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Abstract: The mass-based metabolomic approach was implemented using GC-MS coupled with
chemometric analysis to discriminate between the essential oil compositions of six cultivars of Citrus
reticulata. The antiaging capability of the essential oils were investigated through measurement of
their ability to inhibit the major enzymes hyaluronidase, collagenase, and amylase involved in aging.
GC-MS analysis resulted in the identification of thirty-nine compounds including B-pinene, D-
limonene, y-terpinene, linalool, and dimethyl anthranilate as the main components. Multivariate
analysis using principal component analysis (PCA) and hierarchal cluster analysis (HCA) successfully
discriminated the cultivars into five main groups. In vitro antiaging activity showed that Kishu
mandarin (Km) (2.19 £ 0.10, 465.9 £ 23.7, 0.31 £ 0.01 ug/mL), Cara mandarin (Cm) (3.22 £ 0.14,
592.1 £ 30.1, 0.66 £ 0.03 pug/mL), and Wm (8.43 £ 0.38, 695.2 & 35.4, 0.79 £ 0.04%) had the highest
inhibitory activity against hyaluronidase, collagenase, and amylase, respectively. Molecular docking
studies on the major compounds validated the activities of the essential oils and suggested their
possible mechanisms of action. Based on our result, certain cultivars of Citrus reticulata can be
proposed as a promising candidate in antiaging skin care products.

Keywords: Citrus reticulata; GC-MS; antiaging; molecular docking; chemometric analysis;

industries development; drug discovery

1. Introduction

Genus Citrus belongs to family Rutaceae (Rue family) and comprises about 17 species
and distributed all over the tropical and temperate regions with numerous health bene-
fits [1]. Citrus essential oil (EO) is present in different plant parts such as peels, leaves, and
flowers. Terpenes, sesquiterpenes, aldehydes, alcohols, esters, and sterols constitute the ma-
jor classes of active compounds present in citrus essential oils. They may also be described
as mixtures of hydrocarbons, oxygenated compounds and nonvolatile residues. It is worth
noting that the essential oil composition of different citrus species is affected by various
factors such as the harvest year, due to climate change throughout the years [2], season [3],
cultivar [4], the use of different rootstocks [5], as well as the extraction technique [6,7].
Mostly, they are consumed as aroma flavor in the food industry, including alcoholic and
nonalcoholic beverages, marmalades, gelatins, sweets, soft drinks, ice creams, dairy prod-
ucts, jams, candies, and cakes [8-10]. Moreover, citrus essential oils exhibited significant
importance due to their wide range of biological activities such as antimicrobial [11-13],
antifungal [14], antioxidant [15], antidiabetic [16], antihyperlipidemic [17], anti-inflammatory,
anti-allergic [18], anticancer [19], anxiolytic [20], and insecticidal activity [21].

Citrus reticulata Blanco, one of the most commercially important species, is commonly
known as mandarin fruit [22]. It is native to China, East Asia, and Southeast Asia [23].
The name ‘Mandarin’ was provided to the C. reticulata by the Portuguese from its Chinese
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name Guanhua, to reflect its country of origin [24]. Different cultivars of C. reticulata were
traditionally used in folk medicine for the treatment of various ailments such as fever,
snakebite, stomachache, edema, cardiac diseases, bronchitis, and asthma [25]. Mandarin
oil is well-known for its broad spectrum antibacterial and antifungal actions [26-30]. Anti-
proliferative [31], antioxidant [26,32], antidiabetic [30], and schistosomicidal effects [33]
were also reported.

On the other hand, nature remains a substantial source for drug discovery for treat-
ment of major ailments as well as in the development of cosmetic products. Currently, the
use of natural ingredients in cosmetics is widely spread compared with the synthetic alter-
native, due to their wide safety margin, potential antioxidant, anti-inflammatory, and skin
soothing effects. Interestingly, many of the commercial and medical skin aging creams con-
tain essential oils, herbal extracts, and other natural ingredients which meet the increased
demand in the market for herbal-based cosmetics [34]. Moreover, the promising antioxi-
dant activity of various citrus essential oils encouraged us to study the anti-collagenase,
anti-hyaluronidase, and anti-elastase capabilities to prove their antiaging potential in an
attempt incorporate it safely as a natural ingredient in management of age-related skin
problem [35-37]. Additionally, the essential oil composition of different C. reticulata culti-
vars showed a significant difference in their chemical constituents [38,39]; thus, a compara-
tive metabolic profiling of poorly studied cultivars is needed for the selection of a good
quality cultivar that can be used in improving and upgrading of essential oil composition.
The present study targeted a comparative metabolic profiling of the essential oil compo-
sition of six cultivars of Citrus reticulata leaves cultivated in Egypt using GC-MS and the
study of their potential antiaging activity aiming to discover a natural ingredient that can
be incorporated safely in antiaging skin care products.

