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Abstract: Efficient image recognition is important in crop and forest management. However, it faces
many challenges, such as the large number of plant species and diseases, the variability of plant
appearance, and the scarcity of labeled data for training. To address this issue, we modified a SOTA
Cross-Domain Few-shot Learning (CDFSL) method based on prototypical networks and attention
mechanisms. We employed attention mechanisms to perform feature extraction and prototype
generation by focusing on the most relevant parts of the images, then used prototypical networks
to learn the prototype of each category and classify new instances. Finally, we demonstrated the
effectiveness of the modified CDFSL method on several plant and disease recognition datasets. The
results showed that the modified pipeline was able to recognize several cross-domain datasets using
generic representations, and achieved up to 96.95% and 94.07% classification accuracy on datasets
with the same and different domains, respectively. In addition, we visualized the experimental results,
demonstrating the model’s stable transfer capability between datasets and the model’s high visual
correlation with plant and disease biological characteristics. Moreover, by extending the classes of
different semantics within the training dataset, our model can be generalized to other domains, which
implies broad applicability.

Keywords: image classification; few-shot learning; transfer learning; bark images dataset

1. Introduction

Image recognition technology based on artificial intelligence can provide scientific
decision-making basis and optimization solutions by analyzing and processing images.
This technology is of great importance to crop and forest management. However, its
application faces many challenges, such as difficulties in data collection, the large number
of classes, the variability of plant appearance, the difficulty of lesion detection, the invasion
of new pathogens, and the impact of climate change [1].

Machine learning has been widely used in various agriculture and plant science
domains [2], such as plant breeding [3], in vitro culture [4], stress phenotyping [5], stress
physiology [6], plant system biology [7], plant identification [8], plant genetic engineering [9],
and pathogen identification [10]. However, traditional machine learning methods have
shortcomings in feature extraction, model selection, and data processing, which make
it difficult to learn high-dimensional, non-linear, and unstructured data [11]. With the
rapid development of computer science, deep learning began to appear. Deep learning
refers to the use of deep neural networks to perform operations, such as automatic feature
extraction and data classification, to achieve a high-level understanding and representation
of features [12–14]. In agriculture and forestry, deep learning also provides effective
technical methods to solve various computer visual tasks, such as plant pest and disease
detection, forest inventory, plant classification and segmentation, and real-time monitoring
of crop and forest resources, etc. [1,15–20].
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While deep learning has been applied to image recognition in related domains, it
often poses challenges when training neural networks for large-scale image recognition
capabilities [21–23]. For instance, deep learning models often demand substantial train-
ing data, constraining their use in data-scarce or costly domains. They are also intricate,
hindering transparency and validation of their internal mechanisms and learning strate-
gies. Moreover, they can be sensitive to data distribution and noise, leading to errors in
predicting new or abnormal images. To solve these problems, FSL (Few-shot Learning)
has emerged [24–28]. FSL is a machine learning paradigm that aims to learn from a few
labeled examples and generalize to new categories or domains [29]. FSL methods address
these issues by leveraging prior knowledge and generalizing to novel categories, enabling
effective image classification from limited or unlabeled data. FSL methods are suitable
for plant disease recognition because they reduce data collection and labeling efforts and
improve the model’s adaptability and robustness.

The application of FSL in agriculture is mainly focused on plant and disease recogni-
tion, which is an important task for crop management and protection [1,30,31]. Most of the
studies have been conducted by exploiting different feature extraction, data augmentation,
metric learning, and self-supervised training strategies to improve the accuracy, robustness,
and generalization of FSL models. These methods have been applied in both spatial and
frequency domains, covering image classification and target detection tasks [31–40]. Chen
et al. used a meta-learning framework for the adaptive process of the FSL plant disease
detection task. Lin et al. proposed an FSL method for plant disease recognition based on
multi-scale feature fusion and channel attention, and they also proposed different training
strategies for different generalization scenarios. Pascual et al. analyzed the accuracy, robust-
ness, and clustering ability of four FSL methods for fungal plant disease classification, with
the prototypical network achieving the best results in accuracy and robustness. Lin et al.
proposed an FSL algorithm for plant disease classification in the frequency domain, which
outperforms existing methods in the spatial domain. Tunga et al. proposed a method to
classify different corps, plants automatically, and their diseases based on the combination
of the FSL algorithm and Transformers. Liu et al. used a self-supervised training strategy
to generate pseudo-labels on a plant disease dataset and used the labels to fine-tune the
prototypical network, achieving better results than supervised methods. Li et al. proposed
an FSL framework for plant disease classification using limited labeled data that combines
data augmentation, feature extraction, and metric learning. Zhang et al. proposed a data-
driven FSL approach for crop disease and pest detection based on target detection and
transfer learning. On the other hand, the applications of FSL in forestry are fewer, and most
of the studies are based on remote sensing images for classification, such as hyperspectral
image classification of tree species [41–43].

