
Biomolecules 2013, 3, 923-942; doi:10.3390/biom3040923 

 

biomolecules 
ISSN 2218-273X 

www.mdpi.com/journal/biomolecules/ 

Review 

Research Applications of Proteolytic Enzymes in  

Molecular Biology 

János András Mótyán, Ferenc Tóth and József Tőzsér * 

Department of Biochemistry and Molecular Biology, Faculty of Medicine,  

Medical and Health Science Center, University of Debrecen, POB 6, Debrecen H-4012, Hungary;  

E-Mails: motyan.janos@med.unideb.hu (J.A.M.); tothfree@gmail.com (F.T.)  

* Author to whom correspondence should be addressed; E-Mail: tozser@med.unideb.hu;  

Tel./Fax: +36-52-416-432. 

Received: 15 October 2013; in revised form: 4 November 2013 / Accepted: 6 November 2013 / 

Published: 8 November 2013 

 

Abstract: Proteolytic enzymes (also termed peptidases, proteases and proteinases) are 

capable of hydrolyzing peptide bonds in proteins. They can be found in all living 

organisms, from viruses to animals and humans. Proteolytic enzymes have great medical 

and pharmaceutical importance due to their key role in biological processes and in the  

life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors 

of industry and biotechnology, furthermore, numerous research applications require their 

use, including production of Klenow fragments, peptide synthesis, digestion of unwanted 

proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation 

of recombinant antibody fragments for research, diagnostics and therapy, exploration of the 

structure-function relationships by structural studies, removal of affinity tags from fusion 

proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of 

proteins in proteomics. The aim of this paper is to review the molecular biological aspects 

of proteolytic enzymes and summarize their applications in the life sciences. 
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1. Scope of the Review 

Proteolytic enzymes are capable of hydrolyzing peptide bonds and are also referred to as peptidases, 

proteases or proteinases [1]. 

The physiological function of proteases is necessary for all living organisms, from viruses to 

humans, and proteolytic enzymes can be classified based on their origin: microbial (bacterial, fungal 

and viral), plant, animal and human enzymes can be distinguished. 

Proteolytic enzymes belong to the hydrolase class of enzymes (EC 3) and are grouped into the 

subclass of the peptide hydrolases or peptidases (EC 3.4). Depending on the site of enzyme action the 

proteases can also be subdivided into exopeptidases or endopeptidases. Exopeptidases catalyze the 

hydrolysis of the peptide bonds near the N- or C-terminal ends of the substrate. Aminopeptidases 

(Figure 1) can liberate single amino acids (EC 3.4.11), dipeptides (dipeptidyl peptidases, EC 3.4.14) or 

tripeptides (tripeptidyl peptidases EC 3.4.14) from the N-terminal end of their substrates. Single amino 

acids can be released from dipeptide substrates by dipeptidases (EC 3.4.13) or from polypeptides by 

carboxypeptidases (EC 3.4.16-3.4.18) (Figure 1), while peptidyl dipeptidases (EC 3.4.15) liberate 

dipeptides from the C-terminal end of a polypeptide chain. Endopeptidases (Figure 1) cleave peptide 

bonds within and distant from the ends of a polypeptide chain [2]. 

Figure 1. Action of aminopeptidases and carboxypeptidases removing the terminal amino 

acid residues as well as endopeptidases on a polypeptide substrate (having n residues). Red 

arrows show the peptide bonds to be cleaved. 
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Based on the catalytic mechanism and the presence of amino acid residue(s) at the active site the 

proteases can be grouped as aspartic proteases, cysteine proteases, glutamic proteases, metalloproteases, 

asparagine proteases, serine proteases, threonine proteases, and proteases with mixed or unknown 

catalytic mechanism [3]. 

The current classification system further classifies the proteases into families based on sequence 

similarities, furthermore, homologous families are grouped into clans using a structure-based 

classification [3,4]. Classification and nomenclature of proteolytic enzymes as well as a detailed 

description of individual proteases is available in the MEROPS database [3]. 

Action of the proteolytic enzymes is essential in several physiological processes, e.g., in digestion 

of food proteins, protein turnover, cell division, blood-clotting cascade, signal transduction, processing 

of polypeptide hormones, apoptosis and the life-cycle of several disease-causing organisms including 

the replication of retroviruses [5,6]. Due to their key role in the life-cycle of many hosts and pathogens 

they have great medical, pharmaceutical, and academic importance [7–9]. 

It was estimated previously that about 2% of the human genes encode proteolytic enzymes [8] and 

due to their necessity in many biological processes proteases have become important therapeutic 

targets [8]. They are intensively studied to explore their structure-function relationships, to investigate 

their interactions with the substrates and inhibitors, to develop therapeutic agents for antiviral therapies [9] 

or to improve their thermostability, efficiency and to change their specificity by protein engineering for 

industrial or therapeutic purposes [7]. Studying proteolytic enzymes is highly justified by their key role 

in several fields of industry [2,10–12], as well. The worldwide market of industrial enzymes was 

estimated to reach $3.3 billion value in 2010 and the largest segment of this market is related to 

proteases [13]. 

