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Abstract: The accurate identification and classification of soybean mutant lines is essential for
developing new plant varieties through mutation breeding. However, most existing studies have
focused on the classification of soybean varieties. Distinguishing mutant lines solely by their seeds
can be challenging due to their high genetic similarities. Therefore, in this paper, we designed
a dual-branch convolutional neural network (CNN) composed of two identical single CNNs to
fuse the image features of pods and seeds together to solve the soybean mutant line classification
problem. Four single CNNs (AlexNet, GoogLeNet, ResNet18, and ResNet50) were used to extract
features, and the output features were fused and input into the classifier for classification. The
results demonstrate that dual-branch CNNs outperform single CNNs, with the dual-ResNet50
fusion framework achieving a 90.22 ± 0.19% classification rate. We also identified the most similar
mutant lines and genetic relationships between certain soybean lines using a clustering tree and
t-distributed stochastic neighbor embedding algorithm. Our study represents one of the primary
efforts to combine various organs for the identification of soybean mutant lines. The findings of this
investigation provide a new path to select potential lines for soybean mutation breeding and signify
a meaningful advancement in the propagation of soybean mutant line recognition technology.

Keywords: soybean; mutant lines; identification; dual-convolutional neural network; feature fusion

1. Introduction

As a crucial grain, oil, and forage crop, soybean (Glycine max L. Merr.) holds a
significant strategic position in the economic development of China. Rich in oil, protein, and
various essential nutrients, soybean plays a prominent role in human and animal diets [1,2].
Currently, the capacity of soybean self-sufficiency is very low in China, with approximately
80–85% of soybeans being imported [3]. This situation has serious implications for China’s
food security. Therefore, there is an urgent need to develop new soybean varieties that offer
high productivity and excellent quality to address the inadequacies of China’s soybean
seed industry.

Cultivar choice and breeding are widely acknowledged as the primary methods for
enhancing crop productivity [4]. Mutation breeding is known to easily achieve the devel-
opment of new variations in a shorter period, which make it widely used as an attractive
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advancement for soybean breeding programs. However, one drawback of mutation breed-
ing is the potential for creating numerous lines that are highly similar across different
classes, making it essential to conduct thorough screening and selection processes to iden-
tify and eliminate highly similar lines. Therefore, the accurate identification of soybean
cultivars, particularly mutant lines, is essential for evaluating, selecting, and producing new
soybean varieties [5]. Furthermore, soybean cultivar recognition also facilitates the study of
plant phenotypes [6]. At present, traditional methods of mutant line identification include
morphological observation, physiological and biochemical detection, and molecular marker
analysis [7,8]. However, these methods have their limitations. Morphological observation
requires extensive experience and knowledge, is highly repetitive and labor-intensive, and
its accuracy and consistency are not always guaranteed. Biochemical analysis techniques
are often destructive and costly, while developing and screening primers for molecular
markers can be challenging. By achieving the intelligent recognition of soybean mutant
lines, breeders could significantly reduce their workload and obtain more efficient and
objective identification results. Therefore, there is a need to explore a rapid, cost-effective,
and accurate method to improve the efficiency of soybean mutant line identification. Con-
volutional neural network (CNN) is a prominent deep learning architecture that can learn
features automatically from large and complex databases by processing structured arrays
of data with various deep learning architectures [9]. Deep learning has emerged as a
prominent technology within the domain of artificial intelligence and has rapidly advanced
in recent years. It has been extensively utilized in diverse fields such as product sorting [10],
behavior analysis [11,12], food [13,14], medicine [15], and other fields. Deep learning has
been proven to have exceptional capabilities in addressing real-life problems. For instance,
the automated damage diagnosis of concrete jack arch beams using optimized deep stacked
autoencoders and multi-sensor fusion [16] and the torsional capacity evaluation of RC
beams using an improved bird-swarm-algorithm-optimized 2D convolutional neural net-
work, which has successfully detected structural damage even under limited sensors and
high levels of uncertainties [17].

