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Abstract: Laboratory evolution techniques are becoming increasingly widespread among 

protein engineers for the development of novel and designed biocatalysts. The palette of 

different approaches ranges from complete randomized strategies to rational and  

structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and 

relevance to biotechnology. A technique that convincingly compromises the extremes of 

fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation 

mutagenesis. Here we will present and discuss this approach in its many facets, also 

tackling the issue of randomization, statistical evaluation of library completeness and 

throughput efficiency of screening methods. Successful recent applications covering 

different classes of enzymes will be presented referring to the literature and to research 

lines pursued in our group. The focus is put on saturation mutagenesis as a tool for 

designing novel biocatalysts specifically relevant to production of fine chemicals for 

improving bulk enzymes for industry and engineering technical enzymes involved in 

treatment of waste, detoxification and production of clean energy from renewable sources.  

Keywords: biocatalysis; directed evolution; synthetic biology; protein engineering; industrial 

biotechnology; bioremediation; fine chemistry; saturation mutagenesis; screening methods 
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1. Introduction 

Protein engineering allows exploration of mutational space under artificial evolutionary pressure 

and selection that could not be sampled by the natural environment of proteins. Advances in this field 

demonstrate how natural catalysts can be finely tuned to perform reactions that are new in terms of 

specificity [1–3], efficiency [4–6], stability of the enzyme, conditions [7,8] and chemistry of the 

reaction catalyzed [9–11]. Many of the biotechnological benefits of this “laboratory-driven evolution” 

have already been translated into practical applications, and many others can be foreseen to have a 

high impact in sustainable and innovative processes [12], environmental bioremediation, 

detoxification, and clean energy production [13–15]. 

New tools and strategies aiming at simplifying the experimental work required for a successful 

result in obtaining engineered enzymes are continuously being developed. The methods follow two 

main directions: the rational site-specific mutagenesis and the evolution-like random approach. Both 

are powerful but each suffer from different limitations in the performance of the outcome and in time 

necessary to achieve the results. The rational site-specific mutagenesis focuses on the mutation of one 

or more specific amino acids that are replaced with another residue. It needs to be supported by 

structural and functional data of the enzyme and it is frequently biased by the assumptions made by the 

researchers on the basis of previous knowledge. In this respect it might be less innovative and aim at 

less ambitious goals, although it remains a very precious strategy for testing hypothesis on the fine 

details and structural determinants of reaction mechanisms. Compared to the random evolution-like 

approach, it is less time consuming in the production of the mutants, but in the perspective of 

producing significantly improved biocatalysts for industrial applications, it often results in limited 

improvement of the desired property. Results are achieved through series of trial-and-error experiments 

that surely provide interesting data for theoretical speculation but that may require large amounts of time 

and resources.  

On the other hand, laboratory evolution is based on the selection of random mutants with the 

desired features. It is not limited by the availability of the 3D structure of the enzyme and it mimics in 

the lab the evolution process that in nature has led to the selection of the best natural catalysts available: the 

enzymes. This approach establishes methods to introduce random genetic diversity in libraries of mutants 

(variants) that include various implementations of mutagenic PCR, oligonucleotide-assisted mutagenesis 

and in vitro recombination under mutagenic conditions, including DNA shuffling [16] and several 

specific techniques such as ITCHY [17], RACHITT [18] SHIPREC [19] and many others that have been 

extensively reviewed [20–25]. The time consuming process of obtaining the randomly mutated library 

and the requirement for a high-throughput screening procedure for selection of the desired properties 

among thousands of clones, is the severe drawback of a very powerful technique that otherwise has the 

advantage of providing entirely novel landscapes of mutants [26,27]. 

A specific type of laboratory-evolution method is the “targeted random mutagenesis” method, also 

called “saturation mutagenesis” that focuses on specific “hot spots” for mutational variability or on 

critical residues identified by structural comparison and modeling methods. It applies site-saturation 

mutagenesis (SSM), i.e., the systematic replacement of one amino acid at a chosen site with all 

alternative encoded amino acids, to explore the performance of each possible variant in terms of 

structural or functional features of the resulting mutated enzyme. SSM may be applied at random 
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positions but more often it is based on the assumption that most mutations are deleterious or neutral, 

and therefore the construction of mutant libraries by random methods is inefficient. Since the enzyme 

properties that are pursued are mainly codified in a small part of the enzyme corresponding to the 

active site or structural portions known to modulate protein stability, a rational choice of the sites to be 

targeted is usually preferred. This approach allows fine-tuning of the catalytic properties, particularly 

when performed as a refinement step after directed evolution. In fact, in fully random techniques a 

trade-off between the selected property and the overall enzyme performance might put an apparent 

threshold to the optimization of the target property [28]. Therefore, saturation mutagenesis is a 

precious tool for exploring and widening the landscape of the enzyme properties and applications. The 

advantages lie in a compromise solution combining the positive features of the rational mutagenesis 

and the random approach followed by laboratory selection, with minimum or negligible additive effect 

on the drawbacks. This is becoming clear in the last few years due to the increasing number of 

successful results obtained. A particular relevance is given in literature to positive results of this approach 

applied to enzymes used in fine chemical synthesis, industrial processing and bioremediation.  

In order to improve the outputs and to obtain libraries with high abundance methods such as 

iterative Combinatorial Active Site Test (CAST) [29] and Iterative Saturation Mutagenesis (ISM) [30], 

all based on the same principle of SSM, were more recently implemented.  

The methodology for Site Saturation Mutagenesis, Iterative Saturation Mutagenesis and other 

innovative methods will be presented highlighting advantages vs. site specific and random mutagenesis. 

Technical details and implications will be discussed, also tackling the issues of randomization and 

statistical evaluation of the library completeness and throughput efficiency of screening methods. 

Examples of successful applications covering different enzyme classes will be presented, focusing on 

cases that are relevant for the production of fine chemicals as well as bulk enzymes for industry, 

treatment of wastes, detoxification of pollutants and xenobiotics, and production of clean energy from 

renewable sources. 

2. Experimental 

Different methodologies pertaining saturation mutagenesis, leading to libraries of mutants relevant 

in terms of their size with minimal screening efforts, will be illustrated in the following paragraphs. 

The choice of alternative approaches bears crucial implications and must be carefully considered. 

Following the pattern of single site saturation mutagenesis and extending the strategies to various 

multiple combinations, a range of protocols have been proposed and tested. These are described and 

discussed here, together with the statistical analysis of library coverage and screening methods 

specifically for the saturation mutagenesis approaches. 

2.1. Strategies for the Generation of Libraries of Mutants 

2.1.1. Site Saturation Mutagenesis (SSM) 

The SSM libraries are usually generated with protocols that follow the commercially available 

QuikChange™ kit commercialized by Stratagene [31] or using equivalent in house procedures [30]. 

Mutagenic and complementary primers that carry the desired mutation (Figure 1) are used in a PCR 
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reaction to amplify the plasmid with high fidelity and thus inserting the desired mutations. The 

position chosen for mutagenesis can be randomized with the codon NNN (where N is any nucleotide), 

or with a codon NNK (where K is either a T or a G) that can produce codons for all the 20 amino acids 

and a stop codon. Compared to NNN degeneration, NNK has the advantage that it will produce 32 

variants instead of 64, reducing screening effort and inserting one stop codon instead of three. The 

mutagenic primers are designed with the targeted position in the middle and at least 15 non-mutated 

bases before and after the point of mutation. The PCR product is digested with DpnI, a restriction 

enzyme that recognizes and cleaves the methylated template DNA, while the non-methylated newly 

synthesized and mutated DNA strands are not recognized nor digested. The mutated nicked plasmid is 

transformed in highly competent E. coli strain DH5α or XL1-Blue. 

Figure 1. Scheme of site saturation mutagenesis approach following the QuikChange
TM

 kit. 

 

2.1.2. Iterative Saturation Mutagenesis (ISM) 

The Iterative Saturation Mutagenesis (ISM) was proposed by Reetz and coworkers [30] and it 

combines, in an iterative manner, the SSM described above. While other strategies simply add 

mutations at rationally-chosen single sites by producing double or triple mutants that simply contain 

the positive mutation 1, 2, 3 etc., in the ISM approach, a few sites in the protein sequence are identified 

as crucial by means of structural data or modeling, requiring a partially rational approach as in SSM, 

but saturation mutagenesis is then applied at the chosen sites in a combinatorial pattern. The site can be 

represented by a single amino acid or by a few neighboring amino acids, ideally not more than three, 

keeping in mind that an increase in the number of variants will then require screening of a large 

number of clones. These sites are then mutated according to the saturation mutagenesis approach. The 

novelty of this approach resides in the iterative feature given by selecting the best hit of the library 
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obtained at each target site. For example, assume sites X, Y, Z have been selected for mutagenesis. 