These studies demonstrate the effectiveness and the potential of FSL methods for
plant and disease recognition. However, most previous research has focused on image
recognition of species within a single domain. While these studies have contributed sig-
nificantly to our understanding of specific agricultural or forestry applications, there is
a noticeable gap in research that extends beyond these single domains. In real-world
scenarios, plant and disease recognition often requires cross-domain adaptation, where
the source domain (the labeled training set) and the target domain (the unlabeled test
set) have different distributions. This poses a great challenge for traditional FSL methods,
which may suffer from domain shift and over-fitting problems. Therefore, we plan to
implement a Cross-Domain Few-shot Learning (CDFSL) image classification model for
tree species classification and recognition of common plant and crop diseases (e.g., phy-
tophthora, anthracnose, etc.). By extending our research across domains, we can obtain
a more comprehensive understanding of the capabilities and limitations of FSL in these
domains, ultimately providing agricultural and forestry operators with more functional and
effective solutions.

PMF pipeline achieved state-of-the-art results on various CDFSL benchmarks, such as
mini-ImageNet and Meta-Dataset [44]. In our study, we adapted and optimized the PMF
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pipeline to make it more suitable for plant and disease recognition. To test the performance
of the tuned pipeline in different domains, we meta-trained and fine-tuned several models
using BarkNetV3 and BarkVN50 datasets, respectively, and evaluated and visualized the
effectiveness of the models on several datasets in the same and different domains. The
research objectives include: (1) compare the performance of PMF of various frameworks on
several novel datasets; (2) visualize the visual attractiveness of networks and analyze the
inner workings of the mechanism; (3) analyze the generalization ability of PMF to the same
and different domain datasets; (4) discuss the learning ability and practical application
value of PMF for plant and disease recognition.

2. Materials and Methods
2.1. Datasets

The dataset for FSL is somewhat different from the common image classification task
in deep learning. Traditional deep learning methods usually require a large amount of
labeled data to train the model, while FSL aims to learn new categories from a few examples
(usually no more than 10). Therefore, the datasets for FSL typically have the following
characteristics: (1) the datasets contain multiple different data sources; (2) to simulate
encountering a new classification situation in real work scenarios, there is no overlapping
category in each subset; (3) the dataset provides test tasks of different difficulties. We show
an example of an FSL image classification dataset, as shown in Figure 1.
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Figure 1. An example of an FSL dataset (5-way 1-shot). To evaluate the performance of the FSL
model, a common way is N-way and K-shot, i.e., there are N categories to be classified, and each
category has K-labeled images as the support set. The model needs to use the support set to learn the
characteristics and similarities of the categories and then classify new images of the same class in
the query set. There are usually 15 images in each category in the query set, and the model needs to
correctly predict the labels of these images based on the support set. A support set and a query set
are called an episode, and the model’s accuracy is computed by averaging the results of multiple
combinations (a total of episodes) of support and query sets randomly selected from the dataset.

In our study, we chose the tree bark image dataset as the meta-training dataset.
We assume that bark images can be divided into low-level texture features and high-
level color features, which serve as fine-grained data that can help the model learn more
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discriminative and pervasive representations for plant and disease recognition. That is, a
more comprehensive recognition capability is obtained by learning complex datasets to
predict relatively simple samples. We collected bark images of 20 different tree species
on and around the campus of Nanjing Forestry University and named them BarkNJ. Our
BarkNJ dataset has higher image quality than BarkNet 1.0 [45], which contains more noise,
such as light, blur, or shadows. Noise affects feature extraction and label correlation, making
it hard for the model to learn an efficient classifier from a few samples [22]. Nevertheless, we
believe combining bark images of different qualities can enhance the overall generalization
ability of the model in various scenarios. This is because field surveys of forests or crops
have a complex environment that affects the quality of the image (e.g., lighting, angle,
etc.). Therefore, we merged the high-quality BarkNJ dataset with BarkNet 1.0 into a more
extensive dataset called BarkNetV3.

To test the meta-trained model, we introduced several publicly available image
datasets in agriculture and forestry [46–50] to explore the performance of the FSL model
on datasets from the same domain or different domains. We processed these datasets
into meta-datasets with the following steps: (1) Remove images with high similarity or
ambiguous features. (2) Classes with less than 40 images are removed, and classes with
too many images (>600) have the dataset processed by (1), and then 600 images are ran-
domly selected to be used as research data. The image dataset used in our study is shown
in Table 1.

Table 1. Details of the dataset used in our experiment.