Proteases are extensively applied enzymes in several sectors of industry and biotechnology, 

furthermore, numerous research applications require the use of them, including the production of 

Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, 

use of proteases in cell culture experiments and in tissue dissociation, preparation of recombinant 

antibody fragments for research, diagnostics and therapy, exploration of the structure-function 

relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein 

techniques, peptide sequencing, and proteolytic digestion of proteins in proteomics. 

This review focuses on the application of proteolytic enzymes in life sciences, especially in the field 

of molecular biology. The summary table of proteases discussed in this review (Table 1) contains the 

substrate specificities of the enzymes which are grouped based on their catalytic mechanisms. 

2. Molecular Biology Research Applications 

2.1. Klenow Fragment Production 

The Klenow fragment is the large fragment of the E. coli DNA polymerase I enzyme. While the 

holoenzyme has 5'→3' polymerase, 3'→5' and 5'→3' exonuclease activities, the Klenow fragment has 

only the polymerase and the 3'→5' exonuclease activities. The Klenow fragment has several 

applications in the recombinant DNA technology, including the labeling, sequencing, and site-specific 

mutagenesis of DNA. 
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Table 1. Substrate specificity of some proteolytic enzymes used in molecular biology 

research. Proteases are classified based on their catalytic mechanisms, furthermore, the main 

sources and enzyme specificities are indicated. The arrows indicate the sites of cleavages. 

Enzyme Main source Cleavage site 

Endopeptidases   

Serine proteases  
 

Trypsin bovine -Arg or Lys↓nonspecific- 

Chymotrypsin bovine -Trp (or Phe, Leu, Tyr)↓nonspecific- 

Enterokinase bovine Asp-Asp-Asp-Lys↓nonspecific- 

Endoproteinase Arg-C microbial -Arg↓nonspecific- 

Endoproteinase Glu-C microbial -Glu (or Asp)↓nonspecific- 

Endoproteinase Lys-C microbial -Lys↓nonspecific- 

Elastase porcine -Ala (or Gly or Val)↓nonspecific- 

Subtilisin microbial -Trp (or Tyr, Phe, Leu)↓nonspecific- 

Proteinase K fungal -aromatic, aliphatic or hydrophobic ↓nonspecific- 

Thrombin bovine 
-Arg (or Lys)↓nonspecific- 

specific for -Leu-Val-Pro-Arg-↓Gly-Ser- 

Factor Xa bovine 
-Arg (or Lys)↓nonspecific- 

specific for -Leu-Val-Pro-Arg-↓Gly-Ser- 

WNV protease E. coli -Lys (or Arg)-Arg↓Gly-Ser- 

Cysteine proteases  
 

Bromelain plant -nonspecific↓nonspecific- 

Papain plant -Arg (or Lys)↓nonspecific- 

Ficin (ficain) plant -nonspecific↓nonspecific- 

Rhinovirus 3C E. coli 
Gly-Pro dipeptide after the scissile bond 

highly specific for -Leu-Glu-Val-Leu-Phe-Gln↓Gly-Pro- 

TEV protease E. coli specific for -Gln-Asn-Leu-Tyr-Phe-Gln↓Gly- 

TVMV protease E. coli specific for -Glu-Thr-Val-Arg-Phe-Gln↓Ser- 

Metalloproteases  
 

Endoproteinase Asp-N microbial -nonspecific↓Asp- 

Thermolysin microbial -Leu (or Phe)↓Leu (or Phe, Val, Met, Ala, Ile)- 

Collagenase microbial -Pro-neutral↓Gly-Pro- 

Dispase microbial -nonspecific↓non-polar- 

Aspartic proteases  
 

Pepsin porcine -Phe (or Tyr, Leu, Trp)↓Trp (or Phe, Tyr, Leu)- 

Cathepsin D bovine -Phe (or Leu)↓nonspecific (not Val, Ala)- 

Exopeptidases   

Serine proteases   

Carboxypeptidase Y yeast -nonspecific↓nonspecific 

Cysteine proteases   

Cathepsin C bovine removes N-terminal dipeptide 

DAPase porcine removes N-terminal dipeptide 

Metalloproteases   

Carboxypeptidase A bovine -nonspecific↓aromatic or branched preferred 

Carboxypeptidase B porcine specific for C-terminal Arg or Lys 
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The enzymatic method to release the large protein fragment from the DNA polymerase I holoenzyme 

by proteolysis was published in 1970 [14]. Subtilisin-catalyzed proteolytic cleavage was used to 

produce Klenow fragment leading to the retention of the polymerase and the 3'→5' exonuclease 

activities and to the loss of 5'→3' exonuclease activity of the intact polymerase [6]. 

