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Abstract: Four deep learning frameworks consisting of Yolov5m and Yolov5m combined with
ResNet50, ResNet-101, and EfficientNet-B0, respectively, are proposed for classifying tomato fruit
on the vine into three categories: ripe, immature, and damaged. For a training dataset consisting
of 4500 images and a training process with 200 epochs, a batch size of 128, and an image size of
224 × 224 pixels, the prediction accuracy for ripe and immature tomatoes is found to be 100% when
combining Yolo5m with ResNet-101. Meanwhile, the prediction accuracy for damaged tomatoes
is 94% when using Yolo5m with the Efficient-B0 model. The ResNet-50, EfficientNet-B0, Yolov5m,
and ResNet-101 networks have testing accuracies of 98%, 98%, 97%, and 97%, respectively. Thus,
all four frameworks have the potential for tomato fruit classification in automated tomato fruit
harvesting applications in agriculture.

Keywords: deep learning; convolution neural network; Yolov5; tomato fruit classification

1. Introduction

Fruit harvesting is labor-intensive and time-consuming work. However, with the
development of artificial intelligence (AI), much of this work can now be performed by
robots. Robotic harvesting comprises two main steps: fruit detection using a computer
vision system and fruit picking using a robot arm. Of the two steps, fruit detection is the
most crucial, since it is vital that only the fruit which are ripe and ready for consumption are
harvested, while the remainder are left on the branch or vine to mature. Many techniques
have been developed for fruit detection over the last decade. Conventional techniques rely
mainly on color, texture, shape, and other shallow features of the image for detection [1–4].
However, the detection accuracy of such methods is heavily dependent on the illumination
conditions. Moreover, as the detection algorithms are complicated and have many fixed
thresholds, it is difficult to adapt them to other fruits and/or environments. Thus, the
development of AI technology has prompted significant interest in the potential for apply-
ing machine learning to computer vision tasks, such as harvesting, in agriculture. Many
machine learning methods [5–7] have been proposed for fruit classification based on color
detection, edge detection, etc. Zhao et al. [8] proposed the AdaBoost algorithm combined
with the average pixel value (APV) for tomato fruit detection. Based on the shape, texture,
color properties, and Haar-like features of ordinary color images, the proposed algorithm
has an accuracy of 96.5% when detecting ripe tomatoes. Luo et al. [9] used the AdaBoost
framework and multiple color components obtained from the vision sensor to automatically
identify clusters of ripe grapes on a farm. The proposed method has an accuracy of 96.56%.
Liu et al. [10] employed an automatic tomato detection method for ordinary color images.
The histograms of oriented gradients (HOG) method was used to train the support vector
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machine (SVM) classifier. A coarse-to-fine scanner was used for tomato detection, false
color removal (FCR) to remove false-positive rejection, and non-maximum suppression
(NMS) to merge overlapping results. The F1, recall, and precision scores were 92.15%,
94.41%, and 90.00%, respectively. However, most methods are complicated in design, have
low-level abstraction, and are adapted only to certain specific conditions. Furthermore,
machine learning methods have poor robustness in complex scenes, and it is extremely
difficult to transfer these methods from one kind of fruit to another.

The emergence of deep learning technology has led to the development of many ma-
chine learning models for image recognition purposes. Among these models, convolutional
neural networks (CNN) are one of the most commonly applied. Many CNN architec-
tures have been developed, including AlexNet [11], GoogLeNet [12], VGGNet [13], and
ResNet [14]. Zhang et al. [15] proposed several frameworks based on AlexNet, ResNet, and
GoogLeNet architectures, respectively, to identify tomato leaf disease. Aversano et al. [16]
similarly employed VGG architecture to perform tomato disease classification.
Karthik et al. [17] proposed a new residual CNN for disease detection in tomato leaves.