Domain Dataset Collaborators Categories Images Meta-Dataset

Tree species
classification

BarkNet 1.0 Carpentier et al. (2018) [45] 23 23,616 20 × 600
BarkNJ Ours (2023) [47] 20 14,681 20 × 600

BarkNetV3 Ours (2023) [45,47] 40 24,000 40 × 600
BarkVN50 Truong Hoang (2017) [51] 50 5578 50 × 80

BarkKR Tae Kyung et al. (2022) [46] 54 6918 25 × 50
Leaf Diseases PlantVillage Hughes et al. (2015) [48] 40 61,484 38 × 600
Crop Diseases Agricultural Diseases Xulang Guan et al. (2021) [50] 60 36,258 55 × 100

Flower Identification Flowers 102 Nilsback et al. (2008) [49] 102 8189 85 × 40

Multi-Classification
mini-ImageNet Vinyals et al. (2016) [52] 100 60,000 100 × 600

Full-Dataset Hu et al. (2022) [44] 8 datasets - -

Note: Domain denotes the specific domain of the dataset. Dataset is the name of the dataset. Collaborators are the
collectors of the dataset. Categories and Images indicate the number of categories and total images in the dataset.
Meta-dataset denotes the processed meta-dataset, and the “alpha*beta” represents the number of categories
(alpha) and the number of images per category (beta) in the meta-dataset. In addition, mini-ImageNet [52] is a
benchmark dataset for FSL image classification, and Full-Dataset [44] is a CDFSL dataset constructed by Hu et al.

2.2. Methodology

In the PMF pipeline, “PMF” stands for three different training phases, where “P”, “M”,
and “F” are taken from the first letter of Pre-train, Meta-train, and Fine-tune, respectively.
Pre-train finds useful features in external data by self-supervised learning of image repre-
sentation. Meta-train uses ProtoNet (Prototypical Network) to acquire representations of
images and map correlations between categories in a high-dimensional space, thus creating
a general method for recognizing data in the same or different domains. Fine-tune, on
the other hand, accomplishes learning and transfer from novel datasets by fine-tuning the
model and augmenting the support set. Instead of developing a new FSL algorithm, we
adapt and optimize its structure based on the PMF pipeline for use in our research area, as
shown in Figure 2.
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Figure 2. Schematic diagram of PMF pipeline. (a) shows the Vision Transformers (ViT) encoder, and
(b) shows the meta-training and fine-tuning process using ProtoNet as the FSL algorithm. It should
be noted that (1) The output of (a) will be used as support embedding and query embedding in (b);
(2) we use data from the support set to construct pseudo-labels through data augmentation and
compute prototypes of categories based on the pseudo-labels; and (3) in addition, for each new task,
we only update the backbone network parameters instead of exploring the applicability of the model.

2.2.1. Backbone of Pre-Train

Backbone refers to the feature extraction network, which is used as the basis for various
tasks such as semantic segmentation, instance segmentation, and object detection [12,24,53].
By leveraging pre-trained model weights trained on large datasets like ImageNet as en-
coders, we exploit the wealth of diverse image information in ImageNet. This initialization
strategy is critical to mitigate overfitting and enhance the model’s ability to effectively
generalize across classes with few examples, thereby supporting the success of ProtoNet in
few-shot image classification.

Four network pre-training weights are used in this paper to compare the perfor-
mance of different backbones in our experiments, all of which are trained from ImageNet-
1k. DINO-ViT and DeiT-ViT are self-supervised training approaches employing Vision
Transformers (ViT) [54] for learning robust and transferable visual representations from
large-scale unlabeled data. DINO [55] emphasizes DIstillation with NO labels, while
DeiT [56] is short for Data-efficient image Transformers. ResNet (Residual Network) and
its variants [57,58] are a common backbone for FSL classification. DINO-ResNet is a self-
supervised method that learns visual features from unlabeled images without contrastive
learning or distillation.

2.2.2. Algorithm of Meta-Train

ProtoNet (Prototypical Network) is an FSL method that performs classification by
learning an embedding space and then measuring distances to obtain a prototypical repre-
sentation of each class [59]. The ProtoNet consists of two parts: an embedding function
and a distance function [60]. We defined a process for a single train step as follows:
(1) We used an encoder network that mapped the input data to a latent space (such as
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feature vectors). (2) We adopted a prototype layer [61,62] that computed the mean vec-
tor of each class in the latent space, serving as the prototype representation of that class.
(3) We used cosine similarity to measure the similarity between a query point and the
prototypes. (4) We introduced pseudo-labels for each episode to simulate the data distri-
bution and scarcity in the FSL classification scenario [63,64], enhancing the quality and
interpretability of the low-dimensional embedding by incorporating prior information from
a semi-supervised learning algorithm. (5) In addition, we introduced the prototype refining
method proposed by [65,66]. Prototype refining was the process of updating the prototypes
using both labeled and unlabeled instances in each iteration of transductive inference.