Nowadays, commercially available Klenow fragment is produced in recombinant ways in E. coli 

strains which carry the gene of large fragment of DNA polymerase I, therefore, the proteolytic 

production of Klenow fragment has mainly historical significance. 

2.2. Enzymatic Peptide Synthesis 

While enzymatic peptide synthesis has been frequently used to synthesize peptides for pharmaceutical 

and nutritional purposes (Table 2), this method is also essential for several research applications. The 

enzymatic method has several advantages compared to chemical methods, such as stereo specificity with 

side-chain protection, and the non-toxic nature of solvents coupled with the possibility of recycling the 

reagents used for synthesis. Enzymes have been selected considering their specificity for amino acid 

residues (Table 2), but this type of application is limited by the possibility of the hydrolysis of the 

peptide bond. The types of the enzymatic synthesis and its requirements have been reviewed [15–17]. 

Enzymatic peptide synthesis can be made by equilibrium- or kinetically-controlled methods.  

Table 2. Examples of peptides synthesized by proteases. 

Peptide Sequence Enzyme(s) Reference 

Aspartame Asp-Phe Thermolysin [18] 

Nutritional peptide Tyr-Trp-Val α-Chymotrypsin, papain [19] 

Somatostatin 
Ala-Gly-Cys-Lys-Phe-Phe-Trp-

Lys-Thr-Phe-Thr-Ser-Cys 

Thermolysin, 

chymotrypsin 
[20] 

Vasopressin Tyr-Phe-Phe-Gln 
Thermolysin, 

chymotrypsin 
[21] 

Oxytocin 
Cys-Tyr Tyr-Ile Pro-Leu  

Leu-Gly 

Papain, thermolysin, 

chymotrypsin 
[21] 

mouse EGF (21–31) 
His-Ile-Glu-Ser-Leu-Asp-

SerTyr-Thr-Cys 
Papain, trypsin [22] 

2.2.1. Kinetically Controlled Peptide Synthesis 

The scheme for chymotrypsin-catalyzed kinetically-controlled Z-D-Leu-L-Leu-NH2 synthesis [23] is 

illustrated in Figure 2. The acyl donor Z-D-Leu that is activated by carbamoylmethyl (Cam) ester and 

chymotrypsin (E) form the enzyme-substrate complex first and after that the covalently linked Z-D-

Leu-E intermediate with the loss of the carbamoylmethyl ester. If this intermediate is attacked by 

water, hydrolysis occurs, which results in the Z-D-Leu-OH fragment. However if a more powerful 

nucleophile (e.g., alcohol or thiol) is present in the media, the enzyme produces a peptide bond instead 

of the cleavage [15] and the Z-D-Leu-L-Leu-NH2 dipeptide may be formed in the presence of H-L-Leu-NH2 

nucleophile (Figure 2). The product yield depends on the kinetics of the two nucleophilic reactions, 

however, the reaction is faster and requires lower substrate enzyme ratios compared to the equilibrium-

controlled synthesis, due to the activated acyl donor.  
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Figure 2. Kinetically-controlled synthesis of Z-D-Leu-L-Leu-NH2 dipeptide. After the 

formation of enzyme-substrate complex (K1) a covalent enzyme-substrate intermediate is 

formed (K2). The intermediate is subjected to the attack from H2O or other nucleophiles 

(Nu). KH is the equilibrium constant of hydrolysis, KT is the equilibrium constant of the 

transferase reaction. 

 

The acyl donor activating agent must not only be an ester, but an amide or a nitrile as well. Only 

serine or cysteine proteases can be used to perform the kinetically controlled peptide synthesis, as these 

enzymes can act as transferase and hence are able to catalyze the transfer of an acyl group from the acyl 

donor to the nucleophile through the formation of a covalent acyl enzyme intermediate. Papain, 

thermolysin, trypsin and α-chymotrypsin are mostly used for kinetically-controlled peptide synthesis [24]. 

The yield of peptide product will depend on the apparent ratio of transferase to hydrolase rate constants 

(KT/KH)app and the rate at which the peptide product is hydrolyzed. The (KT/KH)app values of proteases 

used for kinetically-controlled synthesis are in the range of 10
2
–10

4
 [17]. 

2.2.2. Equilibrium-Controlled Synthesis 

In the case of the equilibrium-controlled synthesis the process is the reverse of hydrolysis. 

Important problems of this enzymatic method of peptide synthesis are the low reaction rates and the 

need of increased yield because proteases do not alter the equilibrium of the reaction. A high amount 

of the enzyme is often required together with the precise reaction conditions to drive the equilibrium 

towards synthesis [15]. A higher rate of peptide bond formation can be reached by the appropriate pH 

of the reaction medium (changing the equilibrium of ionization) but there are several other ways to 

increase the yield of the reaction: 

(a) Precipitation of the product is the classical method. When certain soluble carboxyl amine 

components are used as reactants the products will precipitate and the reduced concentration of soluble 

products will drive the equilibrium towards synthesis. In this case the yield of the product depends on 

the concentration of the starting materials and can be determined by the solubility of the product [17]. 

