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Abstract: The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas
of selenium and iodine deficiency determine the high significance of functional food production with
high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and
I is especially attractive. Nevertheless, in practice this topic has raised many problems connected
with the possible utilization of many Se and I chemical forms, different doses and biofortification
methods, and the existence of wide species and varietal differences. The limited reports relevant
to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation
of the results obtained up-to-date, useful for developing further future investigations. The present
review discusses the outcome of joint plant Se–I biofortification, as well as factors affecting Se and
I accumulation in plants, paying special attention to unsolved issues. A particular focus has been
given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions
between the latter microelements and arbuscular-mycorrhizal fungi (AMF).

Keywords: selenium; iodine; agricultural crops; sprouts; AMF

1. Introduction

An adequate consumption of essential elements, such as Fe, Zn, Se, and I is one of the
most important factors for maintaining good human health conditions. Among the above-
mentioned elements, Se and I draw special attention due to the close relationship between
their metabolism in mammals, where the fundamental function of Se is its presence in
the active center of triiodothyronine deiodinases, involved in the biosynthesis of thyroid
hormones [1–3], in addition to its participation in other enzymes involved in antioxidant
defense: glutathione peroxidases, thioredoxin reductase, selenophosphate synthetase and
some special proteins (Sel P, W, etc.) [4]. This fact entails the need to optimize the joint
Se–I consumption levels associated with food products for guaranteeing thyroid and
reproductive functions, improving immunity, and protecting against viral, cardiovascular
diseases and cancer [1,4]. The biofortification of agricultural crops with both elements
is especially attractive, as the biofortified plants are able to increase antioxidant defense
of humans in addition to the presence of other natural antioxidants such as vitamins,
polyphenols, carotenoids, etc. [5,6]. Moreover, plants can convert highly toxic inorganic soil
Se forms into well-absorbed organic derivatives with more powerful protective effect [7].
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Considering the widespread Se and I deficiency within the populations of many countries
worldwide [8], the importance of the joint plant Se–I biofortification is apparent [9].

Based on the literature reports indicating a high variability of the results and the
complexity of this topic, the present review is aimed both to provide the current status and
to trigger future investigations relevant to the joint Se–I biofortification of agricultural crops,
so as to develop and implement the technology of functional food production enabling to
decrease, at least partially, the ecological risks connected with the deficiency of these two
microelements.

2. Consumption Levels

The main sources of Se and I for plants are soil and precipitation, with the latter
providing a significant transfer of the two elements from the surface of sea and oceans [7].
Phytoplankton activity is one the most important sources of these elements entering the
atmosphere predominantly as volatile methylated forms [7]. Though neither Se nor I
are essential to most known plants, they are vital for several sea microalgae species [10].
Although I compounds are transferred with aerosols to remarkable distances from the
seashore, the inland regions in the world always suffer from lack of I causing global
problems of I deficiency [11], which along with the wide distribution of Se-deficient soils,
results in serious ecological risks.

In this respect, the agrochemical biofortification of plants with Se and I is especially
attractive, since it provides a chance to produce functional food products with a significant
content of well-assimilated forms of trace elements and other natural antioxidants. Fur-
thermore, most of agricultural crops belong to non-accumulators of these elements and
therefore are highly sensitive to toxic Se–I levels, thus providing the so-called ‘buffer effect’
preventing human toxicities in case of overdosing during biofortification [12]. In general,
the inhibition of plant growth due to toxic levels of Se and I is a well-known phenomenon
occurring in many agricultural crops [12,13]. The nutritional role of Se and I, their par-
ticipation in plant antioxidant defense as well as in the improvement of sugar levels, the
risk of their toxicity, have been appropriately described in previous reviews [12,13]. Some
examples of Se and I beneficial effects, reported in recent papers, are presented in Table 1.
The data indicate the attractiveness of Se and I application to different agricultural crops,
including vegetables, fruit trees and spices, and show the possibility to increase not only
Se and I content, but also antioxidant levels. Furthermore, the evaluation of consumers’
willingness to purchase Se and I biofortified apples indicates the preference of biofortified
fruits compared to Se and I food supplements [14].

Table 1. Several examples of Se and I beneficial effects on plant growth (2019–2021 data).