Over the past decade, image-based recognition methods of agricultural products have
achieved significant success with the aid of computer vision and deep learning technolo-
gies. For instance, Zhou, et al. [18] proposed a CNN-ATT model to classify wheat kernels
into 30 categories, achieving an accuracy of 93.01%. Similarly, Zhang, et al. [19] utilized
hyperspectral imaging and deep CNN to classify four corn seed varieties and demon-
strated that CNN outperforms KNN and SVM models with a testing accuracy rate of 94.4%.
Additionally, Yang, et al. [20] improved the VGG16 model to classify 12 peanut varieties
successfully. In the field of soybean classifying research, Zhu, et al. [21] utilized transfer
learning to train six pre-trained models, including AlexNet, ResNet18, Xception, Incep-
tionV3, DenseNet201, and NASNetLarge, to classify ten different soybean seed varieties,
achieving a classification accuracy of 97.2% with NASNetLarge architecture. Similarly,
Zhu, et al. [22] used hyperspectral imaging coupled with CNNs to classify three soybean
seed varieties, achieving a classification accuracy of over 90% for each variety. Li, et al. [23]
proposed a one-dimensional CNN combined with hyperspectral imaging to classify four
types of soybean varieties, achieving the highest classification accuracy of 98.79%. Re-
cently, Huang, et al. [24] designed a full pipeline for soybean seed classification using Mask
R-CNN for image segmentation and a Soybean Network (SNet) for classification. The
proposed SNet model achieved an accuracy rate of 96.2% for identifying five classes of one
soybean variety, outperforming six previous models. However, these studies have focused
on classifying soybean varieties, not mutant lines. Mutant lines are a group of soybean
plants that share high genetic similarities. Generally, the differences between varieties
are more significant than those between mutant offspring, making it more challenging
to classify soybean mutants using convolutional neural networks than traditional variety
classification. Furthermore, most existing studies have been based on single-branch models,
which are unable to analyze the fusion of features across multiple organ dimensions.
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Therefore, in this paper, we design a dual-branch framework to fuse the image features
(which are obtained by single CNN method) of pods and seeds together to solve this kind
of classification problem. There are no such methods at present to combine features from
different organs within a dual-branch framework. We employ four single classical CNNs
(AlexNet, GoogLeNet, ResNet18, and ResNet50) to extract features from three different
layers. The output features of the same layer from pods and seeds are then fused by a
concatenation method. The fused features become a feature vector, which is input into the
classifier for classification. The contributions of this article are as follows:

(1) Proposing a dual-branch CNN to fuse the image features of soybean pods and
seeds together, achieving comprehensive phenotype integration across dimensions for the
accurate identification and classification of soybean mutant lines.

(2) Identifying the most similar mutant lines and genetic relationships between certain
soybean lines using a clustering tree and t-distributed stochastic neighbor embedding algorithm.

(3) Representing one of the primary efforts to combine various organs for the iden-
tification of soybean mutant lines and providing a new path to select potential lines for
soybean mutation breeding and a meaningful advancement in the propagation of soybean
mutant line recognition technology.

2. Materials and Methods
2.1. Soybean Samples

The seeds of a Chinese domestic soybean cultivar “Hedou 12” [25] were subjected to
radiation using 150, 250, and 350 Gy doses of 60Co γ-rays to create a population of mutants.
Each group of samples consisted of 500 g soybean seeds, which were subjected to a 30 min
irradiation treatment. Nineteen advanced generation mutant lines were then selected from
this population. In this study, we examined the untreated “Hedou 12” cultivar, as well as
its 19 derivative mutant lines. Figure 1 presents images of pods and seeds for 20 types of
soybean samples. The labels and sources of the 20 soybean classes are presented in Table 1.
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Table 1. Experimental materials for soybean lines identification.

Category Irradiation
Intensity (Gy)

Pedigree
Source Category Irradiation

Intensity (Gy)
Pedigree
Source

CK \ Hedou12 141 250 14-9-2
91 150 1-1-2-1 142 250 3-1-6
104 150 5-1-1-7 143 250 14-2-2
110 150 8-7-2-2 145 150 3-1
111 150 10-3-1 151 250 14-1-11
114 250 3-1-2 154 250 14-1-14
116 250 3-6-2 156 250 14-3-1
120 250 11-2-1-2 157 250 14-8-1
121 250 14-2-1 171 250 14-11
122 250 14-2-13-2-1 174 350 15-3-9

Taking the number 122 as an example, the notation 14-2-13-2-1 describes the process
by which the seeds of Hedou12 were mutated. Specifically, the seeds were exposed to
250 Gy of radiation at the M0 generation. From the resulting mutation population, a single
plant labeled No.14 was selected at the M1 generation, and then No. 14 was planted in
rows and a single plant labeled as No.2 was isolated. This process was repeated until the
M5 generation.