(b) In a biphasic system the enzyme acts in an aqueous environment that is surrounded by a water 

immiscible medium; the water content of the system is around 2–5%. The reactants (dissolved in high 
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concentrations) can diffuse from the organic phase into the water until the equilibrium is reached; the 

enzyme-catalyzed synthesis is followed by the diffusion of the products back into the organic phase. The 

organic phase reduces the dielectric constant of the medium and thus the acidity of the carboxyl group of 

the acyl donor as well, which in turn promotes the synthesis of the peptide bond instead of hydrolysis [24]. 

This method is applicable only for the synthesis of water insoluble products. 

(c) The dissolved state system can be used for the synthesis of water-soluble products (short 

peptides, high molecular weight peptides and proteins). In this environment forcing the reaction 

towards peptide synthesis requires the mass action, the addition of a water-miscible organic co-solvent 

in high concentration or the excess of one reactant. In serine protease-catalyzed reaction in water, the 

rate determining feature is the acylation of the enzyme while the product yield at equilibrium depends 

on the partition coefficient and the ratio of the aqueous and organic volumes [17]. The chymotrypsin- 

and subtilisin-catalyzed synthesis of N-Bz-L-Tyr-L-Leu-NH2 is more efficient in hydrophobic organic 

solvents; adding water in sub-saturating concentration increases the yield of the chymotrypsin-

catalyzed peptide synthesis [25]. 

2.2.3. Strategies Used in Enzymatic Synthesis 

The use of enzymes in organic solvents have several advantages compared to aqueous solvents 

which have led to their widespread application: the thermodynamic equilibrium can be shifted towards 

synthesis, the undesirable side reactions can be reduced, the nonpolar substrates are more soluble in 

organic solvents, the separation process and enzyme recovery is more effective in a low water-containing 

environment [26–29]. Many proteases, such as thermolysin, subtilisin and α-chymotrypsin [26,29] can 

maintain their active conformation in organic solvents and show good functionality in the synthesis of 

aspartame and demorphin derivatives. 

However, the use of enzymes in organic solvent has also disadvantages such as the unfavorable 

effects of the organic solvents on enzyme activity and stability. The modification of biocatalysts by 

protein engineering [30,31] and/or chemical modification or the use of naturally solvent-tolerant 

proteases [32] for peptide synthesis is a developing field. The driving force of this field is the aim of 

making biocatalysts with proper features to suit them for the reactions under specific synthesis 

conditions. Site-directed mutagenesis is a very effective tool and can be used by protein engineers to 

screen mutants with enhanced stability, activity or specificity, furthermore, this method can be used to 

explore structure-function relationships (rational design). 

Subtilisin has been extensively studied and engineered via site-directed mutagenesis to make it 

more capable of peptide bond formation in aqueous solution [33]. Single and multiple mutations have 

been introduced into subtilisin to increase its stability and make it more resistant against oxidizing 

agents, thermal denaturations and inactivation effects of polar solvents [28]. 

Thermolysin has a higher synthesis rate compared to the solvent stable PST-01 protease from 

Pseudomonas aeruginosa. Considering the high structural similarity of these enzymes, the synthetic 

activity of PST-01 protease was increased by the Y114F mutation [31], moreover, the Y114R and 

Y114S mutations resulted in better activity enhancement. 

Chemical modification is also an efficient method to modify the properties of enzymes used for 

peptide synthesis. Thiol-subtilisin, in which the serine residue has been chemically changed to cysteine 
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at the active site, shows an enhanced aminolysis to hydrolysis ratio in aqueous solution and in dimethyl 

sulphoxide. The stability of proteases can also be increased by chemical modification e.g., a hydrophilic 

carbohydrate-polyacrylate polymer coat can make the enzymes highly active and stable in polar 

solvents and more resistant against thermal inactivation [28]. 

Immobilization of proteases is the most frequently applied method for the recovery of products 

without great loss of the catalysts, which greatly decreases the cost of the synthesis. This approach also 

ensures better operational stability of biocatalysts and control of the reaction. Enzyme immobilization 

techniques can be divided into five groups: (a) covalent attachment to solid support; (b) absorption on 

solid support; (c) entrapment in polymeric gel; (d) crosslinking with bifunctional reagents and (e) 

encapsulation [17,34]. 

Substrate engineering means the manipulation of the leaving group and is a powerful tool to 

increase the specificity of the proper enzyme and/or increase the rate and the yield of the reaction [24]. 