2. Results and Discussion
2.1. Extraction and Distillation of the Essential Oils

Hydrodistillation of C. reticulata fresh leaves cultivars yielded a pale-yellow oil. The
yield was expressed as the weight of the oil per 500 g fresh leaves and varied from 0.078 to
0.232% w/w (Table 1).

Table 1. Citrus reticulata cultivars, codes, and yield % (w/w).

Citrus reticulata Cultivar Cultivar Code Yield % (w/w)
Avana Apriena mandarin Am 0.232
Balady mandarin Bm 0.220
Cara mandarin Cm 0.124
Willow leaf mandarin Wm 0.078
Sunburst mandarin Sm 0.130
Kishu mandarin Km 0.151

2.2. Metabolic Profile of the Essential Oils

The chemical composition of the essential oils obtained from six cultivars of C. reticulata
leaves were analyzed using GC-MS. The chemical compounds identified, Kovats indices,
and percentages (average of three replicates for each sample) for each cultivar are displayed
in Table 2. Monoterpenes hydrocarbons were predominant in all cultivars (36.38-86.45%),
oxygenated monoterpenes and sesquiterpenes were present at a lower percentage, other
classes of compounds were reported in a high percentage represented chiefly by dimethyl
anthranilate in Am (56.51 + 1.06%), Bm (58.77 4+ 2.04%), and Wm (49.06 + 1.94%) cultivars.
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Table 2. Metabolic profiles of Citrus reticulata leaves cultivar EO by GC-MS.