2.2. Methods
2.2.1. Image Acquisition

To collect principal images of soybean pods and seeds, a scanner was employed. The
soybean samples were placed randomly on the scanner, and the adhered seeds or pods
were removed manually. During image acquisition, it was crucial to ensure that the scanner
cover plate was fully opened to create a black background. The resulting images of the
soybean pods and seeds were transferred to a computer for subsequent processing. The
scanner used in this experiment was a Canon Canoscan 8800F, which is a flat CCD scanner
with an optical resolution of 4800 dPix9600 dpi, a maximum resolution of 19,200 dpi, and a
scanning range of 216 MMX 297 mm. The images were stored on a Lenovo Thinkpad P1
Gen3 computer.

2.2.2. Image Segmentation

To obtain individual images of soybean seeds and pods without removing the back-
ground, an image segmentation step was performed. The process of image segmentation
is illustrated in detail in Figure 2. Initially, a series of original principal images were ac-
quired using the scanner (Figure 2a,e). Next, these principal images were converted into
grayscale images through grayscale processing (Figure 2b,f). The grayscale images were
then used to create binary images, with soybean seed and pod regions represented by
“1” and background regions represented by “0”, effectively isolating the seeds and pods
from the background (Figure 2c,g). Subsequently, the contour of the connected region was
retrieved to obtain the area of the region. A contour box was then selected for a single
soybean seed or pod to obtain Figure 2d,h. Finally, the selected soybean seed and pod
images within the box were mapped back to the original image and extracted as a single
image, which was then saved.

However, image segmentation usually results in individual image pixels being unable
to meet the input dimension requirements of convolutional neural networks. Directly en-
larging the image size may lead to the loss of genuine size information for individual seeds
and pods in the image. To address this issue, we developed a strategy to process the back-
ground of individual images. Specifically, we initiated the process by creating a 300 × 300
black background and subsequently assigned a value of 0 to the pixels corresponding to the
segmented single image area, in accordance with the black area of the binary image. Finally,
we overlaid the processed image onto the 300 × 300 black background image to obtain
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an “optimized” version of the image. Following the completion of image segmentation
processing, this approach yielded 4179 single pod images and 11,247 single seed images. A
comprehensive breakdown of the original dataset for every soybean pod and seed type can
be found in Table 2.
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Table 2. Number of original pod and seed images collected in the experiment.

Category Pod Seed Category Pod Seed

CK 155 377 141 220 752
91 148 820 142 199 674

104 355 375 143 193 694
110 138 620 145 225 427
111 156 518 151 170 652
114 241 577 154 225 444
116 264 411 156 209 663
120 145 565 157 263 479
121 222 457 171 269 488
122 228 436 174 154 818

2.2.3. Image Augmentation

Data augmentation is a vital method for regularization in enhancing the generalization
abilities of CNNs when it comes to image classification tasks [26,27]. This method involves
the creation of a more extensive and diverse set of training data by randomly transforming
images. Due to its high efficacy, data augmentation has become a frequently employed
technique for enhancing classification accuracy across a range of image classification
tasks [28]. The current study observed an imbalance in the number of pods and seeds
among 20 types of soybean materials, as shown in Table 2. It is important to recognize
that inadequate data can result in insufficient training of the neural network, as indicated
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in previous studies [29,30]. Moreover, imbalanced data can pose a potential threat to
the classification performance of the neural network, as found in recent research [31,32].
Therefore, to overcome these limitations, we employed data augmentation techniques to
rectify the small-scale dataset and class imbalance. Specifically, rotation, shift, flip, and
mirror operations were applied to augment the dataset. After augmentation, each class of
pods and seeds comprised 1000 individual images, randomized to a proportion of 8:1:1 for
the training set, validation set, and test set, respectively.