These sites will lead to three libraries X, Y, Z, each giving as best variant X1, Y1, and Z1. Saturation 

mutagenesis is applied at the respective other sites: X1 will be subjected to SSM at site Y, providing 

library X1Y, and at site Z, providing library X1Z, as shown in the scheme of Figure 2. 

Figure 2. Scheme of iterative saturation mutagenesis showing the branching process and 

highlighting the productive pathway (in green), non-productive mutants that stop the 

process simplifying the screening procedure (in red). Highlighted in yellow are mutants 

produced with moderate to low improvement that can be discarded or reconsidered for 

further processing in a second phase. 

WT

X Y Z

Library X Library Y Library Z

Best hit X1 Y1 Z1

Library X1Y

Y YZ ZX X

Library X1Z Library Y1X Library Y1Z Library Z1Y Library Z1X

ZX Y X Y Z Y X ZX Y Z

 

This branching process, iterated by applying SSM to a single site one or more times, can 

theoretically extend very quickly. For example, iterating each SSM at three sites results in 12 libraries 

as shown in Figure 2. In practice, non-productive branches will stop the process, as the example 

highlighted in red in Figure 2, while a pathway leading to synergistically improved mutants (i.e., not 

resulting from the simple sum of single mutations) can be efficiently defined, reducing the library size. 

The productive pathway is highlighted in green, while yellow is shown as another branch producing 

variants with limited improvement. Each new cycle of ISM maximizes the probability of obtaining 

additive and/or cooperative effects of newly introduced mutations, which optimize the fitness 

landscape in a defined region of protein sequence space. This is not the case when the best-hit mutant 

of each library is simply added to a double or multiple mutant, where the effect can be non additive or 

even detrimental to the desired protein property. ISM has been demonstrated to achieve impressive 

results especially in enhancing enantio-selectivity [32] and thermostability of enzymes. Notably, the 

ISM strategy was also tested on libraries that initially did not contain improved variants, by applying 

the iterative cycle even to inferior mutants as templates. This was done within the systematical testing 
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of features of 24 alternative pathways to improved variants of a biocatalyst (epoxide hydrolase from 

Aspergillus niger) and the performance evaluation of the ISM when reaching a local minimum [33]. 

The results showed that applying ISM resulted in successfully escaping from the local minimum. 

2.1.3. Combinatorial Active-Site Saturation Test (CAST) 

Strategies for evolving properties such as substrate recognition and catalysis specificity, including 

stereochemistry of reaction and selection of improved enzyme for resolution of racemic mixtures and 

precise enantio-selectivity, have been proposed over the last 5 years by selecting one or more amino 

acids in the active site pocket or in its close proximity. The best example of a systematic approach to 

this end is represented by the Combinatorial Active-site Saturation Test (CAST). In this approach, 

pairs of amino acid residues pointing towards the active site of an enzyme are chosen for complete 

randomization. The selection of residues is made on the basis of geometric assumptions that suggest 

choosing amino acid pairs along the sequence of loops, helices or β-sheets. For example, two residues 

pointing both to the catalytic pocket will for instance be n and n + 2 along the sequence in a β-sheet 

and n and n + 4 in a -helix. The randomization of each pair generates a CAST library with 20
2
, i.e., 

400 possible variants. The limited size of each CAST library allows an oversampling of 3,000 clones 

for statistically significant screening coverage, thus drastically reducing time and cost efforts. The 

results from each CAST library can then be combined pairwise by multiple mutations or by iterative 

strategies and re-randomized as explained above. The impressive results obtained with enzyme 

specificity and enantio-selectivity [32,34] highlight the suitability of the method to evolve new 

functions for biocatalysts. Lipases are a good example of the powerful application of CAST. The 

results achieved on lipases support the suitability of SSM-based methods for biocatalysts 

improvement, as lipases certainly constitute the core business in key industrial processes such as 

detergent additives, food processing and biomass pretreatment, bearing a significant impact on the 

global biocatalysts market that is expected to reach $7.6 billion by 2015 [35]. The availability of the 

CASTER software provides a very powerful tool for assigning the residue pairs for randomization on 

the basis of a crystal structure or a homology model. This makes the approach easy to test with several 

different enzymes in reproducible conditions. The main group working with this approach is that of 

Reetz [29], but recent applications from other research groups highlighted equally important results [36]. 

The limitation of the method, that requires as ideal starting point a substrate-bound crystal structure of 

the biocatalyst to be targeted, can be overcome in most cases by homology modeling, docking tools 

and in general by available bio-computing techniques. 

2.1.4. B-Factor Iterative Test (B-FIT) 

The focus of the B-factor iterative test (B-FIT) is the protein scaffold stability, more so than the 

detail of the catalytic pocket, and therefore it can guide the improvement of parameters such as 

thermostability that is known to not necessarily relate to the active site residues. The B-factor, or 

“temperature-factor”, can be calculated from crystallographic data and indicates the static or dynamic 

mobility of an atom or groups of atoms. The B-FIT approach therefore relies on the principle of ISM 

combined with criteria for selecting the crucial sites that are based on the availability of B-factor 

values, i.e., on information about the protein scaffold mobility. The hot spots are identified using 
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software called the B-FITTER. This averages the B-factors available from X-ray crystallographic 

structures and it relies on the principle that high B-factors are signature of very flexible regions of the 

protein scaffold. Iterative mutagenesis at these flexible sites of the enzyme aims at increasing their 

rigidity and therefore improving the thermal stability of the enzymes to be used in industrial processes 

or bulk applications. The test cases that show the most impressive results to date are once more 

regarding the lipases, enzymes that need to be thermostable as they are typically added to detergents 

for mid to high temperature biological activity. The availability of the crystal structure is much more of 

a prerequisite here and therefore the bottleneck. Another limiting point could be the matching of an 

increased rigidity for thermostability [37,38] and also for stability against denaturating agents such as 

organic solvents [39], together with an adequate dynamic range necessary for the structural 

rearrangements that occur in many enzymes during catalysis. The interesting further proof that the 

approach is based on a measurable parameter directly correlated with flexibility and thermolability is 

the re-engineering of the thermostable lipase from Pseudomonas aeruginosa. This enzyme maintains 

catalytic features while dramatically decreasing its thermal stability, with Tm halved from 72 °C to  

36 °C. This was achieved by reversing the approach illustrated above, by selecting and randomizing 

few chosen positions with a lower B-value according to the B-FITTER software to achieve 

destabilization of the original enzyme [40]. 

Another recent strategy able to select regions of potential protein flexibility and therefore hot spots 

to be subjected to saturation mutagenesis for tuning thermostability was named Coevolving-Site 

Saturation Mutagenesis (CSSM) [41]. The method relies on computational algorithm [42] and sequence 

alignment to select coevolving residues and/or pairs of co-evolutionary interactions that are then 

targeted with saturation mutagenesis to generate variants selected for improved thermostability.  

2.1.5. Cassette Mutagenesis and Other Approaches for Multisite Saturation Mutagenesis 

Cassette mutagenesis is one of the classical approaches for systematic mutagenesis at fixed 

positions [43] that can be chosen for multisite saturation mutagenesis. It is usually applied when a 

relatively short DNA sequence is to be mutated by synthetic oligonucleotide primers designed to 

introduce multiple mutations at targeted amino acids in the same stretch of primary sequence. The 

excision and re-introduction of the mutated cassette by molecular biology techniques, such as 

introduction of restriction sites and ligation in the original vector, makes it a time consuming 

procedure. Likewise, methods that follow the classical Kunkel mutagenesis approach using ssDNA 

also suffer from the same drawbacks. However, a recent novel approach named PFunkel [44] has been 

proposed that re-interprets the Kunkel methodology and that can be performed in one day in a single 

test tube (Figure 3). This was applied to create a library with site-saturation at four distal sites and it 

was tested on TEM-1 -lactamase gene to produce a library of 18,081 designed variants: library 

sequencing attested that a 97% coverage of the expected variants were present in the library, and this 

was then screened for variants resistant to the ß-lactamase inhibitor tazobactam.  