No. R¢ Compound Name Kleyp 2 Klep b Content% Molecular
Am Bm Cm Wm Sm Km Formula
1. 7.19 a-Thujene 911 911 0.97 £ 0.05 0.67 £0.17 1.37 +0.03 1.55 + 0.63 0.73 £0.12 1.08 + 0.07 CqoHig
2. 7.38 a-Pinene 918 918 2.54 +0.12 1.85 + 0.49 3.76 + 0.07 3.72 +£0.98 2.93 £+ 0.65 3.77 +£0.17 C10His
3. 7.82 Camphene 933 933 0.03 + 0.01 0.01 + 0.02 0.06 & 0.01 0.05 + 0.01 0.09 + 0.01 0.18 £ 0.01 CyoHze
4. 8.61 B-Thujene 962 962 - - - - - 3.34 +£0.10 CqoHis
5. 8.68 B-Pinene 965 965 2.48 +0.11 1.80 £ 0.38 6.34 + 0.06 3.53 + 0.68 3424 +350 19.62 +0.37 C1oHz1e
6. 9.13 B-Myrcene 981 981 0.44 +0.02 0.16 = 0.15 1.13 + 0.07 1.10 £ 0.21 5.16 £ 0.21 0.89 £ 0.11 C1oHis
7. 9.52 o-Phellandrene 995 995 0.06 £ 0.00 0.02 £+ 0.03 0.13 £ 0.04 0.04 £ 0.00 0.20 £+ 0.00 0.13 £ 0.09 CqoHig
8. 9.72 3-Carene 1002 1002 0.06 + 0.00 0.04 +0.01 0.03 + 0.03 0.01 4+ 0.01 0.02 +0.01 - C1oHz1e
9. 9.90 2-Carene 1008 1008 0.28 +0.01 0.20 + 0.04 1.03 £ 0.04 0.45 + 0.03 354+ 0.16 0.69 + 0.04 CyoHie
10. 10.08 p-Cymene 1014 1014 245 £ 0.10 1.74 + 0.31 2.29 +0.08 3.11 £ 0.02 - 2.29 +0.09 CioHa
11. 10.17 m-Mentha-6,8-diene 1017 1019 - - - - 4.124+0.18 - Cq10His
12. 10.29 p-Limonene 1020 1021 10.22 +0.18 7.85 + 1.50 10.03 +0.27  12.49 +0.21 - 6.34 + 0.04 CyoHze
13. 10.59 trans-f3-Ocimene 1030 1031 0.06 £+ 0.01 0.10 £+ 0.06 0.12 £ 0.01 0.41 £ 0.02 0.31 £0.01 0.06 £ 0.01 CioHis
14. 10.92 cis-B-Ocimene 1041 1041 0.36 £ 0.02 0.27 £+ 0.02 8.29 +0.25 1.99 + 0.01 11.31 + 0.62 2.81 +0.10 C1oHis
15. 11.23 v-Terpinene 1051 1052 19.37 £ 0.3 21.04 £ 036  48.56 + 1.01 19.42 + 0.50 6.19 £+ 0.31 17.92 + 0.26 CyoHie
16. 11.53 trans-Sabinenehydrate 1060 1062 - - - - 0.22 +0.02 0.03 +0.01 C1oH180
17. 12.15 a-Terpinolene 1080 1082 0.61 £ 0.05 0.63 £+ 0.03 331 +0.14 1.20 +0.14 1.12 + 0.09 1.78 + 0.07 C1oHis
18. 12.28 p-Cymenene 1085 1085 - - - - - 0.41 +0.14 CqoH12
19. 12.54 Linalool 1093 1093 - - 5.18 +0.34 0.53 £ 0.06 16.8 + 1.49 22.20 +0.43 C1oH180
20. 13.22 Cis-Sabinenehydrate 1115 1116 - - - - 0.40 £+ 0.05 0.02 £+ 0.00 C1oH180
21. 14.85 Isocamphopinone 1167 1168 - - - - - 0.03 £ 0,00 CyoH160
22. 14.95 Terpinen-4-ol 1170 1171 0.24 £+ 0.02 - 0.08 £0.13 0.19 £ 0.03 1091 £ 1.35 0.81 £ 0.01 Cq1oH180
23. 15.38 o-Terpineol 1184 1184 - - - 0.17 + 0.04 0.50 + 0.05 0.79 £ 0.01 C1oH180
24. 16.64 Anisole 1227 1227 - - - 0.20 £ 0.02 - 1.11 £ 0.01 C;HgO
25. 18.38 Thymol 1288 1288 - - - - - 10.98 + 0.27 Cq1oH140
26. 18.50 Carvacrol 1292 1292 - - - 0.36 = 0.04 - - CyoH140
27. 19.59 o-Elemene 1330 1330 - - - 0.01 £ 0.01 - 0.07 £ 0.01 Ci5Hyy
28. 21.12 B-Elemene 1384 1385 0.28 £ 0.01 0.24 +0.02 5.54 +0.10 0.11 £ 0.01 0.64 £+ 0.06 0.06 £ 0.01 Ci5Hoy
29. 21.62 Dimethyl anthranilate 1401 1402 56.51 +1.06  58.77 4+ 2.04 0.02 4+ 0.02 49.06 + 1.94 - - CoH11NO,
30. 21.90 -Caryophyllene 1412 1413 2.90 + 0.09 438 £0.51 1.36 £ 0.01 - 0.30 + 0.03 0.82 +0.01 Ci5Hpy
31. 22.82 a-Caryophyllene 1448 1448 0.09 £ 0.01 0.19 £+ 0.09 0.60 £ 0.01 0.19 £ 0.01 0.07 £ 0.01 0.09 £ 0.01 Ci5Hoy
32. 23.37 -Chamigren 1470 1473 - - 0.03 4+ 0.00 - - - Ci5Hpy
33. 23.53 Germacrene D 1476 1476 - - - - - 0.02 &+ 0.00 Ci5Hyy
34. 23.69 -Selinene 1482 1483 - - 0.07 £0.01 - - - Ci5Hoy
35. 23.94 d-Guaiene 1492 1493 0.03 + 0.00 0.04 +0.01 0.30 £+ 0.01 0.08 + 0.01 - 1.06 £+ 0.02 Ci5Hpy
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Table 2. Cont.
No. R¢ Compound Name Kleyp 2 Klep b Content% Molecular
Am Bm Cm Wm Sm Km Formula
36. 24.18 a-Selinene 1501 1501 - - 0.23 £+ 0.01 - - - Ci5Hpy
37. 24.26 «-Farnesene 1505 1505 - - - - - 0.22 + 0.02 Ci5Hpy
38. 24.59 o-Cadinene 1517 1517 - - 0.04 £ 0.00 - - 0.12 £ 0.00 Ci5Hpy
39. 26.18 Caryophyllene oxide 1579 1579 - - - 0.02 + 0.00 - 0.02 + 0.02 C15H,4,0
Monoterpene hydrocarbons (%) 39.93 36.38 86.45 49.07 69.96 61.31
Oxygenated monoterpenes (%) 0.24 - 5.26 1.25 28.83 34.86
Sesquiterpene hydrocarbons (%) 3.30 4.85 8.16 0.39 1.01 2.46
Oxygenated sesquiterpenes (%) - - - 0.02 - 0.02
Others (%) 56.51 58.77 0.02 49.26 - 1.11
Total identified (%) 99.98 100 99.89 99.99 99.80 99.76