Protease-catalyzed synthesis of stereochemically modified peptides is also a preferable application 

compared to chemical synthesis due to stereospecificity of the proteases. 

Proteases can bind not only natural substrates, but also specifically designed substrate mimetics, 

which are also very useful tools to increase the yield of peptide synthesis. Substrate mimetics can bind 

to the active site of the enzyme and in this way proteases can be used for the synthesis of products 

containing non-specific amino acids. The undesired cleavage of the newly synthesized peptide bonds 

can be avoided using this method and it is not required to change the properties of the medium or the 

enzyme [17]. 

The production of peptides with amides at their C-termini is a great challenge for enzymatic peptide 

synthesis, but amidation may be required to retain biological activity. 

2.3. Nucleic Acid Isolation 

Generally, the first step of nucleic acid isolation protocols is the lysis of the biological material 

containing the DNA or RNA of interest. Before the purification and concentration of nucleic acids the 

contaminating proteins and other macromolecules have to be removed from the sample. Undamaged 

nucleic acids can be isolated when the degradation of the DNA and RNA present in the sample is 

avoided by the inhibition and removal of DNases and RNases. The nucleases can be inhibited by the 

addition of chelators (e.g., EDTA) which bind the ions essential for their action. Besides the 

inactivation of nucleases, proteolytic enzymes are applied during the nucleic acid isolation to remove 

total protein content of the sample. 

The most widely used proteolytic enzyme in nucleic acid purification is the Proteinase K, which 

was described in 1974 [35]. Proteinase K is a non-specific serine endopeptidase which can catalyze the 

cleavage of peptide bonds at the carboxylic side of aromatic, aliphatic, or hydrophobic amino acid 

residues. Besides the digestion of unwanted proteins, Proteinase K also quickly inactivates the 

nucleases which might degrade the nucleic acids present in the sample [36]. This proteolytic digestion 

decreases the level of contaminants in the nucleic acid extract and prevents nucleic acids from 

degradation leading to a higher yield of the DNA or RNA to be isolated. 
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2.4. Cell Isolation and Tissue Dissociation 

Cell biology studies frequently require the dissociation of primary tissues and the isolation of viable 

cells for tissue culturing. The most common method for cell isolation is the enzymatic digestion of the 

junctions connecting the cells and the components of the surrounding extracellular matrix, by which 

the cells can be released from a wide variety of tissues. Several enzymes are available in the market for 

the detachment of cultured cells, cell dissociation and cell component or membrane-associated protein 

isolation [37,38]. Besides the polysaccharidases, nucleases and lipases, the proteases are the most 

important enzymes used widely to dissociate cells from tissues. 

The experimental conditions of cell isolation are functions of several parameters, including the type 

of the tissue and the source of its origin. Cells with high viability can be isolated in high yield using a 

suitable enzyme or the optimal combination of enzymes. As proteases differ in their specificities, 

different enzymes are recommended to be used use for most effective tissue disruption, depending on 

the origin and type of the tissue. We describe below the enzymes most commonly used for cell isolation. 

The matrix metalloproteinase collagenase was first isolated in 1953 [39]. This endopeptidase can 

digest the collagenous extracellular matrix in a zinc-dependent manner. Collagenase cleaves the peptide 

bonds within the triple helices of native collagen, between a neutral amino acid and Gly within the  

Pro-X-Gly-Pro sequence. This sequence can be found most frequently in the collagen; therefore collagenases 

digest other proteins less efficiently. A commercially available collagenase (clostridiopeptidase A) is 

produced by Clostridium histolyticum, and it is capable of digesting collagen fibers very effectively. 

Solutions supplied for tissue dissociation contain collagenase and other additional proteinases which 

can digest the components of the extracellular matrix [38,40]. The serine protease elastase is a unique 

enzyme which can cleave the peptide bonds in elastin, therefore, it is generally used to dissociate 

tissues containing a high amount of elastin connective fibers. Elastase cleaves peptide bonds next to 

smaller neutral amino acids and besides its protease activity it also has esterase and amidase activities. 

Papain is a cysteine peptidase of Carica papaya latex. Papain, similarly to elastase, also has amidase 

and esterase activities and has a broad specificity. Papain has less damaging effects on tissues and 

therefore it is typically applied for cell dissociation of neuronal tissues. Besides cell dissociation, 

papain is also widely used for integral membrane protein solubilization and for digestion of 

proteoglycans. The serine protease trypsin is a very specific proteinase cleaving the peptide bonds at 

the C-terminal end of positively charged Lys and Arg side chains. Due to the high specificity of trypsin 

the digestion of tissue proteins is less effective and it is generally used for tissue dissociation together 

with other proteolytic enzymes. Serine protease chymotrypsin cleaves peptide bonds preferentially at 

the carboxyl side of aromatic Tyr, Trp and Phe residues. Chymotrypsin is less widely used for tissue 

dissociation; the use of other additional proteases is required for efficient digestion. The Zn-

metalloprotease dispase is also a neutral protease. This non-specific protease cleaves the peptide bonds 

of proteins at the amino side of non-polar amino acid residues.  