Another recent strategy to simultaneously introduce saturation mutagenesis at multiple sites (up to 

five codons) was proposed by Schwaneberg and co-workers [45]. The scheme of this approach, named 

OmniChange is reported below (Figure 4). 
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Figure 3. Schematic of PFunkel mutagenesis strategy (adapted from Firnberg et al. [44]). 

 

Figure 4. The 4-step strategy for the simultaneous saturation of 5 independent codons by 

OmniChange (adapted from Dennig et al. [45]). 
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2.1.6. Reducing Amino Acid Alphabet 

The query for strategies that can reduce library size without limiting functional variants has led to 

several attempts to restrict the amino acid alphabet. All “reducing amino acid alphabet” approaches 

aim at defining a small set of a few representative amino acids that can efficiently function as building 

blocks for all proteins. Saturation mutagenesis performed with a restricted alphabet at multiple sites 

has the advantage of generating smaller and potentially smarter libraries. The risk is to over-simplify the 

subset and exclude subtle and specific properties of some amino acids. The design of the subset chosen 

is therefore a very delicate step. The main efforts in this direction came from Hilvert [46] and Reetz [47] 

and co-workers who respectively proposed a reduced alphabet of 9 and 12 representative amino acids 

applied to the design of an enzyme able to function as chorismate mutase [46] and to the engineering 

of the active site of an epoxide hydrolase [47]. Although the function of these enzymes can efficiently 

be complied by this simplified catalyst, the stability of the protein was not entirely satisfactory, as an 

undesired enhanced flexibility was observed in the enzyme designed with the 9 amino acid reduced 

alphabet [46]. In other cases the reduced amino acid alphabet was specifically designed on the basis of 

sequence alignment and consensus variants and the strategy applied to the focused mutagenesis of a 

phenyl acetone monooxygenase [48]. The main advantage of this method is well highlighted by the 

rigorous comparison of library coverage when randomizing multiple positions with the alternative 

codon NNK for the 20 amino acids and with the codon NDT (D: adenine/guanine/thymine) encoding 

for the reduced 12 amino acid alphabet. The number of variants to be screened in the NDT library for 

95% coverage is less than 500 for a two position randomized mutant and 5,000 for a three position 

mutant. In the case of NNK library for a two positions mutant a screening of 3,000 is required, while 

for a three positions mutant the screening of 10,000 variants only covers 25% [49]. For the purpose of 

reducing library redundancy, and consequently screening efforts, a more convincing strategy has 

recently been proposed by designing appropriate mutagenic primers that can cover the 20 amino acids 

with only 22 codons [50]. 

2.2. Statistical Robustness of the Method and Requirements for Library Screenings 

A key point of all laboratory evolution techniques is library screening and variant selection, which 

is tightly intertwined with the statistical analysis of library coverage. Although SSM is a focused 

strategy among the wider landscape of directed evolution approaches, the importance of these two aspects 

is crucial and bears implications for judging SSM and evaluating its potential application. Therefore a 

brief coverage of the topic will be presented below with a focus on relevance to SSM strategy. 

The saturation mutagenesis methods usually aim at the production of relatively small and high 

quality libraries, whose screening could cover all different variants with an established degree of 

confidence. It is therefore crucial to acknowledge the importance of statistics [51–54] for estimating 

the number of analyses to be performed and determining the sample size to be screened. In most 

methods, with the exception of recently proposed alphabet reducing [47] and redundancy reducing 

approaches [50], the distribution of encoded amino acids is impaired in frequency due to the genetic 

code redundancy. Thus a library constructed with NNN configuration will have leucine represented six 

times for every tryptophan. As a result, the sample size should always be calculated on the basis of 
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nucleotide rather than amino acid diversity. The statistics of the process is described by the following 

equation [54]. 











V

P
VL cln

ln  (1)  

where V is the number of possible variants (64 for NNN degeneracy, 32 for NNK degeneracy of a 

single codon), L is the number of clones in the library, Pc is the probability of completeness of the 

library. Thus, the equation correlates the number of clones in the library with the probability that each 

clone is actually present in the library at least once. The same holds for the screening. As an example, 

the screening of 360 clones obtained by a NNK degenerated library at a single site, providing 32 

different codon variants, ensures a probability of 99.96% that each variant has been tested at least 

once, while lowering the screened clones to 247 lowers the probability to 98.59%. The assumption is 

of course that the NNK or NNN degeneracy and the SSM protocol applied is not affected by biases 

and that the incorporation of each codon is equally possible. This is not always the case and controls of 

library completeness can be performed by sequencing the entire library mixture (Figure 5) and/or 

randomly selecting a few clones (either positive or negative) to demonstrate that a good variability of 

codons for different amino acids are actually present [55]. 

Figure 5. DNA sequencing of the three libraries produced for evaluation of the 

randomization efficiency on selected position in hydrogenase gene: the targeted position is 

properly randomized for NNK in library A and C (K either a T or a G), while only partial 

degeneration is present in library B. 

 

The higher the degeneracy of the library, the higher the number of clones to be screened in order to 

have a significant probability of coverage of all mutants. For example, to achieve 95% (the threshold 

for significance is usually set to this value) probability to cover all mutants in a 1,024-fold degenerated 

library, it has been estimated that about 3,000 clones should be screened. Most SSM experiments 

reported in the literature cover the mutated library between two to four times on a basis of nucleotide 

diversity (e.g., 64–128 clones are usually screened for a 32-fold degenerated library). Often incomplete 
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screenings of large libraries can allow identification of variants with desirable features [56]. This 

strategy is, however, prone to the statistical uncertainty of missing clones with remarkable properties. 

To reduce the library size and overcome genetic code redundancy, mixtures of highly specific primers 

can be used instead of a degenerated primer. Therefore, 19 primers (one for each specific amino acid 

alternative to the WT amino acid) can be used to randomize each codon. This can also be applied when 

a bias in codon incorporation is present (Figure 3 library B) and a properly randomized library cannot 

be synthesized. 

Recent novel techniques and designed primers were proposed to further reduce codon redundancy 

and to ensure equal probability of coding each amino acid, by limiting the code to 22 triplets covering 

the 20 standard amino acids [50]. 

The researcher in the laboratory designs the selection of desired variants by the application of an 

appropriate screening method. The general rule that “you get what you screen for” indicates that this 

step is a particularly crucial one and often represents the bottleneck for the success of directed 

evolution in developing improved or new biocatalysts. The selection method must be rapid, sensitive 

and allow for the clear identification of the desired properties, implying that the screening must not be 

marred by undesired selection criteria.  

The fully randomized methods of shuffling or error prone PCR implies the production of very large 

libraries and therefore the requirement for equally powerful high-throughput screening techniques, 

such as phage display or other more recent molecular display methods [57,58]. These methods enable 

the screening of up to 10
12

 protein variants, but usually rely on costly equipment and are only suitable 

for very focused applications. On the contrary, in vivo selection of suitable enzymes by setting 

experimental parameters so that conditional cell survival is linked to the desired biocatalyst function 

usually is low cost and allows high-throughput performance. Unfortunately, instances have been 

reported in literature in which surviving cells bypassed the desired enzyme expression. Also by setting 

a high threshold there is the probability that low activity variants with potential interest are excluded. 

The application of spectrophotometric [59] or fluorimetric [60] platform that can screen for the 

desired product formation or at least for substrates and co-substrates consumption by the biocatalyst of 

interest is a more versatile option that can be extended to very specific catalysis, such as stereo-specific 

production of chiral compounds [61], biodegradation of recalcitrant poly-aromatic hydrocarbons [62], 

for the synthesis of drug metabolites [63,64] and the turnover of novel chemical entities for drug 

synthesis, such as 1,2,5-Oxadiazole derivatives [65], for hydrogen evolution and uptake [55,66]. The 

superior specificity and versatility of such assays is reached at the cost of lowering the through-put 

efficiency, even for quick assays that can be performed on multi-well plates, directly on cell lysates or 

colonies (Figure 6) [55]. Compared to fully randomized methods, saturation mutagenesis, which 

provides small but high quality libraries, allows the application of such focused and function-specific 

screenings whilst maintaining  statistically sound library coverage. 
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Figure 6. (a) Scheme of the principle of on-colonies activity test for a [FeFe] hydrogenase [55]; 

(b) Example of the screening results. 