2.2.3. Task-Specific Fine-Tune

Task-specific Fine-tuning is the process of adapting and updating the weights of a
pre-trained feature extractor to fit a specific task [28,30,44]. The FSL model achieves new
sample classification by using a few labeled examples (support set) from the new task
and allows the meta-trained network to learn the features of the new task [60,66]. The
process of fine-tuning is as follows: (1) extraction of pertinent features from the support
set and query set using the pre-trained neural network; (2) derivation of class prototypes,
which are representative examples for each category in the support set; (3) computation
of similarity scores between query features and prototypes; and (4) assignment of logits,
indicating the likelihood of query examples belonging to each support set category. Since a
small amount of data may cause instability in model training, we also explored the method
of feature aggregation [67–69] and data augmentation [70] for multiple support sets of
each category separately to create more robust category prototypes. In addition, we apply
feature regularization techniques to reduce over-fitting.

Task-specific Fine-tuning can improve the performance of FSL algorithms, which is
especially effective when the input data is in a different domain from the source data [71].
Through fine-tuning, models can alleviate the instability caused by domain shifts. By using a
small number of images in the support set, the fine-tuned model can generalize the recognition
features of a specific new task, thereby making predictions on data in different domains.

2.2.4. Visualization

(1) T-distributed stochastic neighbor embedding (t-SNE). t-SNE is a technique for visual-
izing high-dimensional data in a low-dimensional space [72]. It aims to preserve the
local structure of the data by minimizing the Kullback-Leibler divergence between the
joint probabilities of the high-dimensional data and the low-dimensional embedding.
By using pseudo-labels as conditional variables, t-SNE can discount the known struc-
ture of the data given the true labels and highlight the conditional structure of the
data given the pseudo-labels [63,64]. This can reveal more meaningful and relevant
patterns in the embedding, such as clusters, outliers, or subgroups that the standard
t-SNE may not capture. Pseudo-labels can also help to reduce the noise and ambi-
guity in the high-dimensional data and improve the stability and robustness of the
t-SNE optimization.

(2) Smooth Grad CAM++. It is an advanced variation of the popular Grad-CAM (Gradient-
weighted Class Activation Mapping) technique [73]. It is used in deep learning and
computer vision to visualize and interpret the decision-making process of neural
networks by highlighting regions in an input image that influence the network’s
classification or prediction. Smooth Grad CAM++ can also visualize different layers,
feature maps, or neurons within a model at the inference level, which means when
the model is making predictions.

2.3. Parameters Setting

Different types of datasets also require additional considerations for CDFSL. For
example, we use two types of datasets in our experiments: multi-classification datasets
with different semantics and those with the same semantics. The former kind of dataset,
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such as mini-ImageNet, contains images of various objects from different semantics, such
as animals, plants, flowers, and architectures. The latter kind of dataset contains images
of objects from the same category, such as our bark datasets. This kind of dataset, where
the classes are related in meaning and appearance, poses a challenge for assessing the
ability of FSL models to distinguish between similar tasks that are hard to differentiate.
Moreover, since the bark dataset’s composition is simpler than the mini-ImageNet, our
training process may face a more severe over-fitting problem. Thus, we need to reconsider
the performance of the backbone and the prototypical network.

The meta-training parameters were adjusted as shown in Table 2, which includes (1)
shortening the total number of training epochs; (2) adjusting the change rule of the learning
rate for each epoch according to different backbone and datasets, and due to the low total
number of epochs trained, we appropriately increased the ratio of decay-epochs, warmup-
epochs, cooldown-epochs, and patience-epochs; (3) significantly reducing the number of
episodes per epoch to prevent over-fitting or performance decay; and (4) to maintain the
stability of the training process, turning off the precision mixing and random erasure, and
reducing the magnitude of data augmentation; (5) since the features in our dataset are
relatively simple, we tend to choose smaller backbone in our experiments, and the selected
backbones are DINO-ViT-small, DeiT-ViT-small, ResNet50, and DINO-ResNet50.

Table 2. Meta-training parameter settings.

Dataset Backbone nEpisode Lr DWCP (%) nQuery nClsEpisode

BarkVN50

DINO-ViT (200, 300) 5 × 10−4 (20, 10, 10, 20) 15 5
DeiT-ViT (200, 300) 5 × 10−4 (20, 10, 10, 20) 15 5
ResNet (300, 500) 1 × 10−4 (20, 10, 20, 10) 15 5

DINO-ResNet (200, 300) 1 × 10−4 (20, 10, 20, 10) 15 5

BarkNetV3

DINO-ViT (200, 500) 5 × 10−4 (10, 10, 10, 20) 15 5
DeiT-ViT (200, 500) 5 × 10−4 (10, 10, 10, 20) 15 5
ResNet (300, 500) 1 × 10−4 (10, 10, 20, 10) 15 5

DINO-ResNet (200, 500) 1 × 10−4 (10, 10, 20, 10) 15 5

Note: Dataset denotes the dataset used for training, Backbone denotes the pre-trained backbone (based on
ImageNet) used, nEpisode denotes the number of episodes, Lr denotes the learning rate, DWCP denotes the
proportion of training phases, nQuery is the number of images contained in each query set, nClsEpisode is the
number of categories in each episode. Where nEpisode interval denotes the range of values for the number
of episodes, with an interval of 100; DWCP is taken from the initial letters of Decay-epochs, Warmup-epochs,
Cooldown-epochs, and Patience-epochs in turn, and the value in the DWCP (%) parentheses indicates the
percentage of the total epoch that each phase represents.