Image detection systems based on CNNs fall into two general categories. In the
first category, a series of candidate frames are generated as samples, and the samples
are then classified by CNN models such as R-CNN (Regions with CNN features) [18],
Faster R-CNN [19], and R-FCN (Regions-based Fully Convolutional Network) [20]. Meth-
ods in the second category transfer the problem of object bounding box location into a
regression problem, such that candidate boxes do not need to be generated. Such methods
include SSD (Single-Shot multi-box Detector) [21] and YOLO (You Only Look Once) [22].
Hu et al. [23] used Faster R-CNN to detect candidate ripe tomato regions in complex
greenhouse environments. Fuentes et al. [24] compared three common detector architec-
tures, namely Faster R-CNN, R-FCN, and SSD, for tomato plant disease detection. Mirhaji
et al. [25] used the YOLO-v4 detection model to detect and count ripe Dezful native oranges
in an orchard in southwestern Iran. The precision, recall, F1-score, and mAP were shown
to be 91.23%, 92.8%, 92%, and 90.8%, respectively. Chen et al. [26] developed a modified
Yolov3 for diseased cherry tomato detection. Based on an improved dual-path network
and K-means++, the model obtained a precision rate of 94.29%, a recall rate of 94.07%, and
an F1 score of 94.18%. Overall, the results presented in [23–26] confirm the feasibility of
utilizing CNN for fruit and vegetable detection. However, the detection accuracy of the
proposed methods is still relatively poor. Hence, more sophisticated CNN techniques for
crop detection are required.

Tomatoes are rich in vitamins and form the basis of many different dishes around the
world. With thin skins, succulent flesh, high sweetness, and a high nutritional value, they
are one of the most widely cultivated fruits globally [27]. In Taiwan, almost 50 different
types of tomatoes are planted throughout the year, with the most common varieties being
black tomatoes, Momotaro tomatoes, golden tomatoes, and cherry tomatoes. Tomatoes
are cultivated extensively throughout Taiwan. About 5000 hectares of tomato is cultivated
in Taiwan, with the main growing areas located in Chiayi, Kaohsiung, Tainan, Yunlin,
and Nantou. Moreover, the annual tomato output value is around TWD 30 billion and
is increasing year by year [28]. Consequently, many tomato detection methods based on
CNN models have been proposed. Wang et al. [29] used Faster R-CNN with ResNet50
architecture to improve the detection accuracy for young tomato fruit. The results showed
that the MAP of the proposed method reached as high as 98.46%. Zu et al. [30] applied a
masked R-CNN model with automatic image acquisition to the detection and segmentation
of mature green tomatoes. It was shown that the F1 scores of the bounding box and mask
region were both 92.0%. Lewal [31] used a modified Yolov3 model referred to as the YOLO-
tomato model for detecting tomatoes in complex environmental conditions. The maximum
detection accuracy was shown to be 99.5%. Liu et al. [32] performed tomato detection
using the YOLO-tomato model with a new circular bounding box (C-Bbox) method. The
maximum detection accuracy was shown to be 94.58%.
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The techniques described in [29–32] provide useful and reliable solutions for tomato
detection. However, more work is required to improve their detection performance in
complex real-world greenhouse environments. In a previous study, the present group
proposed a CNN-based technique for strawberry disease classification with an accuracy
of 98–100% [33]. Building on the results obtained in [33], the present study combines the
Yolov5 medium with four different CNN classification models (Yolo5m, ResNet50, ResNet-
101 and EfficientNet-B0) to classify three states of tomatoes on the vine into three categories:
ripe, immature, and damaged.

2. Results and Discussion

Figure 1 shows the training loss and accuracy of the four classification models (Yolov5m,
ResNet-50, ResNet-101, and Efficient Net-B0). The structural parameters and Top 1 and
Top 2 accuracies of the four models are listed in Table 1. As shown, the Top 1 accuracy of the
four models lies in the range of 93.3–99.7% after 100 training epochs. Of the four models,
Yolov5m (Figure 1b) and ResNet-101 (Figure 1d) achieve the highest Top 1 accuracies
of 99.7%, while EfficientNet-B0 (Figure 1f) and ResNet-50 (Figure 1h) have the lowest
Top 1 accuracies of 99.3%. All four models have a Top 2 accuracy of 100%. EfficientNet-B0
has the fastest training time of 50 min, while ResNet-101 has the slowest training time of
1 h 13 min (Table 1). Overall, the Yolov5m model provides the best tradeoff between the
accuracy (0.997) and the training time (52 min). Notably, none of the four models show
signs of overfitting or underfitting. Hence, the effectiveness of the data augmentation
process is confirmed.