Species Dose and Method of
Application Beneficial Effect References

Selenium

Cucumber 1–5 µM Na2SeO3
Seedling exposure

Increase of seedling tolerance to water deficiency, by
increasing the activities of the antioxidant enzymes

and decrease of plasma membranes damage
[15]

Kohlrabi Foliar supply Na2SeO4
50–100 mg L−1

Increase of stem weight (by 1.35–1.61 times), yield
(1.37–1.66 times), monosaccharide (1.59–2.24 times),
ascorbic acid (1.54–2.01 times) and total phenolic (by

1.23–1.37 times) levels

[16]

Quinoa
2.5 and 5 mg L−1 soil

application at early plant
growth stage

Growth parameters, relative water content,
photosynthetic pigments, proline, total soluble sugars,

and antioxidant enzyme activities (superoxide
dismutase, catalase, peroxidase, ascorbate peroxidase,

glutathione reductase) increase, and decrease of
malondialdehyde and H2O2 content.

[17]
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Table 1. Cont.

Species Dose and Method of
Application Beneficial Effect References

Pea
10 µM Na2SeO3 or

20 µM Na2SeO4
in nutrient seedlings exposure

Protection against pea aphid Acyrthosiphon pisum [18]

Tobacco 10 µM Na2Se03
Seedling’s exposure

Increase of biomass and antioxidant capacity and
reduced uptake of Cd. Higher auxin concentrations at

Cd uptake compared with lack of Se supply
[19]

Sesame Foliar supply, 5 mg L−1, pot
experiment

Maintaining the number of leaves and increase proline
accumulation, plant biomass, and grain weight

per plant
[20]

Apple Foliar 0.15 kg Se ha−1

(Na2SeO4)
Increase in TP, TAA and polyphenol oxidase activity [21]

Iodine

Strawberry 100 µM KIO3
bi-weekly

Enhancement of salt stress tolerance, increase in GSH
and APX activity, P, K and Ca, Mn, ascorbic acid and I

accumulation
[22]

Tomato 5–10 µM KI, 5-iodo salicylic
acid nutrient solution

Reduction of ascorbic acid and increase of
dehydroascorbic acid content in leaves. Significant
increase of ascorbate peroxidase activity only with

10 µM of KI and 5-iodo salicylic acid

[23]

Potato
Soil application of KI and

foliar application of KIO3 in
doses up to 2.0 kg I ha−1

Increased content of I with no decrease of starch or
sugar content. The highest efficiency of iodine

biofortification was noted with KIO3 foliar spraying at
2.0 kg I ha−1

[24]

Apple, pear 0.5 kg KIO3 ha−1 foliar
application

Increase of total soluble solids content of fruits up to
1.0 Brix [25]

Abbreviations: TAA: total antioxidant activity; TP: total polyphenols.

In general, Se content in most agricultural crops, known to be non-accumulators of
Se, may be increased up to 0.2–3000 mg kg−1 d.w. without growth inhibition, depending
on the Se form and dose [12], as it also happens for I supplementation [11]. Considering
the 80–90% water content in most vegetables and the daily Se and I requirements (Table 2),
such biofortification values are capable to fulfill up to 100% of the Se and I adequate
consumption levels.

Table 2. Needed and sufficient levels of Se and I consumption in humans and the appropriate ratios
between the two elements [26,27].

Daily Se Requirement (µg) Daily I Requirement (µg)

Infants 10–15 40–80
Children (1–10 years) 15–30 100–140

Adolescents 45–70 180–200
Adults 60–70 200

Pregnant women 60 230
Breastfeeding women 75 260

Upper limit 300 600

3. Selenium and Iodine Biochemical Characteristics

Se and I are not essential for plants but, thanks to their antioxidant properties, they are
able to protect plants from different forms of oxidant stress and at certain concentrations
may serve as growth stimulators [5,13]. On the other hand, according to Shelford’s law of
tolerance [28], the impact of any environmental factor on a living organism has its own
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optimum, outside of which, with an excess or deficiency of the influencing component, the
inhibition of growth and development will be manifested.

In plants, the aforementioned threshold referred to Se and I is species- and variety-
dependent, which determines significant differences in the enrichment efficiency with these
microelements [16,21,25,29,30].

As a sulfur analog, Se has several forms with different valences: selenates (+6), se-
lenites (+4), organic derivatives (–2; for instance, selenium containing amino acids) and
elemental selenium (0; for instance, selenium nanoparticles). The known chemical forms of
I are iodides (–1), iodates (+5) and derivatives of aromatic amino acids (–1) (Figure 1).
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Figure 1. The main chemical forms and sources of Se and I used for plant biofortification and mechanisms of their absorption.