2.5. Cell Culturing 

Cells isolated from a tissue can be cultured separately from the organism in cell culture flasks using 

appropriate growth medium. Adherent cells grown in a cell culture flask are attached to the surface by 
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protein bridges which have to be disrupted during passaging. The cells can be released from the cell 

flask surface mechanically using a cell scraper or can be detached by a protease treatment using 

trypsin solution. 

Trypsinization means the process used for the detachment of adherent cells using trypsin solution to 

digest the adhesion molecules by which the cells are attached to the surface of the culture flask. 

Trypsin solutions generally contain EDTA to reduce the concentration of metal ions that might 

inhibit trypsin. 

Although trypsinization is the most commonly used method to detach adherent cells from cell 

culture flasks, the effects of this protease treatment were only recently studied in detail. It was found 

that trypsinization can affect the extracellular matrix surrounding the cells [41] and has physiological 

effects on cells grown in cell cultures [42]. Trypsin treatment can lead to cleavage of membrane 

proteins and receptors, which can cause significant changes in the expression level of different 

proteins: level of growth- and metabolism-related protein expressions were found to be  

down-regulated after trypsinization, while up-regulation of apoptosis-related protein expressions was 

seen after the protease treatment [42,43]. This effect should be taken into account when trypsinization 

is involved in experimental design. 

2.6. Antibody Fragment Production 

Antibody molecules are produced by the immune system against foreign substances and are 

classified into the immunoglobulin superfamily of the proteins (Figure 3A). They consist of four 

polypeptide chains, two identical heavy chains (H) and two identical light chains (L) which are 

connected by disulfide bridges. Both the H and the L chains contain variable (VH and VL) and constant 

(CH1, CH2, CH3 and CL) regions, respectively. The VH and VL chains, containing hypervariable 

regions, are responsible for the antigen-antibody interactions and determine the antigen specificity [6]. 

Fragments of the monoclonal antibodies are widely used in diagnostics, therapeutics and in 

biopharmaceutical research [44–46] having beneficial properties compared to the whole immunoglobulin 

molecules due to their smaller size and lower immunogenicity [44]. Fragments of whole 

immunoglobulin molecules can be produced using recombinant DNA technology or can be generated by 

enzymatic digestion. Here we discuss the proteolytic antibody fragmentation method. 

Generally, the papain, pepsin and ficin proteases are used for the specific digestion of IgG 

molecules. Digestion of an antibody by the cysteine protease papain results in three fragments due to 

the cleavage of peptide bonds in the hinge region between CH1 and CH2 domains: one Fc 

(crystallizable) and two identical Fab (antigen binding) fragments are released (Figure 3B). While both 

released Fab fragments carry one antigen-binding site, the Fc fragment does not have antigen-binding 

ability. The aspartic acid protease pepsin cleaves the peptide bonds of the antibody near the disulfide 

bonds connecting the H chains (Figure 3C). This digestion results in the release of the peptides of the 

Fc region and one F(ab')2 fragment containing both antigen binding sites. The cysteine protease ficin 

can release both F(ab')2 or Fab fragments (Figure 3D), depending on the cysteine concentration [44]. 
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Figure 3. Structure of IgG antibody molecules (A) and fragments released after proteolytic 

digestion using papain (B), pepsin (C) or ficin (D). 

 

The in vivo applications of the large, pentameric IgM immunoglobulines could be restricted because 

of their large size. Proteolytic fragmentation of IgM moleucles is also a useful method to produce 

smaller, active Fab, Fab', F(ab')2 or ―IgG-like‖ fragments which have beneficial properties compared to 

the whole IgM molecules. Trypsin and pepsin are useful enzymes for IgM fragmentation, pepsin can 

generate Fab and F(ab')2 fragments, while trypsin can generate ―IgG-like‖ fragments, as well. Papain 

cannot be used for IgM fragmentation because of the production of heterogeneous fragments.  

Digestion of monoclonal antibodies by papain or pepsin is still used to produce Fab or F(ab')2 

fragments [44]. There are several products available on the market obtained by proteolytic cleavage of 

antibodies, furthermore, several companies supply fragmentation kits for antibody fragment 

preparation. In some cases it could be preferable to produce the Fab fragments in high quality by 

recombinant expression in cell lines and obtain the fragment in sufficient quantity. For example,  

the Fab fragments produced by recombinant expression were found to be more preferable for the 

crystallization experiments because of the higher quality of the protein sample [47]. 