Table 1. Training model parameters and evaluation results of the four models.

Model Layer Parameters GFLOPs Top 1 Top 2 Time (hh:mm)

Yolov5m 212 11.7 M 30.9 0.997 1 00:52

YOLOv5-ResNet-50 151 23.5 M 67.5 0.993 1 00:58

YOLOv5-ResNet-101 287 42.5 M 128.4 0.997 1 01:13

YOLOv5-EfficientNet-B0 337 4.0 M 7.3 0.993 1 00:50
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Figure 1. Training loss (left) and accuracy (right) of the four models: (a,b) Yolov5m; (c,d) ResNet-50;
(e,f) ResNet-101; and (g,h) EfficientNet-B0.

Figure 2 shows the confusion matrices of the training results for the four models. As
shown in Figure 2a, the Yolov5m model achieved a classification accuracy rate of 100% for
ripe tomatoes, 100% for immature tomatoes, and 92% for damaged tomatoes (including
a 6% error for immature tomatoes and 2% error for ripe tomatoes). The relatively poor
accuracy of the classification model for the damaged tomatoes can be explained by the fact
that the color characteristics of the damaged tomatoes are similar to those of the ripe and
immature tomatoes. For the Yolo5m with ResNet50 model (Figure 2b), the classification
accuracy was 100% for both ripe and immature tomatoes and 94% for damaged tomatoes
(see Figure 2b). In other words, the classification accuracy for damaged tomatoes was
improved by 2% compared to that of the Yolo5m model alone. As shown in Figure 2c, the
Yolo5m with ResNet-101 model achieved a classification accuracy of 100% for immature and
ripe tomatoes and 92% for damaged tomatoes. In other words, the accuracy of the combined
model was the same as that of the standalone Yolov5m model. Thus, combining Yolo5m
with ResNet-101 not only failed to improve the accuracy but also increased the training
time. Finally, the Yolo5m with Efficient-B0 model achieved a classification accuracy of 100%
for ripe tomatoes, 96% for immature tomatoes, and 94% for damaged tomatoes (Figure 2d).
Thus, the classification performance is generally inferior to that of the standalone Yolov5m
model. However, its training time is the shortest of the four models, since it contains just
4.0 M parameters (Table 1).

Figure 3 shows the accuracy, recall, precision, and F1 score metrics of the four models
in the testing stage. As shown in Figure 3a, ResNet-50 and EfficientNet-B0 have the highest
accuracies of 98%, while Yolov5m and ResNet-101 have the lowest accuracies of 97%. All
four models have a recall of 100% for ripe tomatoes, as shown in Figure 3b. Yolov5m,
ResNet-50, and ResNet-101 also have recall values of 1 for immature tomatoes. However,
the recall value of EfficientNet-B0 falls to 0.96. Meanwhile, the recall values for damaged
tomatoes vary in the range of 0.92 to 0.94 across the four models. As shown in Figure 3c, all
four models have a precision of 0.98 for ripe tomatoes. Yolov5m, ResNet-50, and ResNet-
101 have a precision of 1 for damaged tomatoes. However, EfficientNet-B0 has a lower
precision of 0.95. The precision values of the four models for immature tomatoes vary from
0.94 to 0.96. All four models have an F1 score of 0.99 for ripe tomatoes (see Figure 3d). In
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other words, the models tend to predict the ripe tomato state more accurately than the
other states. The F1 scores for the immature tomatoes and damaged tomatoes vary in the
ranges of 0.96–0.98 and 0.93–0.97, respectively.
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Figure 4 shows the TPR, TNR, FPR, and FNR values of the four models in the testing
stage. As shown, the TPR values of immature and ripe tomatoes are high, with a range
of 96–100%. However, damaged tomatoes have lower TPR values of 92–94%. Similar to
the TPR value, the TNR of the three categories also has a high value of 98–99%. The FPR
values of Yolov5m, ResNet-50, ResNet-101, and EfficientNet-B0 models are low values of
0–3%, 0–2%, 0–3%, and 1–2%, respectively. Finally, the FNR has a low value of 0–8%. The