 

3. Recent Successful Applications  

An increasing number of recent papers proposes the application of saturation mutagenesis to biocatalysts 

of applicative interest, for “greener” industrial processes [67,68] improved bulk enzymes [41,69,70], 

biotechnology [71,72] bioremediation [73], fine chemical synthesis [74–80], biofuels production [55,81,82] 

and biomass exploitation [82–85].  

A selection of relevant successful examples published in the past 5 years is presented below. The 

report is divided in two sections: (1) enzyme classes with high impact on industrial processes and fine 

chemistry (3.1) and (2) enzyme classes with applications in environmental care and production of clean 

energy (3.2). Some classes, for example oxygenases, are relevant to both and therefore are listed twice.  

3.1. Enzymes Relevant for Industry 

3.1.1. Lipases 

Lipases are considered as benchmark enzymes for biocatalysis: Lipolase®Ultra and LipoPrime® 

are the first examples of engineered lipases for commercial distribution in detergent industry. They are 

also exploited in other industrial large-scale processes and as dedicated catalysts for highly stereo-specific 

catalysis in fine chemistry. Saturation mutagenesis has played a key role in engineering several lipases 

both for thermal stability and enantio-selectivity, with at least 20 research papers published in the last 5 

years. Among groups involved in lipases engineering, Reetz and co-workers achieved relevant  

results [29,32,34] by applying SSM, ISM and CAST for enhancing enantio-selectivity and B-FIT for 

tuning thermal stability properties. The SSM approach was applied to Pseudomonas aeruginosa lipase, 

a well-known catalyst applied to hydrolysis of carboxylic acid esters and transesterification of primary 

and secondary alcohols, with the aim of redesigning the substrate recognition pocket to enable 

catalysis on more bulky substrates, such as benzoic acid esters. Ser 82, the key residue for the 

stabilization of the oxyanion intermediate, was not addressed by the mutagenesis since it structurally 

belongs to a more distant portion of the enzyme, while the CAST strategy guided the selection of five 

pairs of residues pointing towards the active site and defining the recognition determinants of the 

hydrophobic portion of the ester. Five libraries were produced by simultaneous saturation mutagenesis 

at the two defined positions, that is library A to E: Met16/Leu17, Leu118/Ile 121, Leu131/Val 135, 

Leu159/Leu162, and Leu231/Val 232 (Figure 7).  
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Figure 7. Scheme of the structure of P. aeruginosa lipase active site pocket (PDB: 1EX9) 

with the targeted sites (library A: Met16/Leu17 in red; library B: Leu118/Ile 121 in orange; 

library C: Leu131/Val 135 in yellow; library D: Leu159/Leu162 in green; and library E: 

Leu231/Val 232 in cyan). Ser82, Asp229, and His251 (in violet) represent the catalytic triad.  

A substrate analogue (RC-(RP,SP)-1,2-dioctylcarbamoyl-glycero-3-O-octylphosphonate) 

covalently bound to Ser 82 is shown in blue. 

 

The five libraries of 3,000 variants each were then screened with a spectrophotometric method by 

testing 11 different substrates. The total reactions performed (165,000) allowed to select eight hits 

from libraries A and D, consistent with the focus on hot spots even within the restricted region 

analyzed. Although the success rate in this case was lower than for other SSM reported approaches, the 

few selected variants showed an impressive gain in function, for instance by binding adamantyl 

carboxylic acid esters that are not recognized by the WT, as well as showing a 100 fold increase in the 

rate of hydrolytic activity on substrates that are poorly recognized by the WT [29]. Further works on 

the same enzyme by ISM highlighted the enormous potentiality of iterative saturation versus other 

methods such as error prone PCR, shuffling and even the previous SSM, in particular for enhancing 

the stereospecificity of reactions. In fact, a more recent paper reports, on the same enzyme, the gain of 

function for the bulky 2-phenylalkanoic acid esters that are not recognized by the WT and the selection 

of variants with enantio-selectivity of E = 436, achieved with only small mutant libraries and thus a 

minimum of screening effort [34]. 

Also, the selection of a Pseudomonas aeruginosa lipase engineered variant with an enatioselectivity 

of E = 594 for the kinetic resolution of a chiral ester from an ISM library upon screening only 10,000 

transformants is an unprecedented result [32], given that by directed evolution based on DNA 

shuffling, only a best variant value of E = 51 (ee > 95% at 24% conversion) could be obtained by 

screening about 50,000 transformants [86]. In the specific case of variant 1B2, characterized by a high 

E value of 594, this was produced by ISM starting from three libraries with simultaneous 



Biomolecules 2013, 3 791 

 

 

randomization at two near sites each, namely library A (Met16/Leu17), B (Leu159/Leu162), and C 

(Leu231/Val232). The selection of a best hit from library B with E = 8 (Leu162Asn) was followed by 

a second round of randomization on library A with DNT codon that simplifies amino acid alphabet by 

excluding Leu and therefore back-mutating to the original amino acid Leu17. This led to the highly 

optimized 1B2 variant (Met16Ala/Leu17Phe/Leu162Asn).  

A very recent paper [70] reports the application of ISM and CAST to the engineering of Candida 

antarctica lipase B (CALB; Novozyme 435), a top industrial biocatalyst applied in kinetic resolution 

of racemic alcohols and amines, desymmetrization of diols and in other stereoselective synthesis of 

chiral intermediates for pharmaceuticals, polymer chemistry, and protection/deprotection technology. 

CAST guided selection of active site residues and ISM cycles with restricted alphabet using NDT 

degeneracy allowed for the isolation of two best mutants that were tested on several substrates for 

enhancement of activity and S- or R-stereospecificity. These two best hits, named RG401 and SG303 

were tested on four representative chiral α-substituted carboxylic acid esters. Specificity constants 

kcat/KM from 13 to 270 fold higher than WT were achieved for SG303 with E (S) up to 64. The other 

mutant, RG401, acquired an enantio-specificity with E (R) up to 68 although the specificity constants 

were only slightly higher or of the same order of magnitude of WT. On Candida antarctica lipase A 

(CALA), Bäckvall and co-workers [36] applied the CAST strategy to enhance the performance of the 

catalyst by building two reduced libraries based on the NDT degeneracy: library FI (Phe149 and 

Ile150) with side chains directed toward the R-methyl group of the substrate and library FG (Phe233 

and Gly237) with side chains defining the acyl-recognizing pocket of the active site. The reduced 

library size allowed a high coverage (>95%) by screening only 600 variants per library and allowed to 

select variants with E values of 45–276 (WT E value is only up to 20) and up to 30 fold increased 

activity for seven different esters used for the preparation of enantiomerically pure 2-arylpropionic 

acids, important building blocks for the synthesis of non-steroidal anti-inflammatory drugs such as 

Naproxen, Ibuprofen, and Flurbiprofen. The same group recently reported a further enhancement 

where CALA variants with high activity and E value of 100 towards an ester of ibuprofen were 

obtained. This substrate had failed to be recognized efficiently and with high stereospecificity by 

variants selected previously [80].  

The robustness of the saturation mutagenesis methods, in particular with the B-FIT strategy, for 

thermal stabilization and destabilization of lipases for catalysis at desired optimal temperature, has 

already been discussed (Section 2.1.4) [37,41] and the same approach has proven to be suitable for 

stabilization towards other denaturing agents such as organic solvents [39].  

3.1.2. Esterases and Other Hydrolases 

Esterases are also extensively used in biocatalysis: saturation mutagenesis strategies have been 

applied to some enzymes of this class, in particular for the esterase from Pseudomonas fluorescens. 

Enhancement of enantio-selectivity [87] of this enzyme was pursued by the use of simultaneous 

saturation mutagenesis at four hot spots, with restricted alphabets chosen on the basis of more frequently 

represented amino acids in structurally equivalent positions on the basis of 1,750 known sequences. This 

approach granted variants with improved rates (up to 240-fold) and enantioselectivities (up to 

E(true) = 80) towards 3-phenylbutyric acid esters with the advantage of a relatively limited effort for 



Biomolecules 2013, 3 792 

 

 

screening these “small but smart” libraries. As for thermal stabilization, the same enzyme was targeted 

at three sites, selected by B-FIT strategies, granting an enhanced stability of almost 10 °C higher than 

the starting catalyst [88]. 

Other class 3 hydrolytic enzymes that were targeted by saturation mutagenesis for improved 

catalysts development include epoxide hydrolases, already mentioned as test cases for the development 

of focused restricted alphabet libraries [46]. A limonene epoxide hydrolase from Rhodococcus 

erythropolis, performing a rare one-step mechanism, was also targeted by ISM to select variants with 

high stereoselectivity on substrates different from the natural limonene epoxide. Active site binding 

pocket residues were selected and the codons randomized with a reduced amino acid alphabet strategy. 