2.2.4. Dual-Convolution Neural Network Model Fusion Frameworks

In this section, we propose four fusion frameworks, namely dual-AlexNet, dual-
GoogLeNet, dual-ResNet18, and dual-ResNet50, which were designed to integrate deep
features of seed and pod images through dual-CNN models. The current mainstream
pre-trained models for transfer learning, including AlexNet, GoogLeNet, and ResNet, had
their network parameters pre-trained on the ImageNet dataset, and then were fine-tuned
on the dataset used in this study. The fine-tuning process involved freezing the network
parameters of several preceding convolution layers and creating a new fully connected layer
to be retrained. Feature fusion is an algorithm used to merge independent features into a
unique feature to enable easy processing [33]. The ResNet50-based dual-CNN framework
is specifically introduced and depicted in Figure 3. The architecture of this framework
consists of two identical single ResNet50 models that independently process seed and pod
images as input. The image input dimension of each channel was 224 × 224 × 3, and the
feature map was extracted from the pre-trained ResNet50 model. The features of both
pods and seeds were separately extracted from the Avg_pool layer of a single ResNet50
network, resulting in a 1 × 2048 feature matrix for each. These two feature matrices were
then concatenated directly together using a concatenate features method to form a new
1 × 4096 feature matrix, which served as the direct input for the support vector machine
(SVM) classifier. The SVM is a strong and effective machine learning model that finds broad
applicability across a variety of classification problems [34]. Recognition of soybean mutant
lines was achieved through SVM classification. It is noteworthy that the feature extraction
process of each dual-CNN comprises the selection of three distinct layers, but only the
Avg_pool layer of dual-ResNet50 is depicted in Figure 3 for illustrative purposes. In order
to ensure fairness in model comparison, this strategy was adopted by all other model
fusion methods. The detailed feature vectors extracted by four single CNN models at three
different layers and their fused feature vectors via concatenation are listed in Table 3.
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Table 3. Feature vectors extracted by four single CNN models at three different layers and their fused
feature vectors via concatenation.

Model Feature Extraction Layer
Extracted

Feature Vector
(Pod)

Extracted
Feature Vector

(Seed)
Fused Feature Vector

Dual-AlexNet
fc8 1 × 4096 1 × 4096 1 × 8192

relu7 1 × 4096 1 × 4096 1 × 8192
prob 1 × 20 1 × 20 1 × 40

Dual-GoogLeNet
inception_5b-output 1 × 50,176 1 × 50,176 1 × 100,352

pool5-7x7_s1 1 × 1024 1 × 1024 1 × 2048
prob 1 × 20 1 × 20 1 × 40

Dual-ResNet18
res5b_relu 1 × 25,088 1 × 25,088 1 × 50,176

pool5 1 × 512 1 × 512 1 × 1024
prob 1 × 20 1 × 20 1 × 40

Dual-ResNet50
activation_48_relu 1 × 50,176 1 × 50,176 1 × 100,352

avg_pool 1 × 2048 1 × 2048 1 × 4096
fc1000_softmax 1 × 20 1 × 20 1 × 40

The feature vector extracted from the pod is denoted as 1 × m, and the feature vector extracted from the seed
is denoted as 1 × n. Concatenation of the pod and seed feature vectors yields a 1 × (m + n) vector. Taking the
ResNet50-based dual-CNN model fusion strategy as an example.

2.2.5. Workflow Diagram

Figure 4 depicts a workflow schematic that outlines the methodology employed in
this research. The study involved a four-step process, beginning with data collection,
which included sample preparation and image dataset collection. Next, only seed or pod
images were used as samples to identify soybean mutant lines (not shown in the figure). In
this experiment, four classical recognition models, namely AlexNet [35], GoogLeNet [36],
ResNet18, and ResNet50 [37], were employed for training and soybean mutant lines
classification. Thirdly, four dual-CNN working strategies were implemented. The four
pre-trained CNN models from the previous step were directly applied to our proposed dual-
CNN fusion models. Each dual-CNN structure involved two identical parallel branches
and independently exploited pod and seed datasets for feature extraction. Three different
layers of each single CNN were selected for feature extraction. Finally, the extracted features
of seed and pod at the same layer, in the same single CNN, were fused and input into the
SVM classifier block for soybean line classification. The optimal strategy was selected by
analyzing the training results. Four single-CNN models (AlexNet, GoogLeNet, ResNet18,
and ResNet50) and the corresponding dual-branch CNN networks were run three times,
respectively. All single model sizes and training parameters are shown in Table 4.
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Table 4. Parameter values for training convolutional neural network models.