2 Kovats index determined experimentally on RTX-5 column relative to C8-C30 n-alkanes. ® Published Kovats retention indices. Identification was based on comparison of the
compounds mass spectral data (MS) and Kovats retention indices (RIs) with those of NIST Mass Spectral Library (2011), Wiley Registry of Mass Spectral Data 8th edition and literature.
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Generally, thirty-nine compounds were tentatively identified including B-pinene,
D-limonene, y-terpinene, linalool, and dimethyl anthranilate as the main components.
A great variability in the percentage of the chemical composition among different cultivars
was observed. For example, 3-pinene content was dominant in Sm cultivar (34.24 =+ 3.50%)
followed by Km cultivar (19.62 £ 0.37%), while in Wm, Am, and Bm it constitutes only
3.53 £ 0.68%, 2.48 + 0.11%, and 1.80 £ 0.38% of the essential oil content, respectively. The
highest D-limonene content was found in Wm cultivar (12.49 £ 0.21%) while it was totally
absent in Sm cultivar. y-Terpinene was present in all cultivars with amount varying from
48.56 £ 1.01% in Cm cultivar to 6.19 £ 0.31% in Sm cultivar. The highest amount of linalool
was present in Km (22.2 £ 0.43%) and represented its major component, contrarily it was
absent in Am and Bm. Additionally, certain compounds were present exclusively in certain
cultivars in an appreciable amount, for example, m-mentha-6,8-diene was identified only
in Sm and accounted for 4.12 + 0.18% of its essential oil content, while (3-thujene and
thymol uniquely found in Wm, displayed 3.34 £ 0.10% and 10.98 =+ 0.27% of its essential
oil content, respectively.

Previous studies were concerned with the chemical composition of C. reticulata leaf es-
sential oils. Lota et al. (2000) reported the variation in the content of y-terpinene (0.2-61.3%),
dimethyl anthranilate (trs-58%), sabinene (0.2-59.4%), linalool (0.2-54.3%), limonene (1.5-
44.3%), p-cymene (tr—20.4%), $-ocimene (0.6-13.7%), 3-pinene (0.1-10.7%), and terpinen-4-
ol (0.1-10.6%) among forty-one mandarin cultivars [39]. Moreover, the chemical composi-
tion of the essential oils obtained from the leaves of six C. reticulata cultivars grown in Nige-
ria showed a discrepancy in the content of sabinene (1.4-39.7%), y-terpinene (0.7-32.8%),
p-cymene (0.3-27.4%), 3-carene (tr-11.6%), and [-ocimene (3.2-19.7%) [24]. These
reports validate the difference in the essential oil content between the investigated man-
darin cultivars as stated in our study. Another study performed by Karioti et al. (2007) on
Nigerian C. reticulata displayed a predominance of y-terpinene (53.0%) and linalool (16.1%)
in the leaf essential oil [40], this amount of y-terpinene is comparable to that found in Cm
cultivar, while linalool percentage was near that found in Sm and Km cultivars.

In agreement with our results, Fleisher et al. (1990) reported dimethyl anthranilate
as the major constituent of balady mandarin (Bm) which is accredited to 58.77 & 2.04% of
Bm oil content in our study [41]. Previous work on C. reticulata grown in Egypt, reported
dimethyl anthranilate (65.3%) as a key component of the leaf essential oil followed by y-
terpinene (19.8%) and limonene (4.5%) [29]. These data are in line with the result of Am, Bm,
and Wm essential oils. On the other hand, C. Blanco et al. (1995) reported linalool (52.66%),
limonene (8.32%), and trans-B-ocimene (7.87%) as the major constituents of Colombian
C. reticulata leaf oil, these components were found in our studied cultivar ranging from nil
to 22.20% for linalool, from nil to 12.49% for limonene, and from 0.06 to 0.31% for trans-f3-
ocimene [42], which reveal that a difference in the geographical distribution between oils
obtained from the same species marks a variation in the essential oil composition.

2.3. Chemometric Analysis Based on GC-MS Analysis

Due to the complexity and high dimensionality of GC-MS-based data comprising
both qualitative and quantitative variances among different citrus cultivars, multivariate
analysis was applied using principal component analysis (PCA) and hierarchal cluster
analysis (HCA) to discriminate between closely related cultivars, as well as to detect
any significant relationship between them [43]. A matrix of the total number of samples
and their replicates (18 samples) multiplied by 39 variables (GC/MS peak area %) was
constructed in MS Excel®, then subjected to multivariate analysis (PCA and HCA). Owing
to the large number of variables, PCA was applied first to reduce the dimensionality of the
multiple data set in addition to removing the redundancy in the variables, utilizing raw
data (Peak area % for each compound as in Table 2). Figure 1a,b represents PCA score and
loading plots based on GC-MS metabolic profiles of different citrus cultivars, respectively.
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Figure 1. PCA score plot (a), loading plot (b), HCA dendogram (c) based on GC-MS metabolic
profiles of different citrus cultivars based on the identification of volatile compounds displayed in
Table 2. Refer to Table 1 for cultivar abbreviations.