Variants obtained from 5,000 screened hits can catalyze the desymmetrization of cyclopentene-oxide 

with stereoselective production of (R,R)- or (S,S)-enantiomers, the desymmetrization of other  

meso-epoxides and kinetic resolution of racemic substrates [89]. 

Because of its potential usefulness in β-lactam antibiotics synthesis, α-amino acid ester hydrolases 

were also chosen for improvement by saturation mutagenesis. A study was performed on 13 residues 

not directly involved in substrate recognition (based on the crystal structure of a protein-cefprozil 

complex) that were individually randomized in the enzyme from Xanthomonas rubrillineans. Mutants 

were selected with improved synthetic activity of p-hydroxylcephalosporins with a 23%, 17% and 64% 

increase in product yield for cefadroxil, cefprozil and cefatrizine, respectively [90]. 

Another biocatalyst relevant for bulk applications and belonging to the hydrolase class is 

represented by phytase, commercialized as an additive to poultry and swine feeding preparation in 

order to enhance digestibility of phytate and increase phosphorus assimilation. The challenge for 

enzyme engineering here is to enhance the stability of the catalyst not only to temperature but also to 

gastric degradation and to very low pH environment of the digestive tract so that the enzyme can still 

be active during the feeding process. Industry interest in this biocatalyst and in mutagenesis 

approaches aiming at improving its performance is testified by a paper dating back to 2004 [91] 

published on a research carried out by the company Diversa Corporation, San Diego, CA, USA. The 

dhlA phytase encoding gene from Rhodococcus was chosen to apply saturation mutagenesis with NNK 

codon systematically to all 431 positions of the protein sequence and screening was performed on at 

least 150 clones for each individually produced library. By isolating the best single mutants for 

enhanced low pH stability after heat treatment of the variants, therefore combining a selection for two 

desired properties, the authors selected 14 single mutants with improved properties and performed a 

combinatorial strategy and a second screening to isolate synergic and additive effects of multiple 

mutations. Variant Phy9X, with eight combined mutations, led to a novel biocatalyst with the ability to 

reversibly renature upon heat treatment and also function at process temperatures of 65 °C, with 

specific activity at the same level of WT but extending to below pH 2.5 and a 3.5 fold enhanced 

stability to gastric degradation. 

3.1.3. Oxygenases and Other Redox Enzymes 

Among redox enzymes, oxygenases have been key examples of the possible improvements brought 

by protein engineering to the efficiency of enzymes, and particularly of biocatalysts: the focus on 

cytochromes P450 and Baeyer-Villiger monooxygenases has always been maintained when proposing 
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rational, semi-rational and randomized techniques of laboratory evolution with the seeding work of the 

groups of Arnold and Reetz, respectively and of many other groups that proposed directed evolution of 

these versatile biocatalysts. More recently, in particular for P450s, an increasing number of papers 

proposed saturation mutagenesis alone, or in combination with random techniques, to refine particular 

applications supported by this class of enzymes in fine chemical synthesis. This also extends to other 

non-heme iron oxygenases used for enantioselective synthesis of pharmaceutical compounds and  

chiral sulfoxides [74]. 

Starting from P450s, saturation mutagenesis seems to be the preferred method to enable 

enhancement of both regio- and stereo-selectivity for the C-H hydroxylation reactions that are of 

interest in fine chemistry. Steroid hydroxylation by cytochromes P450 in controlled positions leading 

to enantiomerically pure products is one of the most targeted goals of industry. The results achieved 

with saturation mutagenesis in the last few years benefit from the knowledge in terms of key spots 

relevant to improving enzyme performance acquired through directed evolution. Further specific 

improvements have been made possible by saturation mutagenesis. A very recent work by Glieder and 

co-workers [75] addressed the two active site residues 216 and 483 by saturation mutagenesis to 

generate all 400 possible combinations of amino acids. A double mutant of WT CYP2D6 resulted in a 

high regio-selectivity for hydroxylation at the 2β-position, instead of the 6β-position, suggesting that 

the mutation F483G could be preferential to the reported F483I for regio-selectivity in the well-known 

protein hot spot F483. Moreover, a previously obtained mutant F87A of P450 BM3, was further 

targeted by ISM for selective hydroxylation of testosterone in either of the two possible products  

2β- and 15β-alcohols [92]. The CAST approach was applied to choose appropriate sites surrounding 

the binding pocket. The 20 residues selected as possible candidates for ISM were grouped into nine 

sites of neighboring amino acids, as this is known to maximize the cooperativity more than the additive 

effects and it is obviously useful to reduce the library size. Site A (Arg47, Thr49, Tyr51), and site B 

(Val78, Ala82) were targeted (Figure 8) first with NDC codon degeneracy at the three spots of site A 

with the need to screen only 430 transformants for a 95% coverage.  

The two-residues at site B were randomized using NNK codon degeneracy. From this first 

screening, highly 2β-selective mutants (97%) were obtained from library A while 15β-selective 

variants, also reaching 91% regio-selectivity on testosterone, were found mainly in library B. The best 

variant from library B was then subjected to randomization at site A with some variants reaching 96% 

regio-selectivity on testosterone (R47Y/T49F/V78L/A82M/F87A) while a variant from library B only 

selected on testosterone (V78V/A82N/F87A) was able to reach a 100% regio-selectivity on other 

steroidal substrates such as progesterone. Moreover, some mutated variants displayed increased 

coupling of product formation with NADPH consumption. This ISM approach was also characterized 

by a limited amount of screening, the step that is normally considered the bottleneck of  

directed evolution.  
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Figure 8. Structure of P450 BM3 heme domain (PDB: 2HPD) showing the target sites A 

(Arg47, Thr49, Tyr51) in green and B (Val78, Ala82) in blue. Heme is shown in red, the 

Fe coordinating Cys 400 is in magenta. 

 

A refinement of previously evolved mutants of P450 BM3 was also proposed in 2008 for production of 

indigo and indirubin by indole hydroxylation [93]. Starting from a variant A74G/F87V/L188Q obtained by 

random methods and directed evolution, and by applying saturation mutagenesis as a refinement of 

catalyst properties, granted two variants with increased catalytic efficiency up to six times that of the 

starting variant, with improved regio-selectivity for 3-hydroxyindole, leading to 93% indigo 

production vs. the initial 72%. One of the variants also showed increased coupling efficiency with 

NADH. The overall result nicely supports the importance of synergy of random and saturation mutagenesis 

approaches for optimized catalysts production. 

Recently, another study has been published [94] on P450sca-2 from Streptomyces carbophilus to be 

employed in the synthesis of the cholesterol-lowering drug pravastatin. Here the saturation mutagenesis 

was applied to enhance electron transfer efficiency in a hybrid P450sca-2/Pdx/Pdr functional system 

by targeting residues at the interface between the electron transfer moiety putidaredoxin (Pdx) and the 

catalytic P450sca-2. Three rounds of ISM granted a variant with a 10 fold improved catalytic performance.  

The other important enzymes belonging to the oxygenase class and successfully targeted for 

improvement by saturation mutagenesis [95,96] are represented by the Baeyer-Villiger monoxygenases 

(BVMO), able to perform specific reactions on racemic mixture of various ketones to obtain 

enantiopure lactones, conversion of prochiral ketones in chiral lactones and oxidation of organic 

sulfides. Although novel Baeyer-Villiger monoxygenases with tuned substrate specificity can be found 

in diverse microbial populations [97–99], there is the need to evolve BVMOs with specific 

performance in biosynthesis. This can be done with random or SSM laboratory techniques. 

A thermostable phenylacetone monoxygenase (PAMO) belonging to the BVMO group was 

successfully engineered by saturation mutagenesis to perform catalysis on 2-aryl, 2-alkylcyclohexanones 

and a bicyclic ketone that are not recognized as substrates by the WT enzyme [96]. Given that a CAST 
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approach previously applied to positions 441–444 belonging to a loop next to the binding pocket, were 

only partially successful [48], only positions 440 and 437 were targeted instead, where the first amino 

acid is located in the second sphere, and therefore not in direct contact with the substrate (Figure 9). 

