-sample error measures—One step ahead.

ME RMSE MAE

DJI INLA Univariate 0.23196 0.52897 0.42865
One Factor 0.23777 0.53159 0.43246
Two Factors 0.23146 0.52808 0.42822

Three Factors −0.02255 0.47559 0.37538
Four Factors 0.12455 0.49130 0.38182

MCMC Univariate 0.42554 0.63844 0.56427
One Factor 0.35854 0.59616 0.51447
Two Factors 0.42031 0.63643 0.55885

Three Factors 0.42035 0.63613 0.56240
Four Factors 0.41900 0.63277 0.55788

BOV INLA Univariate 0.59688 1.21295 0.98283
One Factor 0.44138 1.14441 0.89492
Two Factors 0.46336 1.15300 0.90732

Three Factors 0.70404 1.27005 1.04811
Four Factors 0.51051 1.16925 0.93029

MCMC Univariate 0.15588 1.06588 0.76938
One Factor 0.08921 1.05869 0.74359
Two Factors 0.15097 1.06256 0.76384

Three Factors 0.15101 1.06645 0.76832
Four Factors 0.14967 1.06514 0.76602

IPC INLA Univariate 0.15683 0.61506 0.50386
One Factor 0.20836 0.63027 0.51995
Two Factors 0.25486 0.64773 0.54613

Three Factors 0.21796 0.63278 0.52387
Four Factors 0.38826 0.71054 0.62008

MCMC Univariate 0.46614 0.75602 0.66833
One Factor 0.40088 0.71787 0.62867
Two Factors 0.46265 0.75619 0.66960

Three Factors 0.46269 0.75148 0.66482
Four Factors 0.46134 0.75479 0.66735

LSE INLA Univariate 0.24449 0.47201 0.42422
One Factor 0.58243 0.70863 0.65335
Two Factors 0.56198 0.69252 0.63858

Three Factors 0.42964 0.58955 0.54046
Four Factors 0.63417 0.75155 0.69459

MCMC Univariate 0.79527 0.89223 0.83042
One Factor 0.72887 0.83358 0.77455
Two Factors 0.79064 0.88803 0.82540

Three Factors 0.79068 0.88933 0.82655
Four Factors 0.78933 0.88529 0.82328

SSE INLA Univariate 0.32571 0.60216 0.53065
One Factor 0.84922 0.98873 0.89373
Two Factors 0.22027 0.54569 0.48797

Three Factors −0.35623 0.61848 0.43029
Four Factors 0.01095 0.50061 0.41794

MCMC Univariate 0.71897 0.87956 0.78779
One Factor 0.65316 0.82586 0.73876
Two Factors 0.71493 0.87635 0.78583

Three Factors 0.71497 0.87491 0.78371
Four Factors 0.71362 0.87467 0.78329
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Table 11. Out-of-sample error measures—Five steps ahead.

ME RMSE MAE

DJI INLA Univariate 0.15225 0.50562 0.38903
One Factor 0.51637 0.70659 0.64482
Two Factors 0.44178 0.65637 0.58746

Three Factors −0.10767 0.49464 0.37931
Four Factors −0.06229 0.48575 0.37375

MCMC Univariate 0.35322 0.59870 0.51845
One Factor 0.36097 0.60159 0.52346
Two Factors 0.45301 0.66791 0.60115

Three Factors 0.45485 0.65998 0.59577
Four Factors 0.45156 0.66221 0.59627

BOV INLA Univariate 0.56319 1.26126 1.02468
One Factor 0.55355 1.25678 1.01814
Two Factors 0.54222 1.25079 1.00996

Three Factors 0.46032 1.21843 0.95592
Four Factors 0.21479 1.14993 0.81975

MCMC Univariate 0.06254 1.13142 0.75413
One Factor 0.06939 1.13082 0.75775
Two Factors 0.16142 1.13898 0.79277

Three Factors 0.16326 1.14303 0.80124
Four Factors 0.15997 1.13582 0.79787

IPC INLA Univariate 0.15762 0.66886 0.54105
One Factor 0.25359 0.69787 0.58380
Two Factors 0.27772 0.70832 0.59733

Three Factors 0.03243 0.64996 0.52217
Four Factors 0.11032 0.66077 0.52900

MCMC Univariate 0.32007 0.72419 0.61349
One Factor 0.32909 0.72929 0.61745
Two Factors 0.42113 0.77369 0.66358

Three Factors 0.42297 0.77900 0.66648
Four Factors 0.41968 0.77720 0.66800

LSE INLA Univariate 0.22963 0.36349 0.32397
One Factor 0.84995 0.89541 0.84995
Two Factors 0.78686 0.83671 0.78686

Three Factors 0.37292 0.46756 0.41977
Four Factors 0.50862 0.58195 0.52605

MCMC Univariate 0.80137 0.84953 0.80137
One Factor 0.80892 0.85672 0.80892
Two Factors 0.90096 0.94456 0.90096

Three Factors 0.90279 0.94593 0.90279
Four Factors 0.89950 0.94130 0.89950

SSE INLA Univariate 0.31107 0.52824 0.47098
One Factor 1.05909 1.14185 1.05909
Two Factors 0.42805 0.62888 0.55599

Three Factors −0.36826 0.56374 0.41105
Four Factors −0.06832 0.43178 0.35291

MCMC Univariate 0.69274 0.81373 0.72497
One Factor 0.70147 0.82115 0.73149
Two Factors 0.79351 0.89953 0.79937

Three Factors 0.79534 0.90402 0.80667
Four Factors 0.79205 0.89677 0.79682
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Table 12. Out-of-sample forecasting—Log-predictive likelihood.