PCA score plot (Figure 1a) explained about 96% of the variation in the dataset by the
first two PCs, where PC1 accounting for 76% and PC2 for 20% of the variance. Different
C. reticulata cultivars were assembled into four main groups on three different quadrants.
Cultivars Cm, Sm, and Km were positioned on negative PC1, where Cm was positioned
on the upper left quadrant. However, Sm and Km were placed on the lower one, well-
discriminated from each other. Through clear investigation of the PCA score plot, it was
observed that cultivars Am, Bm, and Wm were located on positive PC1, closely related
to each other, where Am and Bm were superimposed on each other. The loading plot
(Figure 1b) displayed the main discriminating markers responsible for PCA score plot
pattern. I'-Terpinene, linalool, and 3-pinene were the key markers accountable for the
segregation of Cm, Km, and Sm, respectively. However, dimethyl anthranilate was the
compound responsible for the closeness of Am, Bm, and Wm cultivars.
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Additionally, HCA was applied as an unsupervised pattern recognition method to
confirm results obtained by PCA. The dendrograms displayed in Figure 1c, revealed segre-
gation of different citrus cultivars into five main clusters. Cluster I, II, and III displayed Km,
Sm, and Cm, respectively. HCA dendrograms revealed the closeness of Wm (Cluster IV) to
Am and Bm that were grouped together in cluster V. HCA results endorsed that of PCA.

In an attempt to explore the ability of multivariate analysis to discriminate between
closely related cultivars (Am, Bm, and Wm), PCA was applied on the GC-MS metabolic
profiles of these three cultivars solely. Figure 2a,b displayed PCA score plot and loading
plot, respectively. PCA score plot (Figure 2a) explained about 98% of the variation in the
dataset by the first two PCs, where PC1 accounting for 95% and PC2 for 3% of the variance.
Am, Bm, and Wm were completely segregated from each other in three different quadrants,
where Am and Bm were positioned on PC1 on the right side of the plot confirming that
they are closely related to each other in comparison with Wm that was located on negative
PC1. Upon examination of the loading plot (Figure 2b), it was observed that dimethyl
anthranilate was the major marker responsible for discriminating Am from other cultivars
(Bm and Wm). However, y-terpinene and {3-caryophyllene were the main distinctive
markers accountable for Bm cultivar segregation. Nevertheless, no distinctive marker
was recognized in the loading plot for the separation of Wm. From this study, it was
concluded that complete metabolic profile is mandatory for discrimination between closely
related cultivars. For example, dimethyl anthranilate was the major component in the three
cultivars (Am, Bm, and Wm); however, by applying multivariate analysis, it was observed
that this marker could only discriminate Am from other cultivars. Similarly, regarding
v-terpinene is present approximately in the same percentage in the three cultivars; however,
it discriminated Bm cultivar from other cultivars.
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Figure 2. PCA score plot (a), loading plot (b) based on GC-MS metabolic profiles of Am, Bm, and
Wm cultivars based on the identification of volatile compounds displayed in Table 2. Refer to Table 1
for cultivar abbreviations.
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2.4. In Vitro Antiaging Activity

The antiaging capability of C. reticulata leaf cultivars essential oil was assessed via mea-
suring their hyaluronidase, collagenase, and elastase enzyme inhibitory activity (Figure 3).
Hyaluronic acid is one of the major building blocks of soft connective tissues that have a
crucial role in maintaining the elasticity and moisture content of the skin, thus reducing
wrinkles [44]. Hyaluronidase enzyme converts hyaluronic acid to small oligosaccharide
moieties, consequently inhibitors of hyaluronidase are useful in hydrating the skin and
delaying the aging process [45,46]. Among the tested cultivars Km and Cm were the most
active with an ICsg value of 2.19 4 0.10 and 3.22 =+ 0.14 pg/mL, respectively, followed by
Wm (IC5 = 8.43 £ 0.38 png/mL) compared with the standard 6-O-palmitoyl-L-ascorbic acid
exhibiting an ICsq of 1.56 & 0.07 pg/mL. It is worth noting that Km cultivar showed no
significant difference from the standard.
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Figure 3. (a) Hyaluronidase, (b) collagenase, and (c) elastase inhibitory activity of C. reticulata leaf
essential oil cultivar. The results are expressed as the mean + SD, n = 3. Asterisks indicate significant
differences from the standard drug (*, ***, ****, p < 0.05, p < 0.0009, p < 0.0001).