Antibody fragments have several beneficial properties for in vivo applications compared to whole 

antibody molecules. Due to their smaller size they have higher mobility and can penetrate tissues or 

permeate cell membranes more easily. As antigen-binding fragments lack the Fc fragments, they have 

lower immunogenicity, as they contain only their antigen-binding domain sites (Fab, Fab'  

or F(ab')2 fragments) and do not carry the regions responsible for antibody effector functions, 

furthermore, they do not form large immunocomplexes. 
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The antigen-binding fragments of antibodies have great importance from the viewpoint of clinical 

and therapeutic applications. Antibody fragments could be administered to prevent the development of 

a disease (e.g., restenosis), could be applied during the diagnosis (e.g., metastatic breast and colon 

cancer) or for the treatment of some diseases (e.g., macular degeneration) or to detect toxins or 

neutralize snake venoms [44,45]. The current number of antibody-based therapeutics approved by the 

FDA is 35, while several other antibodies are in clinical trials. The relevance of antibody fragments in 

structural studies is discussed in detail in the following paragraph. Further important biotechnological 

applications of antibody fragments, e.g., as immunodetection, immunopurification and detoxification, 

have been reviewed in the recent past [46]. 

2.7. Structural Studies 

Crystallographers have great challenges in the structure determination of transmembrane proteins. It 

is difficult to crystallize these proteins due to their high molecular flexibility, hydrophobic surfaces and 

low solubility. Antibody fragments are very useful tools for solving these problems. Specific binding 

of antibody fragments can increase the overall hydrophilicity of proteins and the solubility of the 

transmembrane proteins, furthermore, they can decrease the flexibility and stabilize the conformation 

of the molecule [48]. The structures of the membrane proteins co-crystallized with antibody fragments 

can be determined at higher resolution because these crystals have a higher diffraction quality [49–51]. 

The proteases have great indirect significance in structure determination, because the antibody 

fragments produced by proteolytic cleavage of whole immunoglobulins can be used to improve the 

crystallization properties [52–54]. 

The proteases are not only tools for crystallographers but are also important target molecules for 

structural biologists and have great relevance in antiviral therapies, drug and therapeutics development 

from the viewpoint of structural biology. Besides interest in proteases with unknown structure, the 

results of structural studies can help researchers evaluate the structure-function relationships more 

efficiently; increasing knowledge on the structural organization of viral proteases can help to explore 

their action, perform comparative studies by which we can better understand the structure-function and 

evolutionary relationships and recognize general or specific features [55–57]. One of the main driving 

forces of structure determination of proteases is the need for the development of efficient drugs for 

antiviral therapies [7,9,58–60]. Both structural and enzymatic inhibition studies are required for the 

structure-based drug development of protease inhibitors [61]. Structural data can also help protein 

engineers to alter the specificity and to improve the enzymatic properties of proteases by structure-

guided mutagenesis [62–64] for several purposes. 

2.8. Fusion Tag Removal 

The proteins produced by recombinant techniques are typically linked with a fusion partner termed 

a fusion tag. The introduction of a fusion tag means the fusion of an additional protein or peptide to the 

recombinant protein. These fusion tags are extensively used from basic research to high-throughput 

structural biology owing to the several advantages they provide in the expression of different 

recombinant proteins [65,66]. The tags largely aid the detection and purification of proteins; moreover 

they also could have a favorable effect on protein yield and/or solubility. Tags can prevent proteins 



Biomolecules 2013, 3 935 

 

 

from proteolytic digestion, can protect antigenicity or facilitate the folding of the fusion protein.  

On the other hand, they can also negatively alter solubility, structural integrity and biological  

activity [47,67,68] or may cause a disadvantage for further application of the protein, so the removal of 

a tag can be crucial [66]. 

Commonly used affinity tags and fusion protein partners are the hexahistidine-tag (His6),  

FLAG-tag, maltose binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), small 

ubiquitin-like modifier (SUMO), ubiquitin (Ub) and green fluorescent protein (GFP) [69]. 

In some cases the tag can be removed by a chemical treatment but those methods are rather 

unspecific compared to enzymatic cleavages and may lead to protein denaturation and/or side chain 

modifications of amino acids in the target protein. The specificity and detergent sensitivity of common 

proteases used for tag removal have been examined and reviewed previously [70–73]. Both endo- and 

exo-proteases could be suitable for fusion tag removal. 

2.8.1. Endoproteases 

Serine proteases such as enterokinase (also referred to as enteropeptidase), factor Xa and thrombin 

have been widely used for many years to remove N-terminal tags, but several cases have been reported 

in which they cleaved not only at the desired cleavage site but also in the protein of interest. These 

incidents led to the extensive application of viral proteases like human rhinovirus (HRV) 3C protease 

and tobacco etch virus (TEV) protease. While sequences recognized by a cellular serine protease and 

the viral proteases could be similar, the viral proteases cleave the protein substrates at the undesired 

sites less efficiently due to their high specificity and low catalytic rate, moreover, recombinant viral 

proteases can be produced in high quantities in E. coli [73]. These findings and the limited activity of 

the generally used serine proteases in some detergents, which are needed to study the membrane 

proteins, inspired the search for other viral proteases for tag removal, such as Tobacco Vein Mottling 

Virus (TVMV) protease [74], West Nile Virus (WNV) protease [75] and some alphaviral proteases: 

Venezuelan Equine Encephalitis Virus (VEEV) protease, Semliki Forest Virus (SFV) and Sindbis 

Virus (SIN) protease [76]. 