Horizon 1-Step 5-Steps 10-Steps 22-Steps

One Factor—INLA −8.124187 −7.289769 −8.864761 −6.430457
Two Factors—INLA −8.312072 −8.588173 −9.940037 −7.359121
Three Factors—INLA −8.263323 −6.877244 −8.448241 −6.013806
Four Factors—INLA −8.274462 −7.542268 −9.075323 −7.441591
One Factor—MCMC −8.432325 −6.226095 −8.573205 −5.760034
Two Factors—MCMC −8.496381 −6.214516 −8.658612 −5.713363
Three Factors—MCMC −8.488097 −6.254625 −8.613700 −5.747760
Four Factors—MCMC −8.504874 −6.194094 −8.614639 −5.777989

In this analysis, we can observe that the predictive results were balanced between the
two types of models, with the best result for 1-step and 10-steps ahead using INLA with
one and three factors, and using MCMC for 5 and 22 steps ahead.

5. Conclusions

We introduce a multivariate extension to the class of stochastic volatility (SV) models
estimated via Integrated Nested Laplace Approximations (INLA), incorporating a multifac-
tor structure that enables a more parsimonious representation of this class of models. Our
investigation focuses on the volatility dynamics of stock indexes.

We estimated the model using the log-returns of the Dow Jones Industrial, Ibovespa,
Índice de Precios y Cotizaciones, FTSE 100, and SSE Composite Indexes. Subsequently, we
assessed its performance in terms of accuracy and computational efficiency. Compared to
the Markov Chain Monte Carlo (MCMC) approach, our results indicate that estimating
multivariate SV models with INLA is feasible, with little to no compromise in terms of
model fit quality. Additionally, there are significant time savings when using INLA to
estimate the model parameters.

Regarding in-sample accuracy, our proposed formulation performed as well as or very
close to its MCMC counterpart for nearly all assets and across various metrics. While there
was no substantial difference in the numbers overall, it is worth noting that the MCMC
estimation consistently outperformed the INLA-based approach for the Shanghai Chinese
Stock Exchange Index (SSE). Nevertheless, INLA demonstrated a substantial reduction
in estimation time, up to 14.47 times less than the MCMC alternative. This efficiency gap
tends to decrease as more factors are introduced into the analysis.

We also conducted out-of-sample forecasting to evaluate the predictive performance
of the factor stochastic volatility models. For the five-step-ahead forecast horizon, the
more complex models (three and four-factor) consistently outperformed univariate models
for each series, also estimated using INLA. However, for the one-step-ahead horizon, the
univariate SV specification was preferred for the Índice de Precios y Cotizaciones (IPC) and
FTSE 100 (LSE).

In conclusion, our work opens the door to further generalizations of the model, which
could provide a deeper understanding of volatility patterns across a broader range of
financial assets. Potential avenues include conducting Value at Risk (VaR) analyses and
introducing additional specifications to better model the characteristics often attributed to
financial time series, such as the presence of leverage effects and long memory processes.
In the case of long memory processes, the analysis of intraday data may be particularly
promising, as the large volume of observations should favor the use of methodologies like
INLA over traditional MCMC-based approaches.

An interesting extension of our analysis would be a comparison of computational
performance and predictive properties compared to estimations using Variational Bayes
(Gunawan et al. 2021; Tan and Nott 2018), which also allows relevant computational gains in
the Bayesian estimation of complex models. It is noteworthy that the recent implementation
of the INLA methodology enables the incorporation of a Variational Bayes correction to the
Gaussian approximation utilized in INLA for certain model classes, as discussed in Van
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Niekerk et al. (2023), thereby integrating the computational benefits of this method class
into the use of Laplace approximations in Bayesian model estimation.
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Notes
1 https://www.r-inla.org/, accessed on 31 December 2023.
2 Hosszejni and Kastner (2021) decompose the covariance matrix so that Σt = ΛΣ̃tΛ′ + Σ̄t.
3 The Ancillarity-Sufficiency Interweaving Strategy is extensively discussed by Kastner and Frühwirth-Schnatter (2014).
4 See http://glaros.dtc.umn.edu/gkhome/metis/metis/overview, accessed on 31 December 2023.
5 All data taken from https://www.investing.com/indices, accessed on 10 March 2023.
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