3. Results and Analysis
3.1. Meta-Train

In our experiments, DINO-ViT shows the best performance when meta-training on
both bark datasets. As shown in Table 3, DINO-ViT achieves an accuracy of 82.81% and
74.08% on BarkVN50 and BarkNetV3, respectively. The classification accuracy of DeiT-
ViT is second only to DINO-ViT, achieving 80.37% and 72.26% on the two bark datasets,
respectively. The meta-training classification accuracy of the two ViT-based self-supervised
classification models we used is better than those with traditional ResNet as the backbone
by about six percent on average. The classification accuracy of DINO-ResNet is located in
the middle between DeiT-ViT and ResNet, by about three percent higher.
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Table 3. Meta-training results.

Dataset Backbone Accuracy
(1-Shot) Loss (1-Shot) Accuracy

(5-Shot) Loss (5-Shot) Saturation

BarkVN50

DINO-ViT 71.81% 0.744 82.81% 0.504 25–26th
DeiT-ViT 67.37% 0.893 80.37% 0.683 21–25th
ResNet 60.59% 1.044 74.59% 0.754 24–28th

DINO-ResNet 64.80% 1.139 77.80% 0.859 20–27th

BarkNetV3

DINO-ViT 62.08% 1.034 74.08% 0.774 26–28th
DeiT-ViT 60.26% 1.103 72.26% 0.803 22–28th
ResNet 57.78% 1.112 67.78% 0.862 24–30th

DINO-ResNet 60.35% 1.217 71.35% 0.977 23–30th

Note: Accuracy and Loss denote accuracy and loss, respectively, on the validation set (not the test set), and 1-shot
and 5-shot in parentheses represent the metrics evaluated (the number of images of each category extracted from
each episode of the support set), respectively. Saturation indicates the point at which training peaks or saturates
(when there is little drop in loss).

By comparing the training results of the four backbone models on two bark datasets
(Table 3), the results show that (1) DINO-ViT achieves the best performance on both datasets
and both scenarios, indicating that vision transformers are superior to convolutional or
hybrid networks for few-shot image classification, as they can learn more generalizable
features from unlabeled data using self-supervised learning; (2) BarkVN50 is easier than
BarkNetV3 for few-shot image classification, as all models obtain higher accuracy and
lower loss on BarkVN50 than on BarkNetV3. This may be because BarkVN50 was collected
from Southeast Asian rainforests, which means more diversity and less similarity among
categories; (3) the saturation point varies among models and datasets, ranging from the
20th to 30th epoch. This means that fine-tuning strategies and convergence metrics should
be adapted to account for these variations, optimize performance, and ensure efficient use
of computational resources.

3.2. Meta-Test

We tested the models obtained in our experiments on six datasets from the same and
different domains to assess how well each model generalizes in novel datasets and to
investigate whether certain models tend to overfit known categories, leading to degraded
performance in new categories (Table 4).

Accuracy and loss are two metrics that measure how well a machine learning model
predicts the correct output. In terms of classification accuracy, the model trained on the
BarkVN50 dataset (referred to as the BarkVN50 model, so it is with other models) performs
the best in most test datasets, both in 1-shot and 5-shot. The mini-ImageNet and the
BarkNetV3 model perform slightly lower than the BarkVN50 model, but the difference
is slight (about 2–3%). This implies that the models have similar performance when they
are tested on a different but related domain, which shares some common-use features and
classes with the source domain. That is expected due to the similarity of data distribution
and label space. The Full-Dataset model performs worst on out-of-domain datasets, except
for the Flowers dataset. This implies that simply combining different source domains into
one dataset does not improve the performance of CDFSL and may even degrade it due to
over-fitting or conflicting information.

In terms of loss, the BarkVN50 model is well-fitted to the BarkVN50 dataset, but
it may not generalize well to other datasets, especially those that are out-of-domain or
have different types of images. The mini-ImageNet and Full-Dataset models, on the other
hand, although less effective in predicting bark images, slightly outperform the BarkVN50
and BarkNetV3 models on some agriculture datasets. It is worth mentioning that the
BarkNetV3 model achieves a lower loss than the other models on most of the test datasets.
The BarkNetV3 dataset, which this model is trained on, may have more diverse and complex
features than the other datasets, enabling the BarkNetV3 model to learn more generalizable
and robust features that can transfer well to other plant and disease recognition datasets,
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even those that are out-of-domain or have different types of images. This may account for
the lower losses of the BarkNetV3 model on most datasets.