Pro440 was identified to play a key role, since several mutants generated at this position granted an 

enhanced percentage of conversions and improved enantio-selectivity for substrates not recognized by 

the WT. Since in this case the library was apparently not covering the entire range of variants at 

position 440, the missing variants Pro440Tyr and Pro440Trp were produced by site-specific 

mutagenesis, with the aim of exploring the entire range of amino acid properties at this position for the 

enhancement of the biocatalyst performance. Further work on the same enzyme [95] targeted positions 

93 and 94, located in site distal from the binding pocket chosen on the basis of the crystal structure, 

with a simultaneous saturation mutagenesis using a NDT codon to reduce degeneracy. A double mutant 

Gln93Asn/Pro94Asp was selected for its acquired activity on an otherwise inert 2-substituted 

cyclohexanone derivatives and it was found to be able to catalyze the conversion to the corresponding 

lactones with high enantio-selectivity. These results have been rationalized by a rearrangement of the H-

bonds and salt-bridge networks in the protein, much alike an induced allosteric effect. 

Figure 9. Scheme of the active site of PAMO (PDB: 1W4X) with targeted residues 

Pro440, Pro437, Gln93 and Pro94 (in black). FAD is shown in orange; Arg 337, involved 

in catalysis, is shown in blue. 

 

In order to enhance the performance of biocatalysts for fine chemistry, for example, for the 

synthesis of chiral sulfoxides and asymmetric ketone reduction, other redox enzymes such as 

nitrobenzene dioxygenase [77], alcohol dehydrogenase [78] and carbonyl reductase [79] were also 

recently optimized by saturation mutagenesis. 

An interesting example of active site saturation mutagenesis recently published, targeted an unusual 

non-heme iron dioxygenase, belonging to the class of -ketoglutarate dependent dioxygenase [74]. 
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This enzyme is involved in the biosynthesis of carbapenem-3-carboxylic acid, the core building block 

of the all carbapenems, including Meropenem and Imipenem. This is a relatively new class of β-lactam 

antibiotics of great importance as therapeutic agents given the increasing bacterial resistance to an 

older class of antibiotics. In order to dissect and better understand the molecular determinants of the 

biocatalyst that promote the epimerization and desaturation crucial for the biosynthesis of the core of 

cabapenem, SSM was applied to six active sites and four second sphere residues of the dioxygenase, 

generating point as well as double mutant libraries. The importance of Tyr 67 for catalyst engineering 

was highlighted together with the advantage of promoting a two step reaction mechanism, including 

epimerization and desaturation, with release and rebound of the intermediate to ensure complete 

desaturation and avoid the frequent aborted cycles that are observed in the native enzyme due to a 

difficult rotation of the intermediate required in the catalytic pocket in the full reaction. 

Other redox enzymes optimized by SSM include dehydrogenases as the previously cited alcohol 

dehydrogenase from Thermoethanolicus brockii [78] and the meso-diaminopimelate dehydrogenase from 

Symbiobacterium thermophilum [100] successfully exploited for the synthesis of D-phenylalanine, thanks 

to a 35-fold increase in specific activity of the variant compared to the WT. 

3.2. Enzymes Relevant to Environmental and Clean Energy Approaches 

The use of enzymes in environmental applications include biocatalysts able to detoxify pesticides 

such as atrazine, chlorinated polyaromatic hydrocarbons, DDT, toxic compounds in industrial wastes 

such as phenols, organic solvents, aniline, drugs, explosives and chemicals resulting from military 

operations, among which trinitrotoluene (TNT) and G-series organophosphorus toxins contained in 

nerve agents like Sarin and Cyclosarin. These are usually xenobiotics particularly recalcitrant to 

degradation by bacteria and fungi, given that their natural enzymes, though powerful catalysts for 

bioremediation [101], have not evolved under the selective pressure of such compounds, as these 

organisms were not massively exposed to these compounds until very recently. In this respect, protein 

engineering by laboratory-driven evolution is of unique importance for what it can deliver. Several 

important results have been achieved in this respect by random directed evolution approaches both on 

P450 enzymes acting on pollutants [1,4,62] and on hydrolytic enzymes, for example on paraoxonases 

(PON) for detoxification of organophosphorus toxins [102], but an increasing number of works have 

recently tackled the same problem by applying SSM methods. 

SSM relevance for improvement of lipase applications as an industrial catalyst has already been 

discussed in Section 3.1. Lipases are also relevant for clean energy issues in the transesterification of 

triacylglyerol with methanol for biodiesel production [81,103]. These have many advantages over 

traditional base or acid catalyzed approaches, but natural lipases often lack the required stability and 

efficiency in the high methanol concentrations used for biodiesel synthesis, limiting their practical use. 

Directed evolution techniques were very recently applied to the lipase from Proteus mirabilis to 

enhance methanol tolerance and allow its industrial application as a biocatalyst. The dieselzyme 

variant 4, evolved by randomized methods (error prone PCR) and site-directed mutagenesis to combine 

beneficial mutations, shows a 30-fold increase in the half-inactivation time to temperature (50 °C) and a 

50-fold longer half-inactivation time in 50% aqueous methanol [81]. Although saturation mutagenesis 
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was not the chosen technique for this approach, the authors foresee the application of CAST and 

structure guided ISM for further refinement of the obtained catalyst.  

Enhancement of performance of enzymes such as cellulases and ligninases, present in nature in a 

restricted number of organisms, is of high relevance to the production of clean and sustainable energy 

from renewable sources. These enzymes offer precious tools for waste and poor-value biomass recycling, 

acting both on recovery of resources for energy production and on management of wastes [104]. 

The frontier of environmental care and clean energy production is the setup of hybrid systems based 

on biocatalysts, often interfaced with semiconductor materials [105,106] with the ability to mimic 

nature in efficient solar energy harvesting and energy storage in transportable fuels of low impact to 

the delicate equilibrium of our planet. In this respect, photosystems, light activated proteins, CO2 

fixing enzymes and biocatalysts able to produce fuels such as biohydrogen, bioethanol and biodiesel, 

are the ideal target of engineering approaches. Many clean-energy production related enzymes (in 

particular photosystems and hydrogenases) are generally difficult to purify, manipulate and engineer, 

and therefore the laboratory evolution approaches are still at their first steps of development, but it is 

foreseen that increasing interest will be devoted to engineering, particularly with SSM methods applied 

to hydrogenases, nitrogenases, formate-dehydrogenase.  

Here a choice of examples, grouped as in Section 3.1 by enzyme classes or subclasses, focus on the 

three aspects: detoxification, biomass degradation and clean energy production. 

3.2.1. Oxygenases and Other Oxidoreductases for Bioremediation 

Oxygenases and more in general redox enzymes represent a class of biocatalysts spanning from 

P450s to non-heme iron mono- and di-oxygenases and flavoenzymes widely used for the oxidation of 

toxic compounds. The addition of one or two hydroxyls to a poorly reactive C-H bond, for example in 

aromatic and aliphatic hydrocarbons, is usually crucial for the initiation of the detoxification and 

clearance process. The increasing amount of pollutants with halogenated substitutions in aromatic 

rings, for example in pesticides, and the presence of compounds recalcitrant to biodegradation, poses 

difficult challenges to protein engineers. SSM techniques are often the selected method to test and 

modify redox enzymes to recognize a broader substrate range and to attack xenobiotics with a sustainable 

approach, recovering carbon sources for safe microorganism growth. The catabolic pathways that enable 

many microorganisms to degrade large classes of aromatic pollutants, often relay on non-heme iron 

dioxygenases and monoxygenases. These include di-iron oxo-bridged monoxygenases such as methane-

monoxygenase, phenol hydroxylase, toluene 4-monoxygenase and toluene-o-xylene monoxygenase. 