Collagen is considered the most abundant protein in the body and plays a crucial
role in the structural support, elasticity, strength, and flexibility of the skin connective
tissue. Collagenase an enzyme in the matrix metalloproteinase responsible for degrading
collagen and thus inhibition of collagenase affects the elasticity of the skin and delays the
wrinkling process. Km showed the highest inhibitory action on collagenase with an ICs
value of 465.9 & 23.7 with no significant difference from the standard phenathroline used
(ICs50 = 423.2 £ 21.5 pg/mL). Whereas, elastin protein found in the connective tissue and
catalyzed by elastase enzyme is the chief component of elastic fibers and preserves skin
elasticity. Elastin degradation is accelerated by age and UV radiation due to the increase in
the elastin action, resulting in skin aging [47]. In vitro elastase inhibitory activity revealed
that Km, Cm, and Wm were the most active cultivars with ICsq of 0.31 £ 0.01, 0.66 + 0.03,
and 0.79 + 0.04 pg/mL, respectively. However, Km only showed no significant difference
from the standard FK 706 used with ICsj of 0.15 & 0.01 pg/mL.

It is obvious from our results that Cm, Km, and Wm exert a promising inhibitory
action against tested enzymes. These results may be explained by the difference in the
chemical composition of Km and Cm and their segregation from other cultivars as dis-
played in the PCA score plot and HCA. The pronounced activity of Km might be accred-
ited to the thymol (10.98 & 0.27%) content uniquely found in this cultivar and linalool
(22.20 £ 0.43%) present in the highest percentage in Km. The high y-terpinene content
found in Cm (48.56 & 1.01 pg/mL) compared with other cultivars might be the reason
beyond its enzyme inhibitory activity. Regarding Wm activity, we could not attribute its
antiaging activity to the dimethyl anthranilate content only (49.06 &= 1.94 ug/mL), but
also to the synergistic effect of the whole essential oil component, as Am and Bm cultivars
showing nearly similar dimethyl anthranilate content displayed lower inhibitory activity
on the studied enzymes.

2.5. In Silico Molecular Docking Studies on the Target Enzymes

The promising inhibitory activity of certain C. reticulata cultivars essential oil against
hyaluronidase, collagenase, and elastase encouraged us to conduct a docking study of
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the major identified compounds with the enzymes of interest. This study aimed to dis-
cover the potential binding modes in which the essential oils exert its inhibitory action.
The major compounds identified were docked into the 3D coordinates of hyaluronidase,
collagenase, and elastase using the following PDB IDs: 1fcv, 456¢, and 6qeo, respectively.
The applied docking parameters were validated by re-docking each co-crystalized ligand
into its corresponding active site. The calculated RMSD values between the docked pose
and the co-crystalized pose were 0.63, 0.72, and 0.99 A for hyaluronidase, collagenase, and
elastase, respectively, ensuring the validity of the docking protocol. The re-docking of
each co-crystalized ligand resulted in docking scores of —8.1, —9.6, and —10.4 Kcal/mole
for hyaluronidase, collagenase, and elastase, respectively. The docking of the major com-
pounds to the three enzymes resulted in good acceptable scores, comparable to those of
the reference compounds. Table 3 summarizes the docking scores of essential oils major
compounds against the three potential target enzymes and their corresponding docking
scores.

Table 3. Docking score of major compounds of C. reticulata cultivars with hyaluronidase, collagenase,
and elastase binding sites.

Docking Score with ~ Docking Score with ~ Docking Score with

Compound Name Hyaluronidase (1fcv) Collagenase (456¢) Elastase (6eoq)
Kcal/mole Kcal/mole Kcal/mole

o-Pinene -7.1 —6.8 —-59
p-Limonene —5.8 -7.3 —6.8
cis-B-Ocimene —6.6 —-7.3 —74
y-Terpinene 7.1 7.1 —6.9
Linalool -8.1 -7.9 -9.1
Terpinen-4-ol -7.3 —74 —6.7
Thymol —-9.8 —10.2 —12.3
Dimethyl anthranilate —-8.2 —8.6 —-8.0