Plants 2023, 12, 790 6 of 15

ResNet-101 model has the lowest value of 0–6%. The four models are not underfitted or
overfitted, thus posing less risk of confusion and error.
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3. Materials and Methods
3.1. Tomato State Dataset

Tomato images were collected from tomato farms in Miaoli County, Taiwan, and the
Asian Vegetable Research and Development Center (AVRDC) in Tainan, Taiwan, using an
iPhone 11. The images were collected from many different angles and distances, at different
times of day, and in a variety of weather conditions in order to increase the efficiency and
accuracy of the deep learning model. A total of 1508 images were obtained with a size of
3024 × 4032 pixels, a bit depth of 24, and a dpi resolution of 72 in both the horizontal and
the vertical directions.

Figure 5 presents typical images acquired for three tomato states: ripe, immature,
and damaged. As shown, the ripe tomatoes have an orange to red color, the immature
tomatoes are green, and the damaged tomatoes have an irregular shape and obvious
physical damage. To improve the accuracy of the training model, the tomato images were
acquired at three different times of the day (9.00 a.m., 12.00 p.m., and 5.00 p.m.) in order to
capture the effects of different illumination conditions. As shown in Figure 6, the images
captured at midday showed intense brightness and deep shadows, while the images taken
in the afternoon were darker and more uniform in color and intensity. The captured images
were cropped and normalized to a size of 224 × 224 pixels to optimize the model training
process (see Figure 7).
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3.2. Data Augmentation

Following the cropping and normalization process, the tomato image database con-
tained 2176 images of immature tomatoes, 1753 images of ripe tomatoes, and 557 images of
damaged tomatoes. For each category, 50 images were used for testing, while the remaining
images (2127 images for immature tomatoes, 1703 images for ripe tomatoes, and 507 images
for damaged tomatoes) were retained for training and validation purposes. The testing
dataset thus contained very different numbers of images for each category. Accordingly, a
data argumentation process was performed to balance the dataset and increase the classifi-
cation accuracy. As shown in Figure 8, the augmentation process included image rotation
from 0 to 90◦, brightness adjustment from 1.0 to 2.0, vertical and horizontal flipping, filling
using the “nearest” mode, and shearing with a range of 0.2. Figure 9 shows the typical
augmentation results obtained for the ripe, immature, and damaged tomato categories,
respectively. After balancing, a dataset was constructed consisting of 1500 images for
each category.
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3.3. Yolov5 Network Model

Yolov5 is an object detection network model that belongs to the Yolo family of models.
The first three versions of Yolo were developed by Joseph Redmon between 2015 and 2018,
while Yolov4 was released by Alexey Bochkovskiy in 2020 with an improved speed and
accuracy [34]. Yolov5 was published by Glenn Jocher in 2020 with initial comparisons
showing the same accuracy as Yolov4 but a faster prediction speed [35]. Yolov5 has
five network model versions: Yolov5n, Yolov5s, Yolov5m, Yolov5l, and Yolov5x. While
Yolov5n has the fastest calculation speed, its average precision is the lowest. Conversely,
Yolov5x has the slowest calculation speed but the highest average precision [36]. In the
present study, the tomato state classification system was implemented using the Yolov5m
model. As shown in Figure 10, the backbone structure consisted of a Conv (Convolutional)
layer, a C3 (Cross Stage Partial Networks Bottleneck with 3 convolutions) layer, and a
classification layer. In total, the model consisted of 212 layers with 11.7 million parameters
and 30.9 GFLOPs (Giga Floating Point Operations Per Second).