The last two enzymes have been target of early applications of SSM [107,108], as well as refinement 

of previous successful directed evolution approaches [109]. Further work, more focused on developing 

enzyme catalysts for bioremediation, has been developed on dioxygenases containing a single iron 

atom such as ring-cleaving dioxygenases acting on polychlorinated biphenyls [110], aniline [111,112], 

dinitrotoluene [113] and chlorinated catechols [114]. The engineering of the extradiol dioxygenase 

(DoxG) that displays a low activity in 3,4-dihydroxybiphenyls ring cleavage was achieved by a 

combination of error-prone PCR, SSM at hot spots and DNA shuffling applied in sequence. Four 

residues located within 14 Å of the enzyme active site iron, highlighted by error prone PCR to be 

relevant for enzyme activity on the screening substrate, were targeted by saturation mutagenesis applied 
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in pairs, grouping Ile-154 and Leu242, Leu-190 and Ser-191. The two resulting libraries were screened 

with coverage of 99.9% of the possible diversity resulting in variants with 2–10-fold increases in  

3,4-dihydroxybiphenyl cleavage rates. After DNA shuffling, a further improvement generated a variant 

with a kcat/KM towards 3,4-dihydroxybiphenyl increased by 770 fold when compared to WT, 

confirming the feasibility and advantage of a coupled random and saturation mutagenesis approach in 

biocatalysts activity enhancement. SSM was also applied to an aniline dioxygenase isolated from 

Acinetobacter sp. strain YAA [112]. Substrate-binding pocket residues were selected and the V205A 

mutation that is possibly responsible for enlarging the binding pocket, was highlighted to lead the 

oxidation of 2-isopropylaniline, a substrate not recognized by the WT enzyme. The same mutants also 

shift the substrate specificity from 2,4-dimethylaniline, a good substrate for WT, to 2-isopropylaniline. 

Another variant, I248L, improved activity towards aniline and 2,4-dimethylaniline by approximately 2 

fold. Both residues I248 and V205 were not previously reported to influence substrate recognition, 

therefore the finding also granted basic information on the enzyme active site determinants for 

substrate specificity. A further refinement by random mutagenesis on mutant V205A generated variant 

3-R21, with improvement in activity towards the carcinogenic 2,4-dimethylaniline of 3.5 fold and 

retaining WT activity levels towards the natural substrate aniline. Therefore it can be concluded that 

the laboratory evolution of this biocatalyst generated a powerful tool to detoxify highly hazardous 

compounds. Another pollutant that has received attention in view of bioremediation strategies is  

2,4,6-Trinitrotoluene (TNT), the most common explosive found in past and present war sites, and the 

intermediates of its synthesis 2,6-dinitrotoluene (2,6-DNT) and 2,4-dinitrotoluene (2,4-DNT) found as 

soil and water contaminants at TNT production facilities. 2,4-DNT dioxygenase of Burkholderia sp. 

strain DNT can catalyze the oxidation of 2,4-DNT to form 4-methyl-5-nitrocatechol and nitrite, but it 

has poor activity on other DNTs and nitrotoluens. By applying saturation mutagenesis at position I204 

of the catalytic subunit and selecting for nitro-catechol producing mutants (signature of activity on the 

screened substrate), variants I204L and I204Y were identified [113]. These showed unprecedented 

activity on 2,3-DNT and 2,5-DNT and 2 to 8 fold improved activity towards 2,4-DNT, 2,6-DNT, 2NT 

and 4NT. The activity reported on 2,5-DNT, never observed for an enzyme, confirms that new 

biocatalysts unexplored by natural evolution can be generated by laboratory-driven evolution. 

A gain of function on unnatural substrates and an inversion of specificity were also achieved by site 

directed and site-saturation mutagenesis on a catechol 1,2 dioxygenase from Acinetobacter radioresistens 

S13 [114]. Catechols are the converging metabolites of several aromatic degrading pathways, although 

natural enzymes usually cannot efficiently oxidize highly chlorinated or variously substituted catechols 

originated from chloroaromatic, biphenil and nitroaromatic compounds. The advantage of catechol 

dioxygenases is that these enzymes do not require any supply of reducing equivalent to perform the 

dihydroxylation and ring-cleavage of substrates, and therefore have a simpler architecture, higher 

stability and no need for expensive cofactors such as NAD(P)H to perform catalysis. Encapsulated and 

immobilized forms are also available [115], making them ideal biocatalysts. Mutagenesis on the active 

site was performed on residues L69 and A72 with a combined site-specific and SSM approach. This 

led to a series of variants with improved activity on the rarely recognized substrate 4,5-dichlorocatechol 

(by 2 fold in variant A72S), inversion of specificity for 4-chlorocatechol instead of catechol (variants 

L69A and L69A-A72G) and gain-of-function for recognition and catalysis on 4-tert-butyl catechol, a 

contaminant of cosmetics and foodstuff banned by EU since it can give sensitizations in patch testing 
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at low concentrations (1%). The effect of active site re-shaping of the chosen mutational sites is shown 

in Figure 10, together with an example of the SSM obtained variants. An influence on the oxygen 

binding properties of mutants vs. WT was recently highlighted [116] and further work is ongoing in 

our labs for SSM at other catalytic pocket sites and for production of multiple site variants. 

Figure 10. (a) Structure of active site of catechol 1,2 dioxygenase highlighting the residue 

that define the active site pocket (PDB file from crystallographic structure in [117]); 

(b) The effect of reshaping by mutagenesis and SSM on model of substrate/pocket 

interaction; (c) The list of identified and characterized mutants for SSM on position 72 are 

reported in the table (related to studies published in [114]).  

 

Cytochrome P450 enzymes were also targeted by directed evolution for enhancing the degradation 

of recalcitrant aromatic and aliphatic pollutants. A recent work by Arnold and co-workers [118] 

compares combinatorial SSM strategies to the results obtained by random directed evolution. Although 

in this case it seems that the notable achievements obtained by error prone PCR and several round of 

random mutagenesis cannot be fully matched by SSM, the paper reports an improved activity on 

propane and ethane hydroxylation. In this case, nonetheless, a simpler approach by two rounds of 

error-prone PCR and back-crossing with parental DNA devised in our group on the same P450 BM3, 

led to variants that are active on highly recalcitrant polyaromatic hydrocarbon (PAH) pollutants, more 

relevant for environmental concerns, such as chrysene and pyrene [62].  

A detoxification activity specifically improved by SSM on lactaldehyde oxidoreductase [72] is of 

relevance for detoxification of furfural, a toxic compound that originates from pre-treatment of cellulosic 

material. In this perspective the optimized catalyst obtained by SSM, a L7F mutant with a 10-fold 

higher activity than WT, is crucial both for lowering a toxic compound in an environment and for 

direct application in cell factory systems to enable cells to improve growth on treated lignocellulosic 

material. In the cited paper the variant obtained by SSM was also tested for performance in E. coli 

cells and showed a 2-fold higher rate of furfural metabolism during fermentation. 
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3.2.2. Cellulases, Haloalkane Dehalogenase and Other Hydrolases for Waste Degradation 

Hydrolytic enzymes such as cellulases, endoglucanases, xylosidases and β-glycosidases, are 

increasingly being applied in lignocellulosic waste pre-treatment in combination or in alternative to 

steam-explosion and chemical treatments for enhanced saccharification of the biomass and lowered 

environmental impact. The SSM approach to enhance applicability of this class of biocatalysts has 

been focusing on improvement of thermal stability by the same research group both for an 

endoglucanase [84] and more recently on a β-glycosidase [85]. In the first case the endoglucanase 

CelA from Clostridium thermocellum was chosen for SSM at protein surface position Ser329. All the 

variants with improved thermal stability (approximately 5-fold increase in half-life of inactivation) and 

maintaining hydrolytic activity at WT levels, showed the presence of the S329G mutation. This finding 

suggested a systematic analysis of other possible substitutions to Gly of surface Ser residues, in line 

with reported works that Ser to Gly mutations on protein surface may improve thermostability. Thr and 

His surface residues were also selected on the basis that His and Thr, along with Ser, are generally 

substituted by Gly on the surface of proteins with enhanced thermal stability compared to their  

thermo-sensitive homologous. Few residues were also tested for substitution to Pro. A final variant 

S329G/S269P/H194G, generated by a combination of SSM and site-directed mutagenesis resulted in a 

10-fold increase in half-life of inactivation at 86 °C. 

A more recent paper from the same group [85] reports a consensus-based semi rational approach 

that benefits from the results of the previous work to enhance thermal stability of a β-glycosidase BglY 

from Thermus thermophilus. 

An SSM approach applied to β-D-Xylosidase/α-L-arabinofuranosidase from Selenomonas ruminantium 

to residue W145 was instead focused on modulating the inhibitory effect of glucose and xylose on this 

enzyme for application to the saccharification of lignocellulosic waste biomass for biofuels production 

and as microbial substrate for other biotechnological processes [119]. While the β-D-Xylosidase/α-L-

arabinofuranosidase can promote the hydrolytic cleavage of 1,4-β-D-xylooligosaccharides to D-xylose, the 

high affinity for the product D-xylose as well as for D-glucose hinders its excellent performance as a 

catalyst. Three variants isolated by screening the SSM library, W145F, W145L, and W145Y, showed 

decreased inhibition by the monosaccharides and increased catalytic activities up to 70% greater than 

that of the WT enzyme.  