The assimilation of both Se and I is achieved with the participation of appropriate
protein-transporters (Figure 1): sulfate transporters for selenates, amino acid transporters
for Se organic forms, and phosphorous and silicon transporters for selenites [31]. The
accumulation of Se nanoparticles is inversely correlated with the particle size. Moreover,
in plants, Se nanoparticles (NP) are freely oxidized to Se+4 and later transformed to seleno-
cystine (SeCys)2, Se-methyl-selenocysteine (MeSeCys), and selenomethionine (SeMet) [32].
As far as iodine compounds are concerned, their assimilation is achieved via chloride
transporters, Na-K/Cl transporters (I2, CH3I, KI, KIO3), and apparently via amino acid
transporters for organic I forms [31]. Another way of I assimilation is the absorption of
volatile iodine derivatives by vegetable waxes [33].

All these forms of Se and I are used for producing vegetables fortified either with Se
or I [11,31].

Under joint application of the two elements, the range of their chemical forms used is
limited to selenates (+6), selenites (+4), and also iodates (+5) and iodides (–1) [9].

The up-to-date results relevant to the joint plant biofortification with Se and I are
presented in Table 3.
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Table 3. Examples of joint selenium and iodine biofortification of agricultural crops.

Object Chemical Forms of
Elements Doses Results (Se and I Content) Se–I

Interaction Ref.

Foliar application of Zn, I, Se, Fe Cocktail

Wheat
10 cultivars

ZnSO4+ KIO3
+

Na2SeO4+Fe, EDTA
0.05% KIO3

0.001% Na2SeO4

No significant effect on grain yield
(338 µg Se kg−1; 249 µg I kg−1)

Decreased I levels via cocktail
supply compared to single I

application
[29]

Rice
7 cultivars

ZnSO4
KIO3

Na2SeO4
FeEDTA

0.05% KIO3
0.001% Na2SeO4

(5 countries)

No effect on grain yield
(90-584 µg Se kg−1; 101-335 µg I kg−1) No data [30]

Sprouts

Common buckwheat
(microgreens)

SeO3
2-

SeO4
2-; I−; IO3

−
10 mg Se L−1

1000 mg I L−1

Under Se–I combined treatment,
microgreens yield was 50–70% higher than
with Se and I singly (Se and I reached the
contents of 0.24µg g−1 DW and 216 µg g−1

DW, respectively)

Se decreased I by 50%, and I
increased Se by 50% [34]

Pea KI, KIO3 + Na2SeO3,
Na2SeO4

1000 mg I L−1

10 mg Se L−1

No effect on chlorophyll accumulation and
a slight decrease of biomass (3.9–14.1 µg

Se g–1 DW; 152–247 µg I g–1 DW)

No significant relationship
between elements [35]

Pumpkin Seed soaking + foliar
application in the field

10 mg Se L−1,
1000 mg I L−1

Enhanced germination, no effect on yield
(0.8–2.3 µg Se g−1 DW; 288–323 µg I g−1

DW)

Synergism in sprouts; I
increased seed Se

accumulation
[36]

Chervil Na2SeO4 + KIO3
KI+ (SeCys)2

5 µM
Growth stimulation and TAA/TP increase
only for KIO3+ Na2SeO4 (0.89–0.90 µg Se

g−1 DW; 0.29–0.46 µg I g−1 DW)

No significant relationship
between elements [37]
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Table 3. Cont.

Object Chemical Forms of
Elements Doses Results (Se and I Content) Se–I

Interaction Ref.

Hydroponics

Lettuce
Na2SeO4, KIO3

Salicylic
acid

30 mg I m−3;

8.5 mg Se dm−3,

SeMet and sugar increase, no effect on
biomass; root Рincrease and Mg decrease;
the effect is dose-dependent (7.8–10.4 mg
Se kg−1 DW; about 250 mg I kg−1 DW)

No data [38]

Lettuce
6 varieties

KIO3
Na2SeO3

Salicylic acid

5 mg I L−1

0.5 mg Se L−1
High varietal differences (7.5-13.7 µg Se

g−1 DW; 75.1–304.7 µg I g−1 DW) No data [39]

Spinach KIO3
Na2SeO4

10 µM I
50 µM Se

I-Se transfer factor: 3.5 to 13.4 (3–13 mg Se
kg−1 FW; 10–25 mg I kg−1 FW)

I did not influence Se
accumulation and vice versa [40]

Potato

KIO3
Na2SeO3

Salicylic acid
(SA)

39.4 µM I
6.3 µM Se

I, Se, SA did not affect tubers yield; 1 mg
SA L−1 + (I+Se) resulted in the highest I
tuber content; SA did not affect Se; N, K,

Na increased and Mn, Zn decreased (100 g
of fresh tubers provide 444–489% RDA Se

and 47–71% RDA I)

No data [41]