Table 4. Task-specifically test results.

Train on Test on 1-Shot (%) Loss 5-Shot (%) Loss

BarkVN50

BarkVN50 (I) 88.78 ± 0.99 0.339 96.95 ± 0.42 0.119
BarkNetV3 (I) 81.64 ± 1.33 0.527 93.30 ± 0.73 0.242

BarkKR (I) 63.28 ± 1.44 1.010 82.91 ± 1.07 0.494
Agricultural Disease (O) 82.05 ± 1.43 0.508 94.07 ± 0.82 0.460

PlantVillage (O) 81.57 ± 1.26 0.705 93.96 ± 0.65 0.332
Flowers (O) 81.01 ± 1.34 0.592 95.37 ± 0.63 0.501

BarkNetV3

BarkVN50 (I) 77.24 ± 1.30 0.655 92.04 ± 0.68 0.319
BarkNetV3 (I) 83.91 ± 1.17 0.449 93.39 ± 0.67 0.204

BarkKR (I) 59.53 ± 1.54 1.136 80.21 ± 1.08 0.554
Agricultural Disease (O) 76.21 ± 1.46 0.676 90.55 ± 0.95 0.354

PlantVillage (O) 75.35 ± 1.41 0.778 90.15 ± 0.87 0.340
Flowers (O) 78.47 ± 1.61 0.722 94.65 ± 0.61 0.467

mini-ImageNet

BarkVN50 (O) 79.73 ± 1.27 0.594 94.85 ± 0.55 0.447
BarkNetV3 (O) 77.25 ± 1.49 0.707 91.47 ± 0.71 0.463

BarkKR (O) 56.97 ± 1.50 0.567 79.70 ± 1.19 0.708
Agricultural Disease (O) 79.95 ± 1.50 0.645 93.88 ± 0.86 0.318

PlantVillage (O) 80.10 ± 1.34 0.753 92.33 ± 0.79 0.291
Flowers (I) 83.84 ± 1.42 0.873 96.95 ± 0.39 0.252

Full-Dataset

BarkVN50 (O) 68.91 ± 1.35 0.864 88.79 ± 0.83 0.375
BarkNetV3 (O) 62.88 ± 1.41 1.038 84.91 ± 0.96 0.468

BarkKR (O) 51.86 ± 1.58 1.298 74.71 ± 1.32 0.712
Agricultural Disease (O) 73.55 ± 1.63 0.724 91.01 ± 0.94 0.322

PlantVillage (O) 68.57 ± 1.53 0.873 91.17 ± 0.88 0.346
Flowers (I) 95.93 ± 0.64 0.152 98.97 ± 0.25 0.044

Note: The data in this table was obtained by sampling in the test set of each dataset 1000 times. “I” and “O” in
parentheses of the dataset denote in domain and out domain, respectively; 1-shot and 5-shot indicate the number
of images of each class passed to the network for each episode, e.g., 1-shot means that the network is only shown
one image of that class and the prediction of the same class is made; the interval values below 1-shot and 5-shot
denote the accuracy deviation on the test set after fine-tuning of the FSL network.

3.3. Visualization

To simulate the output of each test set, we present the results of our model as a pseudo-
classification map, as illustrated in Figure 3, which depicts the model’s learning and transfer
capability on novel datasets. The performance of models in handling new tasks is closely
associated with the discreteness observed within the distribution of pseudo-classes. In
other words, when the distribution exhibits greater separation and distinctiveness among
pseudo-classes, the model’s adaptability to novel tasks is markedly enhanced.