3.4. Residual Network (ResNet-50 and ResNet-101)

Deep CNN networks are affected by several limitations, including a time-consuming
optimization process, a vanishing gradient problem, and degradation problems [37]. Resid-
ual Network (ResNet) improves many of these limitations and provides the ability to
solve complicated tasks with an increased accuracy [38]. Although it is regarded as a
deep network when implemented with 152 layers, it only has around 26 million param-
eters [39]. ResNet has a convolution block that uses the same 3 × 3 filter as Inception-
Net. The convolution block consists of 2 convolution branches, where 1 branch applies
a 1 × 1 convolution before adding it directly to the other branch. The identity block does
not apply the 1 × 1 convolution but directly adds the value of the former branch to the
other branch. Figure 11 shows the basic structure of the ResNet-50 model. To minimize
the training time, the model is implemented using bottlenecks as the basic building block,
where each building block consists of convolutional layers (2 layers of 1 × 1 and 1 layer
of 3 × 3 in the middle) and keeps the original features of the images. Moreover, the
ResNet-50 model uses a stack of three layers rather than the two layers employed in the
ResNet-34 model. The three layers comprise 1 × 1, 3 × 3, and 1 × 1 convolutions, where
the 1 × 1 layers are responsible for reducing and then increasing the dimensions, while the
3 × 3 layer serves as a bottleneck [40]. In this study, the ResNet-50 model is run based on
the YOLOv5 environment. It is noted that the proposed ResNet-50 model includes a total
of 151 layers, 23.5 million parameters, and 67.5 GFLOPs.
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ResNet-101 has a similar structure to ResNet-50 but has fewer layers (101) and more
parameters (45 million). As shown in Figure 12, ResNet-101 also uses bottleneck blocks to
reduce the training time. The ResNet-101 model contains 287 layers, 42.5 million parameters,
and 128.4 GFLOPs. In this study, the ResNet-101 model is run based on the YOLOv5
environment for the classification of tomatoes on the vine.
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In recent studies, several groups have used EfficientNet to perform plant leaf disease
classification and plant recognition [41,42]. There are eight versions of EfficientNet, ranging
from B0 to B7, respectively. EfficientNet B0 achieved an accuracy of 77.1% on ImageNet,
with 5.3 million parameters and 0.39B FLOPs, while ResNet-50 achieved an accuracy of
76%, with 26 million parameters and 4.1B FLOPs [43].

As shown in Figure 13, the structure of EfficientNet-B0 consists of MBConv blocks,
which are similar to the inverted residual blocks used in MobileNetv2 [44]. The blocks
feature shortcut connections between the first and last sections of the block, and the input
block is expanded by a 1 × 1 Conv layer to increase the number of channels or depth of
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the feature map. Conversely, the Depthwise Conv 3 × 3 and Pointwise Conv 1 × 1 layers
are used to reduce the number of channels of the output block. The shortcut connections
connect narrow layers, which have a small number of channels, while the wider layers
are arranged between the shortcut connections. Notably, this structure reduces both the
number of parameters and the number of operations. The EfficientNet-B0 model also
uses the AdaptiveAvgPool2d layers to find important features of the data and reduce the
training parameters. The dropout layer is used to reduce interdependent learning between
neurons. The data regression layer is linear regression. Thus, even though EfficientNet-B0
has a large number of layers (337 layers), it has just 4 million parameters and 7.3 GFLOPs.
In this study, the EfficientNet-B0 model is run based on the Yolov5 environment for the
classification of tomatoes on the vine.
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3.6. Confusion Matrix, Recall, Precision, Accuracy, F1 Score, and Rate

The testing performance of the various classification models was evaluated using the
confusion matrix shown in Table 2. True positive (TP) is the number of predicted true
positive or true positive results. True negative (TN) is the number of predicted true negative
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or true negative results. False positive (FP) is the number of predicted false positive or
false positive results. False negative (FN) is number of predicted false negative or false
negative results.