2.8.2. Exopeptidases 

Aminopeptidases and carboxypeptidases are not as widely used as endopeptidases, as they 

frequently leave amino acid residues on the target protein, while it is easier to design cleavage sites 

with endopeptidases not to leave extra residues after the cleavage. However, if is still desired to add a 

tag onto the C-terminal of the target protein a carboxypeptidase may be used for its removal. Among 

metallocarboxypeptidases, type A carboxypeptidases remove mostly aromatic or branched aliphatic 

side chain containing amino acids, while type B carboxypeptidases prefer basic amino acids. 

Carboxypeptidases can be utilized to remove a His6 tag from the C-terminal end of a protein [77]. 

Dipeptidyl aminopeptidase (DAPase) is a useful enzyme for the removal of N-terminal dipeptides. 
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2.9. Proteomic Applications 

Proteomic studies are made with the aim to identify, characterize, and quantify the required samples 

and typically involve mass spectrometric (MS) analysis. Besides determination of the composition of 

protein complexes, chemical properties, post-translational modifications and structural properties of 

proteins can also be revealed by MS. 

MS is a powerful analytical method to measure the mass of proteins or peptides by the analysis of 

mass-to-charge ratio (m/z) ratio. Generally, the samples to be analyzed contain a mixture of various 

proteins and/or polypeptides that have to be separated and digested into smaller fragments before the MS 

analysis. Protein separation can be performed efficiently by polyacrylamide gel electrophoresis. The 

separated proteins can be digested after the electrophoresis by chemical cleavage or by enzyme-catalyzed 

digestion of peptide bonds. The process in which the bands or spots are cut out from the gel followed by 

the addition of protease(s) to the gel containing the protein(s) of interest is called in-gel digestion [78]. 

Proteolysis of whole proteins leads to the release of smaller peptides with different molecular masses 

which are suitable for MS analysis (Figure 4). 

Figure 4. Steps of proteomic analysis using mass-spectrometry after separation and in-gel 

digestion of proteins of interest. 

 

Trypsin is the most widely used proteolytic enzyme for protein digestion in MS analysis. Due to its 

high specificity it is easy to predict the cleavage sites and to compare the results of experimental 

enzymatic and theoretical in-silico digestion. The Asp-N, Lys-C, Arg-C and Glu-C enyzmes are also 

highly sequence-specific endoproteases but they are less active [78]. Chymotrypsin, pepsin, papain, 

elastase, subtilisin, proteinase K, thrombin, factor Xa and some other proteases are also suitable 

enzymes for fragmentation in MS analysis [79]. 

Several proteases are available for this fragmentation of which specificities are well established [79,80]. 

The number and length of released peptide fragments depends on the protease(s) applied for selective 
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proteolysis of the targeted protein. Applications developed for in silico protein fragmentation are 

useful to predict the proteolytic fragments and to choose the most proper enzyme for the most effective 

digestion based on the enzyme specificities (http://prospector.ucsf.edu). 

Generally, highly sequence-specific proteases are preferred for protein fragmentation instead of less 

specific enzymes, as the latter ones produce a very complex mixture of fragments. In the case of the 

efficient fragmentation the peptide, the fragments have a proper length and are released in high yield, 

and the complete sequence of the whole protein can be covered by the analysis of the 

proteolytic fragments. 

3. Summary  

Besides extended application for nutritional and pharmaceutical purposes, proteases from natural 

sources are also widely used tools in molecular biology practice. Their degradative properties make 

them useful for general protein digestion in tissue dissociation, cell isolation, and cell culturing. The 

specificity and the predictability of cleavages by proteases enables their use for more specific tasks 

such as antibody fragment production, the removal of affinity tags from recombinant proteins and 

specific protein digestion in the proteomics field mainly for protein sequencing. Moreover, the already 

mentioned specificity makes proteases—in a water restricted environment—able to synthesize the 

peptide bonds instead of hydrolyzing them. This property combined with their enantioselectivity has 

also promoted their use in peptide synthesis. 

The expansion of knowledge has assisted the increase of applications of proteolytic enzymes for 

several purposes, and the application fields are widening with the help of protein engineering 

techniques and by chemical modification of the enzymes [7,62]. Studies made with the aim to better 

understand the structure and function of existing proteolytic enzymes and to obtain new, engineered 

proteases with altered properties for therapeutic, industrial or research fields require the use of the 

applications discussed in this paper. 
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