Soil application

Carrot KI
Na2SeO4

4 kg I ha−1 +
0.25 kg Se ha−1

Low effect of Se and I on biochemical
characteristics of roots; 100 g of

biofortified carrots substantially cover the
RDA for I and Se

No data [42]

Carrot KI
Na2SeO4

4 kg I ha−1 and 0.25 kg Se
ha−1

Fertilization had no effect on yield
(7.24 mg Se kg−1 DW; 1.47 mg I kg−1 DW)

(juice)
No data [43]

Lettuce

Na2SeO3
Na2SeO4

KI
KIO3

2.5 kg I·ha−1 +
0.5 kg Se·ha−1

SeMet and SeCys2 increase; higher
biofortification level for KI and Na2SeO4
(9.4–86.7 mg Se kg−1; 4.2–4.7 mg I kg−1)

Decrease of I and Se
accumulation under joint

application
[44]
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Table 3. Cont.

Object Chemical Forms of
Elements Doses Results (Se and I Content) Se–I

Interaction Ref.

Foliar application

Chicory KI,
KIO3, Na2SeO3, Na2SeO4

10 mg Se salt L−1;
1000 mg I salt L−1

No effect on plant biomass
(73–85 µg Se kg−1 DW; 75 µg I kg−1 DW)

I increased Se+4 accumulation
but decreased that of Se+6 [45]

Pea KI
KIO3 Na2SeO3 Na2SeO4

1000 mg I L−1

(KI or KIO3)
10 mg Se L−1 (Na2SeO3 or

Na2SeO4)

No growth depression (up to
0.18–0.19µg Se kg−1 DW; >2% RDA for I)

Se+4 increased I in pea leaves,
roots and pods; Se+6

increased seed I−
[46]

Kohlrabi
Na2SeO3, Na2SeO4

KI
KIO3

1 g I L−1,
10 mg Se L−1

Se increased chlorophyll and carotene
content; I increased anthocyanins;

(100 g of fresh tubers provide 1.38–8.5%
RDA Se and 0.79–2.01% RDA I)

Se had antagonistic effects on
accumulation of I in leaves. [47]

Indian mustard
Field experiment

KI
Na2SeO4

50 mg Na2SeO4 L−1

100 mg KI L−1

Al, B increased; Cd, Sr decreased; NO3
−

decreased especially under joint Se–I
application;

8.6 mg Se kg−1 DW; 2.8 mg I kg−1 DW

I and Se synergism under
separate supply and no effect
under joint Se–I application

[48]

Chickpea
Na2SeO4

KI
AMF inoculation

100 mg KI L−1

50 mg Na2SeO4 L−1
Improvement of yield;

3305 µg Se kg−1 DW; 15 µg I kg−1 DW

Increase of Se and I
fortification level by AMF;

Se–I synergism
[49]

Apple, pear KIO3, Na2SeO4
0.5 kg KIO3 ha−1

0.05 kg Na2SeO4 ha−1

51% and 75% of the biofortified I was
localized in the apple and pear peel,
respectively; 20–30 µg Se kg−1 FW,

500–600 µg I kg−1 FW

No effect of Se on I
accumulation [25]

Abbreviations: TAA: total antioxidant activity; TP: total polyphenols; RDA: recommended daily allowance.
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Attempts to quickly solve the deficiency problem of a whole set of trace elements,
such as Se, I, Fe, Zn, in the conditions of different countries worldwide, were achieved in
cereals (10 wheat cultivars and 7 rice cultivars) in 2019 and 2020, using foliar application
of elements cocktail. These works revealed the efficiency of such biofortifications, but
lack of significant effect on wheat yield and just a slight increase of rice yield [29,30]. In
those conditions, the multiplicity of microelements used did not allow the evaluation
of their interaction, particularly between Se and I. The only exception was a decrease of
I accumulation in wheat under microelements cocktail utilization, compared to singly
potassium iodide supply [29]. However, interesting prospects of agrochemical enrichment
of cereals with several elements, recorded in these studies, have not solved the issue
relevant to both choosing the optimal enrichment conditions to increase the yield and to
identify in deeper detail the relationships between the elements applied. In this respect, the
utilization of only two components, Se and I, provides greater opportunities for the solution
of the abovementioned problems, though the approach remains still rather complex due
to the wide range of either chemical forms of these elements or technological methods
of supplementation. The main approaches to this study were: (1) seed germination in
presence of Se and I salts; (2) supply of Se and I to soil; (3) hydroponics; and (4) foliar
application of these microelements (Table 3).