Interestingly, thymol, dimethyl anthranilate, and linalool and were the most active
compounds on the three targets, achieving respective scores of —9.8, —8.2,
and —8.1 Kcal/mole with hyaluronidase, —10.2, —8.6, and —7.9 Kcal/mole with colla-
genase, and —12.3, —8.0, and —9.1 Kcal/mole with elastase, respectively. Inspecting
Figure 4, thymol interacted through hydrogen bonds with Asp111, Glul13, Tyr184, Tyr227,
and GIn271 and hydrophobic interaction with Trp301, dimethyl anthranilate was found
to interact with hyaluronidase through hydrogen bonds with Asp111 and Tyr227 and hy-
drophobic interactions with Trp267 and Trp301. Similarly, linalool interacted by hydrogen
bonds with Asp111, Glul13, Tyr227, and GIn271 and hydrophobic interaction Trp301. As
depicted by Figure 5 the top three compounds strongly interacted with the collagenase
enzyme in which, thymol forms hydrogen bonds with Gly237, Ala238, and Phe241, besides
hydrophobic interaction with Leu239 and Thr245, dimethyl anthranilate formed hydro-
gen bonds with Ala238, Leu239, 11e243, Tyr244, and Thr245 in addition to hydrophobic
interaction with Thr245, while linalool formed six hydrogen bond interactions with Ala238,
Phe241, 11243, Tyr244, and Thr245. Moreover, Figure 6 shows that thymol interacted
with Thr41, Cys42, and Cys191 through four hydrogen bond interactions, in addition to
one hydrophobic interaction with His57, dimethyl anthranilate engaged in six hydrogen
bond interactions with Cys42, His57, and Cys58 found in the active site of the elastase,
while linalool interacted through hydrogen bond interactions with Thr41, Cys42, GIn192
and Ser195, in addition to hydrophobic interaction with His57. In conclusion, the three
compounds namely, thymol, dimethyl anthranilate, and linalool had the best ability to
strongly interact with the three enzymes hyaluronidase, collagenase, and elastase, achiev-
ing acceptable docking scores that sometimes exceeded those of the reference compounds.
These acceptable scores were achieved through the establishment of many hydrophobic
and hydrogen bond interactions. It is worth noting that thymol having the best docking
scores in all tested enzyme was identified only in Km, this explains why it exhibited the
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highest in vitro enzyme inhibition action. Thus, the observed strong binding interactions
validated the activities of the essential oils and suggested their possible mechanisms of
action.

Figure 6. Binding modes of thymol (a), dimethyl anthranilate (b), and linalool (c) with elastase.

3. Materials and Methods
3.1. Plant Material

Leaves were randomly collected from different trees for each cultivar (6 cultivars of
Citrus reticulata), cultivated under the same climatic conditions and during the fruit ripening
stage from Citrus Department botanical garden (geographical coordinates: 30.020111741763642,
31.206797515343563), Horticulture Research Institute, Agriculture Research Center, Giza,
Egypt (Table 1). All leaves were collected at the same phenological stage (spring growth
cycle) in March 2021 (10 days after flowering, 10th week of the year). Plant materials were
botanically identified by Prof. Gamal Farag Abdel Rahman, Head of Citrus Department.
Voucher specimens of all collected samples were kept at the Pharmacognosy Department,
Faculty of Pharmacy, Ain Shams University with codes (PHG-P-CR-391 to PHG-P-CR-396).

The type of the soil was light clay soil, (the temperature was about 25 °C with slight
rain). The trees were 20 years old, where approximately 5 to 7 trees were used for leaves
sampling for each cultivar. The distance of plants between the lines were approximately
1.5 m and 1 m on the line. Phosphate and organic fertilizers and agricultural sulfur
were used. Phosphate fertilizers were added in the form of mono-superphosphate at a
rate of 30 kg per feddan, during the months of December and January mixed with fully
decomposed municipal fertilizers (15-20 m? per feddan) and 100 kg of agricultural sulfur
until it decomposed before the spring season. Trees were irrigated by immersion every 30
to 45 days.
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3.2. Hydro-Distillation of the Essential Oil and GC-MS Analysis

Entire fresh leaves (500 g) were submitted to hydro-distillation within 2 days from
collection for 3 h using a Clevenger type apparatus. The oils obtained were recovered,
weighed, dried over anhydrous sodium sulfate, and stored in amber and air-tight sealed
vials at —20 °C until use. The yield (expressed in % (w/w)) was calculated based on the
initial plant weight. The essential oils were analyzed one week after hydro distillation
on GC-MS (Shimadzu GCMS-QP 2010, Koyoto, Japan) equipped with Rtx-5MS capillary
column (30 mlength x 0.25mm i.d. x 0.25 um film thickness) (Restek, Bellefonte, PA, USA).
The oven temperature was kept at 45 °C for 2 min (isothermal) and programmed to 300 °C
at 5 °C/min and kept constant at 300 °C for 10 min (isothermal); injector temperature was
250 °C. Helium was used as a carrier gas with the constant flow rate set at 1.41 mL/min.
Diluted samples (1% v/v) were injected with a split ratio 15:1, and the injected volume was
1 pL. The MS operating parameters were as follows: interface temperature: 280 °C; ion
source temperature: 200 °C; EI mode: 70 eV; scan range: 35-500 amu. Each sample
was analyzed in triplicate [48]. Different compounds of the essential oils were compre-
hended with the aid of the NIST 05 database (NIST Mass Spectral Database, PC-Version
5.0, 2005, National Institute of Standardization and Technology, Gaithersburg, MD, USA).
The Automated Mass Spectral Deconvolution and Identification System (AMDIS 2.64,
NIST Gaithersburg, MD, USA) deconvoluted the measured mass spectra. The spectra
of individual components were transferred to the NIST Mass Spectral Search Program
MS Search 2.0 where they were matched against reference compounds of the NIST Mass
Spectral Library 2005.