Model Depth Layer Size/MB Batch Size Learning Rate Validation Frequency Input Size

AlexNet 25 227 32 0.0003 64 227 × 227 × 3
GoogLeNet 144 27 32 0.0003 64 224 × 224 × 3
ResNet18 71 44 32 0.0003 64 224 × 224 × 3
ResNet50 177 96 32 0.0003 64 224 × 224 × 3

3. Results and Analysis
3.1. Comparison of Different Single Model Training Results

Initially, we solely employed images of soybean seeds or pods as cues to identify
mutant lines. All the four single CNN models completed their training after 100 epochs.
Figure 5 presents the average validation accuracy and average test accuracy of all the single
CNNs. In terms of soybean pods, all four models yielded an average validation accuracy
score ranging from 85% to 90%, with ResNet50 boasting the highest accuracy rate of 89.3%.
However, when it comes to soybean seeds, the average validation accuracy scores of the
same models were comparatively lower, ranging from 70% to 85%. Similar to soybean pods,
ResNet50 had the highest validation accuracy performance with a score of 84.8%. During
the testing phase, all four models resulted in lower accuracy scores below 80% for both
pods and seeds. Specifically, ResNet50 achieved the highest test accuracy score of 77.37%
for seeds, while ResNet18 garnered the highest test accuracy score of 71.68% for pods.
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3.2. Dual Network Selection and Evaluation

Table 5 illustrates the validation and test accuracy of various fusion frameworks. The
findings demonstrate that among the selected three different layers for feature extraction
and fusion, the four dual-CNNs exhibit improved accuracy compared to their correspond-
ing single CNNs after feature fusion. Specifically, the dual-AlexNet model demonstrated
superior classification recognition performance after extracting features of pods and seeds
from the fc8 and relu7 layers followed by feature fusion, achieving a validation accuracy
exceeding 94% and a testing accuracy exceeding 82%. The dual-GoogLeNet model ex-
hibited strong classification recognition when extracting features of pods and seeds from
the inception_5b-output and pool5-7x7_s1 layers and subsequently performing feature
fusion, resulting in a validation accuracy surpassing 95% and a testing accuracy exceeding
86%. The dual-ResNet18 model demonstrated superior classification recognition perfor-
mance after conducting feature extraction on pods and seeds at both the res5b_relu and
pool5 layers followed by feature fusion, exhibiting a validation accuracy above 95% and
a testing accuracy above 85%. The dual-ResNet50 model showed excellent performance
in classification recognition by extracting features of pods and seeds at all three feature
extraction layers for performing feature fusion, and achieved a validation accuracy over
90% and a testing accuracy over 80%, respectively. The experimental results demonstrate
that the proposed dual-ResNet50 model fusion framework, which fused the features of
pod and seed at the average pool layer, attained a classification accuracy higher than the
other three proposed dual-CNNs. Specifically, the dual-ResNet50 model achieved the
highest test accuracy of 90.22%, which was 2.2% higher than dual-AlexNet, 2.2% higher
than dual-GoogLeNet, and 2.47% higher than dual-ResNet18. The dual-ResNet50 proves
the effectiveness of the proposed strategy.

Due to the fact that accuracy is typically used for evaluating models at a global level,
it is important to apply the confusion matrix in order to analyze the specific effects of
model performance on individual category classification. Each column of the confusion
matrix represents the true attribution category, with the total amount of data in each
column representing the number of samples in that category (with a total of 100 images
per category). Each row represents the predicted category, with the total amount of data
in each row showing the predicted number of samples in that category. Diagonal values
indicate the number of samples correctly classified, while off-diagonal values indicate the
number of samples improperly classified for other categories. Figure 6 shows the confusion
matrices for each dual-CNN model, which were built based on the test accuracy of the best
feature fusion layer. As shown in Figure 6a, only two samples (91 and 157) were predicted
100% correctly, while sample 122 had the lowest prediction percentage of 37%. Notably,
40% of the images in sample 122 were incorrectly classified as sample 174. Sample 141
also performed poorly with a prediction accuracy of 43%. The remaining mutant lines had
prediction accuracies between 63% and 98%. The confusion matrix for the dual-GoogLeNet
model in Figure 6b revealed that two samples (91 and 114) were classified 100% correctly,
while sample 141 had the poorest prediction accuracy of 43%. The majority of sample 141
(52%) images were misclassified as sample 111. Sample 122 also had a poor prediction
accuracy of 58%, with 24% of the images misclassified as sample 174. Moving to the
dual-ResNet18 confusion matrix in Figure 6c, the prediction accuracy rates for samples 122
and 141 were below 45%, and 31% of sample 122 and 57% of sample 141 were misclassified
as samples 111 and 174, respectively. However, samples 91, 111, 114, 116, 157, 171, and
174 were predicted 100% correctly. In the confusion matrix for the dual-ResNet50 model
in Figure 6d, all the classes had greater than 80% prediction accuracy, except for samples
122 (50%) and 141 (45%). Notably, 34% of the sample 122 images were misclassified as
sample 174, while 50% of the sample 141 images were misclassified as sample 111. In
summary, a significant number of samples 122 and 141 across the four confusion matrices
were commonly misclassified as samples 174 and 111, respectively. Moreover, sample
91 was always predicted 100% correctly, suggesting that the non-mutant sample 91 was
notably different from the mutant offspring.
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Table 5. Comparison of accuracy of different feature fusion layer combinations and different fusion frameworks.