4. Different Technological Approaches
4.1. Sprouts and Microgreens

The success of Se enrichment of various agricultural crop seedlings [50,51] and the
popularity of this functional food among the consumers stimulated the investigations of
joint Se and I application to sprouts. The data presented in Table 3 indicate that at similar
Se and I dose the biofortification effect caused by these elements on sprout biomass is
closely species-dependent. Indeed, the highest biomass increase was recorded in buck-
wheat sprouts, where joint Se–I application provided 50–70% higher microgreens biomass
compared to samples singly treated with Se and I [34]. In similar conditions, the joint
application of Se and I caused a slight inhibition of pea sprout development compared to
plants fortified separately with Se and I [35]. Though the latter authors proposed to use the
soaked seeds for planting, such an approach may cause significant risks for birds due to Se
toxicity. Pumpkin sprout treatment with combined sodium selenate and potassium iodide
at the same concentrations improved seed germination but did not affect yield [36].

Chervil seeds, highly sensitive to high concentrations of Se, increased seedling root
length in conditions of sodium selenate and potassium iodate application at concentrations
of 5 µM (that corresponds to about 1 mg sodium selenate per L), while both joint and
separate application of potassium iodide and sodium selenate resulted in growth inhibi-
tion [37]. It is significant that under these conditions the total antioxidant activity (TAA)
and polyphenol content (TP) in seedlings increased only under KIO3 and KIO3 + Na2SeO4
supply, indicating the development of oxidant stress (Table 4).

Table 4. Selenium and iodine content, and antioxidant status of chervil seedlings under separate and
joint application of selenium and iodine [37].

Treatment Se
µg kg−1 d.w

I
µg kg−1 d.w.

TAA
mg GAE g−1 d.w.

TP
mg GAE g−1 d.w.

Control (water) 81 ± 8b traces 14.89 ± 1.7a 8.12 ± 1.1a
Na2SeO4 850 ± 84a traces 12.9 ± 1.4a 7.4 ± 0.6a

KI 86 ± 9a 443 ± 115a 14.5 ± 1.5a 8.2 ± 0.9a
Na2SeO4 + KI 890 ± 91a 288 ± 75a 12.9 ± 1.4a 7.3 ± 0.6a

KIO3 85 ± 8b 327 ± 85a 19.9 ± 2.0b 12.6 ± 1.5b
Na2SeO4 + KIO3 900 ± 92a 460 ± 120a 17.8 ± 1.9b 11.7 ± 1.9b

Abbreviations: TAA: total antioxidant activity; TP: total polyphenols. Within each column, values with the same
letters do not differ statistically according to Duncan test at p < 0.05.
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In the aforementioned conditions, the Se–I interaction was also highly variable under
the joint application of the two elements. Indeed, in pea and chervil seedlings there was
no relationship between the two elements (Tables 3 and 4). Joint application of Se and I to
buckwheat seedlings increased Se and decreased I content by twice compared to seedling
supplied singly with Se and I [34]. In pumpkin seedlings a synergism between Se and I
was recorded, while mature plants under joint Se–I supply showed the increased levels
of Se but not of I, compared to separate supplementation of the two elements [36]. The
results indicate that Se–I interaction is highly species-dependent, suggesting the remarkable
genetic influence on this phenomenon. However, the lack of a general pattern indicates the
need for further investigations for disclosing the factors raising the plant behavior differ-
ences in a wide range of species, especially those mainly used for production of seedlings
and microgreens (broccoli, radish, cauliflower, cabbage, kale, kohlrabi, mustard, mizuna,
cress, etc.) [52,53]. In addition, according to Galieni et al. [53], a priority target might
be represented by species of Brassicacea, Asteracea, Amaranthaceae, Boraginacea, Con-
volvulaceae, Malvaceae, Poaceae, Lamiaceae, Leguminosae, Onagraceae and Portulacaceae
families. In this respect, special attention should be paid to the effect of Se–I biofortification
on antioxidant characteristics of sprouts and microgreens, as the latter are known for
their extremely high levels of antioxidants due to the stimulating effect of germination
on secondary metabolites biosynthesis and phytochemical content increase [54]. Such
an approach may open new horizons in production of functional food, highly valuable
both for maintaining good human health conditions and preventing various diseases. At
present, these opportunities of joint Se–I sprout biofortification are still to be achieved.
Furthermore, the information gained from such investigations may give additional benefits
for evaluating the species differences in plant tolerance to different forms of Se and I, as
well as the patterns of Se–I relationship in plants.