3.3. Multivariate Analysis

The data obtained from GC-MS were subjected to chemometric analysis, Principal
Component Analysis (PCA) was applied as an initiative step in data investigation to afford
an overview of all cultivar variability and to identify markers responsible for this variation.
Hierarchal cluster analysis (HCA) was then utilized to allow clustering of different cultivars.
The clustering patterns were built by applying the complete linkage way. This exhibition is
more effective when the distance between samples (points) is computed by the Euclidean
method [49]. PCA and HCA were accomplished using CAMO's Unscrambler® X 10.4
software (Computer-Aided Modeling, AS, Oslo, Norway).

3.4. In Vitro Antiaging Activity
3.4.1. Hyaluronidase Inhibition Assay

The assay was performed using hyaluronidase inhibitor screening assay kit QuantiChrom™
(BioAssay system, CA, USA) following the manufacturer’s protocol. The assay was based
on a turbidimetric reaction by measuring the amount of hyaluronic acid hydrolyzed. In
brief, hyaluronidase from bovine testes (Sigma-Aldrich) was prepared freshly in 0.1 M
acetate buffer. Serial dilutions of the essential oils were performed using DMSQO. Forty
microliters of hyaluronidase were transferred in each well of a 96-well plate then 20 uL of
tested essential oil was added. The plate was incubated for 15 min at room temperature,
then 10 pL substrate and 35 uL buffer were added to the plate, mixed, and incubated
for 20 min at room temperature, the decrease in turbidity was measured spectrophotom-
etry at 600 nm. 6-O-Palmitoyl-L-Ascorbic Acid (Sigma-Aldrich) was used as a standard
hyaluronidase inhibitor.

3.4.2. Collagenase Inhibition Assay

The fluorometric collagenase inhibitor screening kit (Biovision, Catalog # K833-100,
CA, USA) was used in the assay following the kit protocol. The kit utilizes Self-Quenched
BODIPY conjugate of Type-B gelatin as a fluorogenic substrate to monitor the activity of
collagenase. Serial dilutions of the essential oil and the standard (1,10)-Phenanthroline
were mixed with 5 uL diluted collagenase and 44 uL collagenase buffer. Fluorescence was
measured at 490/520 nm in a kinetic mode at 37 °C for 30-60 min.
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3.4.3. Elastase Inhibition Assay

Elastase inhibitory activity was measured following the kit protocol (Molecular Probes’,
Catalog # E-12056 EnzChek®, Leiden, Netherlands). In brief, fifty microliters of the reaction
buffer (pH 8 Tris-HCL buffer) were added into each well together with 50 pL of 100 ug/mL
DQ™ elastin substrate working solution to provide a final substrate concentration of
25 pug/mL. Serial dilutions of the oils were added, mixed, and incubated for 30 min at
room temperature. Fluorescence intensity was measured using a fluorescence microplate
reader equipped with standard fluorescein filters. FK706 was used as a standard elastase
inhibitor [50,51].

3.5. Statistical Analysis

All experiments were carried out three times in triplicate. Data are expressed as
mean =+ standard deviation. The IC5( values were calculated, and the results were presented
using GraphPad Prism® software (Version 7, graph-Pad software Inc., San Diego, CA, USA).

3.6. In Silico Molecular Docking Study

The docking studies were conducted using Molecular Operating Environment (MOE
2019.02) Software [52,53]. The X-ray crystal structures of hyaluronidase, collagenase, and
elastase were downloaded from the protein data bank using the following PDB IDs: 1fcv,
456c¢ and 6qeo, respectively. Hydrogens and charges of the receptors were optimized using
AMBER10: EHT embedded in MOE software. The binding site of the three enzymes was
constructed where the corresponding co-crystalized ligand is bound. Major compounds
identified in the essential oils were sketched using the 2D builder of MOE2019 and con-
verted to 3D structures using the same software. Compounds were docked into the EGFR
binding domain using triangular matcher and London dg as a placement and scoring
methods, respectively. At last, 2D and 3D interaction diagrams were generated by MOE to
analyze the docking results.

4. Conclusions

Metabolic profiling of the essential oils of C. reticulata leaf cultivars resulted in the
identification of thirty-nine compounds including (-pinene, D-limonene, y-terpinene,
linalool, and dimethyl anthranilate as the main components. Qualitative and quantitative
variabilities among the chemical composition of different cultivars was observed using PCA
and HCA, which indicate that a complete metabolic profile is mandatory for discrimination
between closely related cultivars. Cm, Km, and Wm exerted a promising inhibitory action
against tested aging enzymes. In silico studies on the major compounds confirmed the
activities of the essential oils and suggested their possible mechanisms of action. From
our study we can conclude that certain cultivars of Citrus reticulata can be proposed as a
promising candidate for incorporation in antiaging skin care products.
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