Accuracy (%) Replicates
Dual-AlexNet Dual-GoogLeNet Dual-ResNet18 Dual-ResNet50

fc8 relu7 prob inception_5
b-output

pool5-
7x7_s1 prob res5b_relu pool5 prob activation_

48_relu avg_pool fc1000_soft
max

Validation

1 94.10 94.20 88.50 95.95 96.75 91.75 95.80 95.60 90.55 97.50 97.90 93.75
2 94.10 94.85 87.25 94.85 95.50 91.30 96.15 96.70 90.85 96.20 97.10 93.65
3 94.85 94.80 88.85 95.80 96.50 91.85 94.25 95.75 88.80 96.70 97.80 93.15

Average 94.35 ± 0.35 94.62 ± 0.30 88.20 ± 0.69 95.53 ± 0.49 96.25 ± 0.54 91.63 ± 0.24 95.40 ± 0.83 96.02 ± 0.49 90.07 ± 0.90 96.80 ± 0.54 97.60 ± 0.36 93.52 ± 0.26

Test

1 82.70 81.75 66.10 86.80 88.35 78.10 85.70 87.40 74.05 89.90 90.30 81.05
2 83.00 83.25 67.10 85.25 87.00 75.60 87.45 88.40 78.95 87.90 89.95 80.50
3 83.55 83.25 68.40 87.10 88.70 77.45 84.75 87.45 75.05 88.70 90.40 81.45

Average 83.08 ± 0.35 82.75 ± 0.71 67.20 ± 0.94 86.38 ± 0.81 88.02 ± 0.73 77.05 ± 1.06 85.97 ± 1.12 87.75 ± 0.46 76.02 ± 2.11 88.83 ± 0.82 90.22 ± 0.19 81.00 ± 0.39

The accuracy is represented by the mean plus or minus the standard error. Data in bold indicate optimal.
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In order to provide a comprehensive evaluation of the performance of the four dual-
CNN models, we utilized Precision, Recall, and F1-Score as indicators to quantify their
classification performances. The evaluation involved four basic parameters, namely true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). The TP param-
eter represents the number of positive samples correctly identified as positive, while the
TN parameter represents the number of negative samples correctly identified as negative.
On the other hand, the FP parameter represents the number of negative samples wrongly
identified as positive, and the FN parameter represents the number of positive samples
wrongly identified as negative. Based on these parameters, the Precision (P), Recall (R),
and F1-Score are calculated as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1− Score =
2PR

P + R
(3)

Table 6 illustrates the Precision, Recall, and F-score measures of the four distinct
fusion frameworks employed in the classification of 20 types of soybeans. The average
Precision, Recall, and F-score signify the corresponding mean value of each metric across all
categories. From Table 6, it is evident that the dual-ResNet50 architecture outperformed the
other three fusion frameworks in terms of accuracy. The average Precision, average Recall,
and average F1-score for this framework were 0.9030, 0.9299, and 0.9008, respectively. In
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summary, the above results show that the proposed dual-ResNet50 fusion framework is
superior to the other three dual-CNN frameworks, making it the prime dual-CNN model
for classifying soybean mutant lines.

Table 6. Average statistical parameters of four fusion frameworks.

Method Precision
(%)

Recall
(%)

F1-Score
(%)