4.2. Hydroponics

Hydroponics or soilless is another technological approach providing strict control of
crop growing conditions and minimizing the effect of environmental factors. Four studies
of joint Se–I biofortification in soilless conditions [38–41] demonstrated the stimulating
effect of salicylic acid on I accumulation. Furthermore, in conditions of joint Se–I hydropon-
ics application, the activation of Se organic forms biosynthesis (SeMet, SeCys) reportedly
takes place [38,41]. Though phytohormones are known to participate in plant Se accumula-
tion [55,56], induce enrichment of chlorella with omega-3 fatty acids [57], take part to plant
protection against heavy metals uptake [40,58], the investigations of Smolen et al. [38–41]
did not reveal any significant interaction between salicylic acid and Se.

Experiments with Arabidopsis thaliana revealed that micromolar concentrations of I are
beneficial for biomass accumulation and lead to early flowering, regulating the expression
of several genes mostly involved in the plant defense response, and may be incorporated
into proteins both of shoot, participating in the photosynthesis, and of roots associated
with some peroxidase activities [13].

Unfortunately, no direct data on phytohormones participation in plant I accumulation
are available, except the Smolen experiments with salicylic acid [38,39] (Table 3). Joint
biofortification of lettuce with Se and I under salicylic acid supply resulted in the enhance-
ment of leaf sugar content and changes in phosphorus and manganese accumulation in
roots [38], and like in other technological approaches, great varietal differences in Se and I
accumulation were reported [39]. The latter authors, in experiments with potato, revealed
an increase in tuber N, Na and K content and a decrease of Mn and Zn.

4.3. Selenium/Iodine Soil Application

Great success in the utilization of Se-containing fertilizers in Finland [59] for optimiz-
ing human Se status led to attempts to incorporate Se and I in plants via soil application.
The reason for the scant data regarding soil Se–I supply for joint biofortification of agri-
cultural crops is connected with the complexity of environmental factors affecting the
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enrichment process, such as soil characteristics and microbial community, and intensive
I absorption by soil components [60,61]. Appropriate investigations on soil Se–I bioforti-
fication developed by Smolen on lettuce and carrot, may be considered fundamental in
this respect. These works revealed a higher efficiency of KI and Na2SeO4 supply compared
to KIO3 and Na2SeO3 use. Despite a significant increase in SeMet and SeCys content
in lettuce leaves due to joint Se–I application, the authors demonstrated a decrease in
Se and I concentration in joint experiments compared to the separate application of the
two elements [43]. Furthermore, joint biofortification of carrot with Se and I resulted in a
decrease of sugar, carotenoids and dry matter in roots, without any significant effect on
root yield and lack of Se–I interaction. The abovementioned results indicated the need of
utilizing other technological approaches for producing vegetables enriched with Se and I.

4.4. Foliar Biofortification

Among different methods of joint Se–I biofortification, foliar application of the two
elements is maybe the most interesting, although the technology of such enrichment raises
some risks due to Se toxicity. As shown in Table 3, five out of six examples of Se–I supply
demonstrated significant Se–I interaction. Interestingly, while pea sprouts decreased their
biomass due to joint Se–I supplementation, foliar application of the same doses improved
the biomass of mature pea plants. Supposedly, the application of lower Se–I concentrations
should be used for sprouts compared to mature plants. Indeed, the same phenomenon
was noted for Se biofortification of chervil: 25 mg Se L−1 concentration was optimal for
mature plants [37,62] and toxic for chervil sprouts and only 1 mg Se L−1 did not affect the
sprout biomass.

Notably, foliar application of the two elements resulted in significant Se–I interaction
compared to the hydroponic conditions which did not cause significant effects of the joint
Se–I supply, and only 50% of the investigations relevant to sprout Se–I biofortification
revealed the existence of Se–I relationships. Foliar biofortification technology demonstrated
that Se–I interaction is highly species-dependent. Indeed, while Se–I joint foliar biofortifi-
cation of chicory resulted in the increase of selenite (Se+4) accumulation and decrease of
selenate (Se+6), kohlrabi demonstrated antagonism between these elements contrary to pea
with typical Se–I synergism. Se–I synergism in Indian mustard was demonstrated only in
case of separate Se and I application but not in conditions of joint Se–I application [48]. Such
multidirectional data indicate the necessity to conduct research on different agricultural
crops under the same growing and enrichment conditions, since only such an approach
can provide an adequate assessment of the specific characteristics of the plant response to
joint enrichment with microelements.