Table 2. Confusion matrix used for evaluating the classification accuracy.

Predicts Label

True Label

Positive Negative

Positive TP
(True Positive)

FN
(False Negative)

Negative FP
(False Positive)

TN
(True Negative)

In the testing stage, the recall performance of the models was evaluated as the ratio
of the number of samples correctly predicted as positive to the total number of samples
predicted as positive, i.e.,

Recall =
TP

TP + FN
(1)

The precision was evaluated as the ratio of the number of samples correctly predicted
as positive to the total number of positive predictions, i.e.,

Precision =
TP

TP + FP
(2)

The accuracy was defined as the ratio of the total number of correctly predicted
samples to the total number of samples in the dataset, i.e.,

Accuracy =
TP + TM

TP + TN + FP + FN
(3)

The F1 score was defined as the harmonic mean of the precision and recall, i.e.,

F1 = 2 × Recall × Precision
Recall + Precision

(4)

Rate is a measure factor in a confusion matrix. It has 4 types, including the true
positive rate (TPR), true negative rate (TNR), false positive rate (FPR), and false negative
ratee (FNR), i.e.,

TPR =
TP

∑ Positive
=

TP
FN + TP

(5)

TNR =
TN

∑ Negative
=

TN
FP + TN

(6)

FPR =
FP

∑ Negative
=

FP
FP + TN

(7)

FNR =
FN

∑ Positive
=

FN
FN + TP

(8)

3.7. Top 1 and Top 2 Accuracies

The effectiveness of the classification models in the training stage was further eval-
uated by means of the Top 1 and Top 2 accuracies. The Top 1 accuracy indicates the
proportion of samples for which the category predicted by the model matches the true cate-
gory. By contrast, the Top 2 accuracy considers the prediction result to be correct if either of
the two most probable categories predicted by the model matches the true category.
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3.8. Data Training

The augmented dataset was split in the ratio of 80:10:10 for training, testing, and
validation purposes, as shown in Figure 14. The computational properties of the training
system and the training parameters are listed in Tables 3 and 4, respectively.
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Table 3. The training system.

CPU GPU RAM

2 × Xeon Processors @2.3 Ghz, 46 MB Cache Tesla P100 16 GB 16 GB

Table 4. Training parameter settings.

Parameter Value

Optimization Adam

Batch size 128

Learning rate 0.0001

Decay 5 × 10−5

Drop out 0.1

Epochs 100

Image size 224 × 224

4. Conclusions

This study proposed four deep learning frameworks (Yolov5m and Yolov5 with
ResNet-50, ResNet-101, and EfficientNet-B0, respectively) for the classification of ripe,
immature, and damaged tomatoes on the vine. The testing results showed that the ResNet-
50, EfficientNet-B0, Yolov5m, and ResNet-101 models have overall accuracies of 98%, 98%,
97%, and 97%, respectively. Furthermore, all four models have a recall value of 100% for
ripe tomato classification. The Yolov5m, ResNet-50, and ResNet-101 models also have a
recall value of 1 for immature tomatoes. However, the recall value falls to 0.96 for the
EfficientNet-B0 model. The recall values for damaged tomatoes vary in the range of 0.92 to
0.94. All four models achieve a precision of 0.98 for ripe tomatoes. The Yolov5m, ResNet-50,
and ResNet-101 also have precisions of 1 for damaged tomatoes. However, the precision
of the EfficientNet-B0 model falls to 0.95. The precision values of the four models for
immature tomatoes vary in the range of 0.94–0.96. Finally, the four models all have F1
scores of 0.99 for ripe tomatoes. The F1 scores for immature and damaged tomatoes vary in
the ranges of 0.96 to 0.98 and 0.93 to 0.97. The TNR and TPR have high values of 92–100%
and 97–100%, respectively. While the FPR and FNR have low values of 0–3% and 0–8%,
respectively. The model operates effectively. In general, the results confirm that all of the
proposed models provide an accurate means of performing tomato fruit classification in
automated fruit-harvesting applications.
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