The results showed that the BarkVN50 model achieved good classification results
on most datasets, with mostly significant segmentation between pseudo-classes, except
on the Agricultural Disease dataset, where it performed poorly. On the other hand, the
BarkNetV3 model showed its reliability by producing robust pseudo-classification maps on
different forestry datasets, both in-domain and out-of-domain. The pseudo-classification
maps of this model showed a high degree of discreteness, indicating that the BarkNetV3
model was more stable and adaptable in transfer learning than the BarkVN50 model.
Since the dataset used for pre-training may have lacked some common-use features of
agriculture and forestry images, the performance of the mini-ImageNet and Full-Dataset
models was slightly worse than the other two models, with a weaker ability to discriminate
between pseudo-classes. This suggested that the applicability of these two models in
plant and disease recognition may have been somewhat lower. It was worth mentioning
that both mini-ImageNet and Full-Dataset models had good processing capability for
cross-domain datasets like PlantVillage and Flowers. Therefore, these models may have
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been more suitable for some FSL classification tasks with more obvious distinguishing
features (compared to bark). To further illustrate the effectiveness of our trained model, we
visualized the recognition process of the network using Smooth Grad CAM++, as shown
in Figure 4. We found that visual attractiveness was highly correlated with the locations
of phenotypic plant diseases that occurred biologically, indicating that the model tended
to focus more on regions where the plant displayed symptoms of diseases, such as spots,
lesions, discoloration, or deformation.
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In the training process of FSL image classification models, the pursuit of enhanced
accuracy often leads to various training strategies. However, these strategies may not
always improve the performance of the models and may even cause over-training and
degradation. To systematically evaluate the consequences of over-training on FSL learning
models, we conducted a deliberate experiment by extending the training duration to 30
and 50 epochs, corresponding to episode numbers of 200 and 500, respectively. While this
extended training procedure yielded a modest increase in accuracy of about 2.5 percent in
our experiments, it also revealed a critical trade-off. Despite the numerical improvement in
accuracy, the predictive ability of the model trained in this way showed a significant decline,
as visually depicted in Figure 5. Figure 5 provides a visual representation of the perfor-
mance degradation observed in the BarkNetV3 and BarkVN50 models due to over-training.
Notably, these t-SNE plots reveal significant confusion between pseudo-classes, reflecting a
compromised ability of the model to discriminate between classes effectively. Furthermore,
the loss values during over-training significantly increase, on average, about 20 percent
higher than those of standard training methods. This phenomenon highlights the impor-
tance of careful model training strategies to avoid over-fitting, calls for a refined approach
to balancing accuracy and generalization in FSL classification tasks, and demonstrates the
effectiveness of our parameters setting.
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Figure 4. Class activation mapping generated via Smooth Grad CAM++. The image to the right of
each input image is calculated by Smooth Grad CAM++, with the lesion portion highlighted by a heat
map. These images were taken from publicly available disease images from the Chinese Academy of
Agricultural Research and its affiliates. Moreover, we have specially selected some images with more
complex backgrounds to confirm the effectiveness of our visual recognition process.
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Figure 5. An example of over-training. The dataset and corresponding classification accuracy are
labeled in “alpha (beta%)” format at the top of the images. Loss indicates the percentage increase
in the loss value of the model after over-training. The top and bottom columns of the image show
the changes in the test results of the models before and after over-trained on the PlantVillage and
Agricultural Disease datasets, respectively.

4. Discussion

In this paper, we demonstrated that our meta-trained model could recognize unseen
tree species and achieved high accuracy on various plant and disease datasets after fine-
tuning. The results showed that the modified PMF pipeline was able to recognize several
cross-domain datasets using generic representations and demonstrated high visual rele-
vance. Moreover, by extending the classes of different semantics within the training dataset,
our model can also be generalized to other domains, which implies broad applicability.

Our experiments were meta-trained using four backbones, in which DINO-ViT had
the highest training accuracy. We speculate that it is based on the following reasons:
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(1) The structure of DINO-ViT enables it to adapt to new domains and categories with
only a small number of labeled examples, eliminating the need for extensive retraining or
domain adaptation. (2) Unlike traditional self-supervised learning methods that require
a large memory bank to store negative samples, DINO-ViT uses no contrastive loss or
dictionary. This reduces the dependence on large-scale labeled data, which is impractical
for FSL scenarios. (3) DINO-ViT captures global context and long-range dependencies
more effectively than traditional convolutional neural networks such as ResNet. The
performance of DeiT-ViT is slightly lower than DINO-ViT. This may be because DeiT-ViT
typically requires a large amount of labeled data and a robust CNN teacher network to
achieve good results. Thus, the backbone of using DeiT-ViT for FSL may face the problem
of attentional collapse, where the model focuses on only a few tokens and ignores the
others, thus hindering its ability to capture the global context. In addition, although DINO-
ResNet combines DINO and ResNet, DINO-ResNet is still inferior to DINO-ViT in most
downstream tasks. This may be because the model is constrained by the shortcomings of
ResNet, such as limited receptive fields, spatial resolution, etc., and thus is less capable
than DINO-ViT in terms of transfer ability. Notably, instead of optimizing parameters for
training accuracy, our experiments emphasized the model’s ability to generalize to both the
test set and new datasets within the same and different domains.

Figure 3 and Table 4 show the test results of the four FSL models through quantifica-
tion and visualization, respectively. Since the dataset may lack some potential common-use
features of crop images, the BarkVN50 model can not process Agricultural Diseases effi-
ciently, and the generated images are significantly more chaotic than other types of datasets.
Similarly, the mini-ImageNet and Full-Dataest models have poor classification capabilities
for bark images due to the lack of some common-use features of tree bark images. However,
the test result of these two models is relatively good for recognizing flowers and crop
diseases. This may be because these datasets contain some images of flowers and leaves, so
the trained model has a specific classification ability for such images. It is worth mentioning
that the BarkNetV3 model achieves more consistent results both for predictions in the same
domain (bark) and different domains (plants and diseases), with clear segmentation lines
between the pseudo-classes. This indicates that the BarkNetV3 model may be more suitable
for plant and disease recognition. Therefore, although mini-ImageNet is considered a
more generalized dataset, it may not be as good as specialized datasets for classification in
some specific domains. In particular, none of the four models tested well against BarkKR.
This may be due to the small size of this dataset and the prevalent existence of images
that contain some noise, such as buildings, roads, sidewalks, and cars, which causes the
network to fail to capture the key representations.