4.5. The Role of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting
Bacteria (GPB)

The successful AMF utilization combined with the joint Se–I biofortification of chick-
pea [63] is one of the most promising approaches to the issue solution. Indeed, most of
terrestrial plants demonstrate intensive symbiosis with AMF, capable to improve mineral
nutrition (predominantly N, P, and K), accessibility to water, and stress resistance, due to
enormous enhancement of root surface via fungi hyphae. Literature reports indicate that
AMF may also be beneficial in microelements accumulation and enhancement of plant
antioxidant status [64]. In this respect, special attention has been paid to the improvement
of Se accumulation. It is supposed that the resulting phenomenon is connected with the
fact that sulfate and phosphate transporters are decoded also by AMF genome [65–67],
causing improvement of sulfur, phosphorus, and also Se accumulation, as selenates are
accumulated via sulfate transporters, while selenites via phosphate transporters (Figure 1).
The obtained, up-to-date results revealed several mycorrhizal fungi participating in the
improvement of Se accumulation in host-plants: Glomus claroideum, G. fasciculatum, G. in-
traradices, G. mosseae, G. versiform, Rhizophagus intraradices, Funneliformis mosseae, Alternaria
seleniiphila, Alternaria astragali, Aspergillus leporis, Fusarium acuminatum, and Trichoderma
harzianum [68]. AMF can increase Se accumulation in plants either in ordinary conditions
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of low environmental Se or under Se supply [49]. The enhancement of Se and antioxi-
dants content under AMF supply was recorded in asparagus [69], shallot plants [70] and
A. cepa [49].

In case of joint Se–I biofortification of chickpea [64], a significant improvement of Se
and I accumulation took place under conditions of joint foliar application. Furthermore,
both phenolics content and TAA were also improved; interestingly, the improvement of
plant antioxidant status was recorded both without and under Se and/or I supply. The
antioxidant properties of I, its close relationship with Se metabolism in mammals, and the
difficulties of plant joint biofortification with Se and I reveal the significance of these results
as a new technological tool for producing functional food with high antioxidant, Se and
I levels.

Notably, the successful AMF utilization associated to the joint Se–I foliar biofortifi-
cation of chickpea seems not to be linked only with changes in elements accumulation
from soil. One of the possible explanations for this phenomenon may be connected with
possible changes in plant hormonal status. Indeed, significant differences in Se accumula-
tion described earlier in male and female forms of spinach [56] and hemp [71], as well as
the positive effect of salicylic acid on Se–I accumulation [38,39], supports this hypothesis
which would require further investigations to be proved.

Utilization of plant growth-promoting rhizobacteria for plant biofortification with
microelements is another promising method for improving plant Se status and, in the latter
respect, successful investigations in this field were carried out on wheat [72,73], lettuce [74]
and Indian mustard [75,76]. Indeed, plant growth-promoting bacteria may be beneficial
both for improving the Se status and enhancing the protection against environmental stress
factors. No reports are available up to date on the effect of GPB on I accumulation.

5. Prospects of Iodine and Selenium Biofortification

From a practical point of view, the development of highly specific functional food
products with remarkable concentrations of Se and I is connected to a rather small produc-
tion volume. In this respect, sprouts and microgreens enriched with Se and I, and endowed
with a high content of other antioxidants should be especially valuable. At present, a
higher production of Se–I enriched mature plants seems to be possible either with AMF or
phytohormones application, but both approaches need intensive investigations.

The rather controversial above-described reports relevant to the efficiency of plant
joint Se–I biofortification open new fields of scientific discoveries. The strategy of further
investigations should be based both on the state-of-the–art Se–I biofortification and on
the peculiarities of separate plant enrichment with Se and I, especially the latter which is
currently the mostly studied. A short list of possible directed investigations in joint Se–I
biofortification of plants is reported below (Table 5).

The assessment of joint Se–I effect on N, P, S, Si and V relationship should be the
priority (Figure 1), considering the known intensive Se effect on N, P and sulfur metabolism
and participation of Si-transporters in Se accumulation. A second research target is con-
nected with the close relationship between I and V in algae [77]. Among terrestrial plants,
Artemisia species demonstrate a weak correlation between I and V accumulation (r = 0.624;
p < 001; n = 14) [78]. A highly significant correlation was recorded in our research with
mushrooms in Moscow region (Russia) (Figure 2).
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Figure 2. Relationship between I and V content in fruiting body of several edible mushrooms in
Moscow region (Russia): Lactarius pubescens (1,4); Leccinum scrabum (3); Paxillus involutus (5,6,8,10);
Leccinum auranticum (7); Morchella esculenta (9); (r = 0.912, p < 0.001, n = 10 9 (unpublished data).