Another hydrolase applied to a different perspective of waste recycling is represented by a 

haloalkane dehalogenase DhaA from Rhodococcus rhodochrous. This enzyme is able to convert  

1,2,3-trichloropropane (TCP) into (R)- or (S)-2,3-dichloropropan-1-ol, which can be converted into 

optically active epichlorohydrins, industrially important building blocks for the synthesis of fine 

chemicals. Enatioselectivity of the WT DhaA was further improved [120] by a pair-wise SSM approach 

applied to 16 active-site residues not directly involved in the catalytic reaction. A further refinement 

was then applied to the best R- and S-enantioselective variants by site directed mutagenesis including 

residues that are not part of the active site. A multi-site mutagenesis protocol with restricted codon 

usage allowed to finalize two variants, r5-90R and r5-97S with 13 and 17 mutations, that generate  

(R)-epichlorohydrin with 90% ee and (S)-epichlorohydrin with 97% ee, respectively. 
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3.2.3. Hydrogenases and Other Enzymes Relevant to Clean Energy Production 

The energy issue has driven a great interest towards hydrogenases as powerful and efficient 

catalysts for hydrogen production in cell factory systems and in biohybrid fuel cells or solar harvesting 

devices as catalysts instead of platinum or other expensive rare-metal based materials [105]. Among 

the three classes of reported hydrogenases, [FeFe] hydrogenases are in this respect the most efficient 

catalysts due to their high turnover numbers, reaching turnover frequencies up to 10
4
 s

−1
 [121] with a 

bias toward hydrogen production, but with relatively low overpotential needed as a driving force for 

catalysis in either direction. Interestingly, perspectives are also discussed in literature on [NiFe] 

hydrogenases for application in molecular hydrogen conversion for biofuel cells and in NAD(P)
+
 

cofactor regeneration. 

Some limiting features, such as oxygen sensitivity, and the interest to further investigate the 

complex mechanism of the catalytic center, are increasingly pointing towards the application of 

saturation mutagenesis techniques to refine hydrogenases for desired applications. Although until now 

not many papers have been published on this topic [55,122] and in general on mutagenesis and 

laboratory evolution of all classes of hydrogenases [66,123–128], a very recent review from a leading 

group in the field of [FeFe] hydrogenase foresees imminent development in this direction [129]. In our 

group we applied saturation mutagenesis to a key residue in the active site of [FeFe] hydrogenase from 

C. acetobutylicum (CaHydA) recombinantly expressed in E. coli. This residue, namely cysteine 298, is 

involved in proton delivery to the active site; therefore it is crucial for substrate supply and product 

release, since the protons are converted reversibly to molecular hydrogen. In this case, accounting for 

proton pathways and local delivery engineering, means not only a matter of pH stability and fine 

regulation, but also of controlling the substrate concentration. We are also pursuing the same SSM 

strategy on other active site positions. The results of the focused approach on the conserved residue 

Cys 298, the final amino acid of a proton transfer chain to the active H-cluster [124] and believed to 

relay proton to the dithiolate bridging group that funnel them to the distal Fe, are reported in a recent 

publication [55]. Upon saturation mutagenesis with the NNK codon, a colorimetric screening 

performed on colonies allowed to reach 99.8% coverage of the library. Clones containing an active 

enzyme (with a detection threshold of 14% of original WT activity) were identified resulting in 

selection of only WT revertants or Cys-to-Asp mutants. The C298D variant shows a retained activity 

of 50%, which is interesting since the Cys residue is fully conserved in evolution, and therefore novel 

mutational spaces were explored, attesting that Asp can functionally replace Cys in proton relay and is 

structurally compatible (Figure 11).  

Figure 11. Model of CaHydA structure illustrating C298 (left) and replacement at 298 

position with aspartic acid (right) (adapted from Morra et al. [55]). 

 



Biomolecules 2013, 3 802 

 

 

The frequency of WT revertants and Asp mutants matched the expected value on the basis of 

encoding codon frequency. To confirm the library completeness, selected clones were sequenced, 

showing a good and balanced codon randomization [55]. 

The SSM approach reported on [NiFe]-hydrogenase [122], performed in combination with directed 

evolution techniques such as error-prone PCR and shuffling is, as a matter of fact, the first random 

protein engineering of a hydrogenase. This work targeted the large subunit (HycE) of Escherichia coli 

hydrogenase 3. Hydrogenase 3 is responsible for synthesizing hydrogen from 2H
+
 and 2e

−
 within  

the supramolecular complex of formate hydrogen lyase (FHL), that also contains a formate 

dehydrogenase-H for forming 2H
+
, 2e

−
, and CO2 from HCOOH: the overall FHL catalyses therefore 

hydrogen production from formate. A C-terminal truncated variant of HycE, generated by this 

combined random and SSM approach, showed increased hydrogen production by 30-fold.  

Formate processing enzymes other than the cited subunit of E. coli hydrogenase are also relevant 

for the energy and sustainable process issues in their reversible activity of CO2 conversion. The 

possibility of CO2 sequestering and conversion of formate to methanol and methane is an intriguing 

perspective for research and applications [130]. Also the formate/CO2 conversion is coupled to 

reduction of NAD
+
 to NADH. Formate dehydrogenase from the yeast Candida boidinii catalyses the 

reaction with a selectivity for NAD
+ 

only, while NADP
+
 is not recognized as a productive cofactor for 

the redox reaction and only gives minimal activity. SSM applied to two specific residues, Asp195 and 

Tyr196, of the dinucleotide-binding region, allowed an improvement in catalytic efficiency with 

NADP
+ 

of the order of 10
7
 [131]. The selected variant Asp195Gln/Tyr196His is relevant for cofactor 

recycling systems with specificity for NADPH, preferred in enzymes such as cytochrome P450 

monooxygenases that are largely applied in industry. The recovery of reduced cofactor is basically the 

natural strategy for storing solar energy in photosynthetic and chemical energy in chemosynthetic 

organisms, and therefore the control of biocatalysts performance in this reaction is a step forward in 

the direction of exploiting and mimicking nature in a sustainable manner. 

4. Conclusions  

The huge number of successful applications of SSM methods to enzymes reported in the last years 

underlines the feasibility of a semi-random approach to enzyme engineering. The results in activity, 

specificity and stability enhancement obtained are in several respects more cost-effective and less 

time-consuming than their counterparts, purely based on random approach and directed evolution.  

A factor of about ten, comparing enhancement of 20–50 fold by directed evolution and up to 700 for 

SSM, put SSM far ahead of fully randomized methods achievement-wise. In addition, the number of 

screened variants required for sound library coverage is generally 2–3 orders of magnitude smaller, 

allowing for application of more specific screening methods, able to precisely select the desired 

feature. Generating small and smart libraries is certainly a common and important goal also for the 

random directed evolution approach. The positive and negative results of both strategies in this 

direction can give important inputs and shared benefits. The drawback of SSM, i.e., the required 

knowledge of structural data, is becoming less relevant given the increasingly available 3D models that 

can be calculated by homology with existing structural data and/or ab-initio modeling methods. These 

indirect structural data might not provide details of mechanisms and functions, but they are very 
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indicative for intelligent planning of experimental approaches in SSM. Therefore, at least for technical 

enzymes, the SSM methods can be foreseen playing a major role in enzyme evolution. In combination 

with site-directed and random approaches, the methods have the potential to make a difference in 

exploring novel landscapes for biocatalysts most ambitious refinement, enhancement and application. 

The challenges remain in the development of biocatalysts performing entirely novel activities. In this 

respect, the importance of information in the details of mechanism of natural and successfully 

engineered enzymes is crucial. The role played by rational site-directed mutagenesis in elucidating 

mechanism and substrate specificity has been of paramount importance. A very recent review focused 

on an important class of enzymes foresees a similarly important role for SSM [132]. 

The next generation of engineered biocatalysts can certainly reach unprecedented performances [133] 

and this can be achieved due to the choices available to scientists to select among different strategies, 

whose advantages and limitations have to be carefully balanced. The versatility of SSM and the 

various modifications of this general approach, together with the chance to combine with other 

strategies, equip protein engineers with an already powerful toolbox. How to apply the tools is not 

simple to rationalize or give rules for, but this is certainly the undefined area that must remain open, in 

which scientists can propose original experimental design and improved methods.  
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