Dual-GoogLeNet 88.35 91.18 88.12
Dual-AlexNet 82.7 85.98 82.18

Dual-ResNet18 87.4 90.55 87.01
Dual-ResNet50 (proposed) 90.3 92.99 90.08

3.3. Feature Visualization Analysis

To determine the optimal feature extraction layer, the gradient weighted classes activa-
tion mapping (Grad-CAM) [38] method was applied to visualize the seeds and pods on the
ResNet50 network. Grad-CAM is a feature visualization technique used to generate a class
activation heat map by computing the classification gradients of the convolutional feature
maps to identify the most classification-dependent feature locations. The strength of the
activation region represents the most critical impact on the classification results. Given
that ResNet50 achieves the highest accuracy in the single model test, we selected its conv1,
res2c_branch2c, res3c_branch2c, res4c_branch2c, and res5c_branch2c layers for feature ex-
traction. The resulting Grad-CAM visualizations of example images of 5 classes of soybean
seed and pod among the 20 classes of samples are presented in Figure 7. The visualization
showed that each type of soybean sample exhibited similar patterns in feature visualization.
In the shallow layers (conv1, res2c_branch2c, and res3c_branch2c), ResNet50 extracts visual
features including contour, color, and edge. As the model layers deepen, the visual features
become vague while the abstract information increases. At the res5c_branch2c layer, the
activation regions were notably strong, suggesting that with the deepening of layers, the
features learned by deep learning become increasingly more representative.
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Figure 7. Visualization of Grad-CAM features.

Each column represents a different sample (from left to right: 104, 114, 154, 174, CK)
and each row represents a different feature extraction layer (from top to bottom: conv1,
res2c_branch2c, res3c_branch2c, res4c_branch2c, and res5c_branch2c).

3.4. Clustering Results among Soybean Mutant Lines

To further highlight the discriminative feature learning capacity of the proposed dual-
ResNet50 network, we present a two-dimensional feature visualization of 20 classes of
soybean samples. The visualization of the feature distribution difference was accomplished
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by means of the t-distributed stochastic neighbor embedding (t-SNE) algorithm, which
is a nonlinear dimensionality reduction tool, well suited for high-dimensional feature
visualization through mapping to 2-D or 3-D spaces. As displayed in Figure 8a–c, we
obtained the 2-D data visualization following dimensionality reduction. The results reveal
that certain samples, such as 156 and 157, as well as 141 and 142, share overlapping clusters.
A similar pattern was observed for 110 and 111 samples (Figure 8a), indicating a high
level of similarity in the seed features of these overlapping samples. Additionally, it was
observed that sample 110 and 104 each exhibited two piles (Figure 8a), suggesting that
these samples may not yet be homozygous. Similarly, two piles were also detected in pods
110 and 111 (Figure 8b), suggesting that there might be character segregation in the pods. It
is clear that the 2-D feature visualization generated using pods data implies less overlap in
the 2-D spatial distributions among the 20 categories than that produced using seeds data
(Figure 8a,b). In Figure 8c, similar phenomena were identified using the fusion data of seed
and pod. The resultant visualization reveals that the piles of 156 and 157 samples overlap,
and two piles are present in 121 samples.
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Cluster analysis is employed to classify samples using 3-D data and is often interpreted
with the K-means algorithm. Samples with similar features are placed in the same branch of
the dendrogram, and differences between groups are defined using heterogeneity or relative
distance values. The results of the clustering analysis indicate that the soybean samples can
be separated into four categories based on seed data: 143 and 104 samples are classified
separately, while 91 and 114 samples constitute the third category, and the remaining
samples are grouped into the fourth major category (Figure 8d). Additionally, soybean
samples can be roughly divided into three categories based on pod data: 141 samples
form a distinct class, and the second category includes samples 111, 116, 142, 151, 114, and
143, with the rest of the samples constituting the third category (Figure 8e). Furthermore,
combining seed and pod data reveals that soybean samples can be separated into four
categories: samples 122, 151, and 141 exist in separate branches, while the remaining
samples are grouped into the fourth major category (Figure 8f). Despite differences in
the data used for clustering, samples 156 and 157 always appear together, indicating a
close genetic relationship between these soybean lines. These results align with the two-
dimensional feature visualization and provide further insight into why these samples are
prone to confusion.

4. Discussion
4.1. Superiority of Dual-Branch CNN over Single Classical CNN

The dual-branch CNN model is a commonly used deep learning model for processing
multimodal data, which refers to different types of data generated by multiple sources [39].
In this model, each branch represents an independent CNN model that processes a specific
data source. The outputs of these branches are fused and used for classification or regression
tasks. Our proposed dual-branch CNN model has two separate branches, each handling a
different type of image input. The features extracted from each branch are then combined
at a later layer for the final classification. This approach has been shown to outperform
the traditional single classical CNN model, which only uses one type of image input. For
example, a study by Liu, et al. [40] showed that a dual neural network outperformed the
single neural network for the task of recognizing aluminum profile surface defects.