As mushrooms belong to the plant kingdom, the relationship revealed in Figure 2
is significant considering that the interaction between I and V in plants has been poorly
investigated up to date. In fact, only Smolen and coworkers [77] have tried to use this
interaction for plants biofortification with I. In other investigations this relationship has
not been given the appropriate importance. Taking into account the significant inter-taxa
differences in I uptake [79], interesting results may be obtained in plants with high V accu-
mulation ability, which in addition to carrot [42] and buckwheat [34], are also represented
by parsley, pepper [80,81], spinach and fennel [82], radish and rocket [79]. Furthermore,
it should be considered that V is also deemed a beneficial element for higher plants, par-
ticipating in biosynthesis and metabolism of nitrogen compounds and improving plant
growth [81,83,84]. The investigation of Grzanka et al. [77] revealed a growth stimulating
effect of V and I on sweetcorn development through separate and joint I–V application,
and a negative effect of joint biofortification on plant mineral composition.

Furthermore, the protection effect of Se against plant biotic and abiotic stress including
heavy metals uptake should be highlighted. This approach might become especially
interesting in contexts of Se–I interaction and joint biofortification.

A further focus should be given to the effect of joint Se–I biofortification on plant
antioxidant status, including accumulation of sugars which are known also to participate
in plant antioxidant protection [85].

The results presented in this work indicate that a restricted number of species was
used for joint Se–I biofortification, which entails the need for further determinations of
the biofortification efficiency in widespread agricultural plants, such as tomato, onion,
garlic, parsley, pepper, etc. Moreover, new discoveries relevant to organic Se forms and Se
nanoparticles (NPs) efficiency in joint Se–I biofortification are expected.

Finally, a special interest regards the interaction between Arbuscular Mycorrhizal
Fungi (AMF) inoculation and Se–I biofortification in other agricultural crops.
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Table 5. Fields of new discoveries.

Basic Points
Promising Directions

Known Facts References

Close relationship of Se with N, P, S, Si
accumulation [86] Effect of N, P, S, Si on the efficiency of Se–I

biofortification
Protective role of Se against biotic and abiotic

stresses including heavy metals [65,87] Se–I biofortification under oxidant stress

Close relationship of Se, sugar and
antioxidants accumulation [5,88] Effect of Se–I biofortification on sugar and

antioxidants accumulation
Stimulation of I accumulation by vanadium

(sweetcorn) [77] Effect of V on the efficiency of Se–I
biofortification

Separate biofortification of tomato, pepper and
onion with Se and I [11,24,48,89,90]

Joint Se–I biofortification of tomato, onion,
pepper and garlic (vegetables widely used by

the population)
Increase in Se accumulation by AMF and

growth promoting bacteria; a single example of
Se–I biofortification of chickpea under AMF

supply

[63,91,92]
Efficiency of AMF and growth promoting

bacteria application on joint Se–I
biofortification of different agricultural crops

High efficiency of plant biofortification with
organic selenium (SeCys)2 and Se

nanoparticles
[32,56,70,93] Efficiency of (SeCys)2 and Se NP utilization in

joint Se–I biofortification of plants

Division of plants to hyperaccumulators,
indicators and non-accumulators of Se; with
low and high iodine accumulation capacity

[7,79,94]
Efficiency of joint Se–I biofortification of

hyperaccumulators, for Se hyperaccumulators
and I accumulators in particular

From a practical point of view the present knowledge of Se–I interaction in plants
indicates the actual possibility of industrial production both of sprouts and microgreens and
of several agricultural crops fortified with these elements, and emphasizes the importance
of wide AMF utilization capable not only to increase plant yield and quality, but also to
enhance the accumulation of Se and I.

6. Conclusions

Despite the attractiveness of the joint Se–I biofortification of agricultural crops, un-
fortunately this issue has been poorly studied and further investigations are needed for
identifying the mechanism of Se–I interaction and evaluating the main factors affecting
its intensity. From a general point of view, this topic may be considered as a new field of
novel discoveries both in human nutrition and plant physiology. However, it is important
to highlight that the current research state-of-art already shows the actual possibility to
achieve the joint Se–I biofortification of several plant species at industrial scale, targeting
the human health improvement. Consumers’ willingness to purchase Se–I biofortified
products compared to utilization of appropriate food supplements, and Se and I levels in
fortified fruits and vegetables sufficient to significantly increase Se–I consumption levels
may be considered as a basis for active development of functional food production with
enhanced Se and I levels.
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42. Smoleń, S.; Barański, R.; Ledwozyw-Smoleń, I.; Skoczylas, Ł.; Sady, W. Combined biofortification of carrot with iodine and
selenium. Food Chem. 2019, 300, 125202. [CrossRef] [PubMed]
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