In addition, we analyzed the visual attractiveness of the network using Smooth Grad
CAM++, and most lesion occurrence locations were highly correlated with hotspots. This
could be because these regions have more distinctive features that can help the model
discriminate between different classes of diseases. Alternatively, this could be because
these regions have more salient features that can attract the model’s attention. In either
case, this finding suggests that the model has learned some useful information about the
occurrence and distribution of plant diseases from the training data, and is also suitable
for practical field-based disease recognition applications. We believe that the success of
the model is due to the fact that bark images have rich texture and color features that
can help the model learn more discriminative and generic representations of plants. Tree
bark textures can be regarded as foundational, capturing intricate, fine-grained details: (1)
texture features can capture the fine-grained details and patterns of the bark surface, such
as cracks, scales, or ridges, which can be useful phenotypic features for identifying different
plants or diseases; (2) color features can reflect the variations and changes in the bark color,
such as green, brown, or yellow, indicating different plant health conditions or disease
symptoms. By fine-tuning the models to transfer these foundational features, they become
adept at recognizing higher-level attributes associated with crops, plants, and diseases.
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This hierarchical integration of features makes it easier for the models to understand the
interplay between the bark textures and the agricultural elements.

Compared to previous studies [30–40], our experiments achieved similar or even better
results in terms of (1) the accuracy of prediction, despite being trained from bark, our tests
on some public datasets (such as Agricultural Disease, PlantVillage, and Flowers) yielded
promising results, with an average 5-shot accuracy of about 93%; (2) the ability of domain
adaptation; while other methods may rely on more specific or domain-dependent features,
our method can adapt to different regions, environments, and seasons more effectively
than other methods; (3) the amount of data required (e.g., BarkVN50 has only 4000 images),
reduce the cost and time for data collection and annotation; and (4) the transfer capability,
as shown in the t-SNE visualization, the performance of the model is more stable in the
transfer between domains. It is important to note that, unlike previous studies on FSL in
agriculture, our work focuses on CDFSL. However, there are fewer studies in this area, so
the comparisons with similar work may not be comprehensive.

Nevertheless, the application value of CDFSL image classification in plant and dis-
ease recognition is considerably broad. When staff need to recognize a species that is not
included in the dataset, they only need to input five labeled images as learning samples,
and the fine-tuned model can be applied to the recognition of this new category. Using
this technique, staff can collect images in the field and later upload them to the server for
recognition. Through optimizing data acquisition and image processing, our FSL model
can meet the needs of fieldwork in terms of efficiency and accuracy. In addition, by accumu-
lating a large amount of data and model optimization, the model’s generalization perfor-
mance can be continuously improved, and the model can be transferred to applications in
different scenarios.

Plant and disease recognition covers a wide range of species and symptoms, and
our experiments are insufficient to generalize the features of all the classes. Thus, our
method still has some drawbacks: (1) we did not test on a CDFSL image dataset covering
multiple semantics classes in other domains, which limits the ability to use our trained
models in specific domains; (2) our method may not be able to handle some complex or rare
plants and diseases that require more specialized knowledge or features; (3) our method
may not be able to capture some contextual or temporal information that may affect plant
health or disease diagnosis; (4) the predictions or reasoning process in a transparent or
interpretable way. In our future research, we will utilize prior knowledge from similar
domains as auxiliary data to enhance both the data efficiency and generalization capability
of our model, while also conducting further optimizations of the FSL algorithm.

5. Conclusions

In this paper, we modified an effective pipeline of CDFSL for plant and disease
recognition, and analyzed and visualized the model’s performance on multiple datasets
from the same and different domains. In our experiments, we exploited the rich texture and
color features of bark images to learn more discriminative and generalizable representations
for plant and disease recognition. In addition, we used some visualization techniques to
analyze the stability of the model on the novel dataset, as well as the recognition process
of the neural network. We evaluated our method on various plant and disease datasets
and obtained similar or even better results than previous studies in terms of the ability of
domain adaptation, the amount of data required, and the transfer capability. Furthermore,
we demonstrated the effectiveness of the recognition process using Grad CAM, revealing a
strong correlation between the feature location of plant diseases and visual attractiveness.
Based on our modified PMF pipeline, integrating diverse images with various agricultural
and forestry semantics into the meta-dataset can enhance the model’s ability to generalize
comprehensive recognition features, expanding its applicability to a broader range of
application scenarios.
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