The advantage of the dual-branch CNN model described in this paper is that it can fully
utilize the image information of soybean pods and seeds, thereby improving classification
performance. At the same time, using multiple classic single CNN models to extract features
from different layers and fusing them together can better capture features of different scales
and complexities, thereby improving classifier performance. In our study, we specifically
mention the dual-ResNet50 framework, which achieves an exciting classification rate of
90.22%. This result is 22.47% higher than the single ResNet50 model used for pod image
identification and 12.85% higher than the single ResNet50 model used for seed image
identification. This finding has demonstrated the effectiveness of dual-branch CNN models
for soybean mutant image classification tasks. However, it is important to note that our
model has certain limitations, and future work is needed to optimize it by incorporating
weight values to adjust the linear relationships of the fitted data.

4.2. Utilization of Clustering Tree

The article reports that a clustering tree was constructed based on the K-means cluster-
ing method, which can be utilized for screening promising lines for successful mutation
breeding. Clustering analysis is a powerful technique for grouping data points based on
their similarities or dissimilarities, and the K-means algorithm is one of the most commonly
used clustering methods [41]. By constructing a clustering tree, researchers can visualize
the hierarchical structure of the data and identify clusters at different levels of granularity.
This can help in identifying potential candidates for mutation breeding, based on their
similarity to existing successful lines.

Mutation breeding is an important tool for crop improvement, and has been used
to develop new crop varieties with improved traits such as disease resistance, yield, and
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quality [42]. However, the success rate of mutation breeding is relatively low, due to
the low probability of obtaining desirable mutations and the high number of non-target
mutations. Therefore, there is a need for efficient screening methods to identify promising
lines for further study. Previous research reported constructing a pedigree clustering tree
of 20 peanut varieties using the K-means clustering method, which may aid in conducting
thorough investigations into the genetic relationships among diverse varieties [43]. In
conclusion, the construction of a clustering tree based on the K-means clustering method can
be a useful tool for screening promising lines for successful mutation breeding. However,
further studies are needed to evaluate the effectiveness of this approach in different crop
species and breeding programs.

4.3. Significance of Joint Identification of Soybean Mutant Lines

Mutation breeding is a crucial technique in soybean improvement programs to de-
velop new varieties with improved traits, such as yield, disease resistance, and nutrient
content [42]. However, the success of mutation breeding largely depends on the accurate
identification and classification of mutant lines. Any misclassification or misidentification
of mutant lines could lead to the rejection of promising lines and the selection of less
desirable ones, which can adversely affect the breeding progress. The use of advanced
technology such as deep-learning-based CNN models can help breeders to classify soybean
mutant lines rapidly and efficiently. In this study, we propose a dual-branch CNN model
that fuses deep learning features from images of soybean pods and seeds. The proposed
dual-branch CNN method is among the first attempts to jointly use images from different
organs for identifying soybean mutant lines. The identification of confusing mutant lines,
which are characterized as difficult to discern or having lower recognition rates, can be
vital in screening and subsequent research. This information holds great significance for
breeders, allowing them to consistently perform subtraction, and subsequently reduce
workload, thereby accelerating the process of breeding screening.

Our study can promote soybean mutant line recognition technology and provide a
new path to select elite lines for soybean mutation breeding. Its significance is the joint
use of images from different organs for identifying soybean mutant lines, which is a novel
approach in the field of soybean mutation breeding. This method can improve the accuracy
and efficiency of identifying elite soybean mutant lines, and ultimately contribute to the
development of soybean breeding. The use of multiple organs for identification is a more
comprehensive approach than relying on a single organ, as different organs may exhibit
varying phenotypic traits. The proposed method provides a new perspective for the
identification of soybean mutant lines, and it is expected to advance the development of
soybean breeding.

5. Conclusions

We propose a dual-branch convolutional neural network (CNN) that combines the
deep learning features of pod and seed images for the identification and classification
of soybean mutant lines. The results show that the proposed dual-branch CNNs outper-
form the corresponding single classical CNNs, and the dual-ResNet50 fusion framework
achieved an exciting classification rate of 90.22%. The clustering tree based on the K-means
clustering method can be utilized to screen promising lines for mutation breeding. The sig-
nificance of jointly using images from different organs for identifying soybean mutant lines
is highlighted, and the study sheds light on a promising new direction for the identification
of soybean mutant lines. In our future work, we will attempt to classify soybean mutant
lines solely based on seeds by taking multiple angle photos of the seed hilum surface using
various cameras, such as regular RGB cameras and depth cameras, and by various feature
fusion methods.
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