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Kenbon Beyene Abdisa 1 , Emőke Szerdahelyi 2 , Máté András Molnár 1, László Friedrich 3, Zoltán Lakner 4,
András Koris 1 , Attila Toth 5,*,† and Arijit Nath 1,*,†

1 Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of
Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; kenbonb@gmail.com (K.B.A.)

2 Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and
Life Sciences, Somlói út 14-16, HU-1118 Budapest, Hungary; nemethne.szerdahelyi.emoke@uni-mate.hu

3 Department of Refrigeration and Livestock Product Technology, Institute of Food Science and Technology,
Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary

4 Department of Agricultural Business and Economics, Institute of Agricultural and Food Economics,
Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, HU-1118 Budapest, Hungary

5 Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen,
Móricz Zsigmond út 22, HU-4032 Debrecen, Hungary

* Correspondence: atitoth@med.unideb.hu (A.T.); arijit.nath@uni-mate.hu or arijit0410@gmail.com (A.N.)
† These authors contributed equally to this work.

Abstract: Metabolic syndrome (MS) is defined by the outcome of interconnected metabolic factors
that directly increase the prevalence of obesity and other metabolic diseases. Currently, obesity is
considered one of the most relevant topics of discussion because an epidemic heave of the incidence of
obesity in both developing and underdeveloped countries has been reached. According to the World
Obesity Atlas 2023 report, 38% of the world population are presently either obese or overweight.
One of the causes of obesity is an imbalance of energy intake and energy expenditure, where
nutritional imbalance due to consumption of high-calorie fast foods play a pivotal role. The dynamic
interactions among different risk factors of obesity are highly complex; however, the underpinnings
of hyperglycemia and dyslipidemia for obesity incidence are recognized. Fast foods, primarily
composed of soluble carbohydrates, non-nutritive artificial sweeteners, saturated fats, and complexes
of macronutrients (protein-carbohydrate, starch-lipid, starch-lipid-protein) provide high metabolic
calories. Several experimental studies have pointed out that dairy proteins and peptides may
modulate the activities of risk factors of obesity. To justify the results precisely, peptides from dairy
milk proteins were synthesized under in vitro conditions and their contributions to biomarkers of
obesity were assessed. Comprehensive information about the impact of proteins and peptides from
dairy milks on fast food-induced obesity is presented in this narrative review article.

Keywords: metabolic syndromes; metabolic factors; hyperglycemia; dyslipidemia; fast food-induced
obesity; dairy milk protein; peptides

1. Introduction

Metabolic syndrome (MS) is a consequence of the interplay between different metabolic
factors that directly increase the risks of a wide range of diseases. Over the last decade, it
has been considered one of the leading causes of morbidity and mortality [1], including
premature death [2]. According to the medical classification list of the World Health Orga-
nization (WHO), MS has been recognized as the International Statistical Classification of
Diseases and Related Health Problems (ICD) with ICD-9 and ICD-10 having codes 277.7
and E88.81, respectively [3]. There are 16 different possible combinations of risk factors that
could be diagnosed for MS; however, not all can be considered equally in terms of their
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impact on risk. It may be supposed that interconnections of some metabolic risk factors,
such as insulin resistance, hypertension, glucose intolerance, oxidative stress, inflammation,
dyslipidemia (elevated triglycerides (TGs) and low-density lipid-cholesterol (LDL-C), and
lower levels of high-density lipid-cholesterol (HDL-C)), thrombophilia, microalbuminuria,
and endothelial dysfunction may be considered influencing factors for various diseases,
such as diabetes mellitus (DM), cancer, non-alcoholic fatty liver disease (NAFLD), neuro-
logical diseases (stroke, depression, and Alzheimer’s disease), polycystic ovary syndrome,
chronic kidney disease, nonalcoholic steatohepatitis, gout, cardiovascular disease (coro-
nary artery disease, atherosclerosis, heart failure, sleep apnea, arterial thromboembolism,
peripheral artery disease), and many more [4]. Thus, MS may certainly be viewed as a risk
syndrome, and it is well recognized that patients with MS are more frequently hospitalized
and have greater drug expenditure [5]. MS is characterized by some major signs, such
as a rise in visceral obesity, dyslipidemia, hyperglycemia, and elevated blood pressure
and hypertension. Another characteristic of MS is chronic low-grade inflammation as a
consequence of the complex interplay between different risk factors [6]. Different risk
factors for MS and associated diseases are presented in Figure 1.
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The concept of MS as the association of hypertension, hyperglycemia and gout was
demonstrated by Swedish physician Kylin in 1920 [4]. Vague in 1947 described that visceral
obesity is usually associated with the metabolic abnormalities found in DM and cardiovas-
cular diseases (CVDs) [8]. Avogaro and Crepaldi described a syndrome which comprised
hypertension, hyperglycemia, and obesity at the European Association for the Study of
Diabetes annual meeting in 1965 [9]. The term “metabolic syndrome” was first used by
Haller and Hanefeld in 1975. They conferred that MS is a combination of simultaneous risk
factors of CVDs and diabetes that occur together more frequently than by chance alone [10].
In 1988, Reaven mentioned “a cluster of risk factors for diabetes and cardiovascular disease”
and named it “Syndrome X”, and insulin resistance as the “driving force” of the syndrome
was proposed [11]. Subsequently in 1989, Kaplan renamed the syndrome “The Deadly
Quartet” for the combination of upper body obesity, glucose intolerance, hypertriglyc-
eridemia, and hypertension [12]. It was again renamed “The Insulin Resistance Syndrome”
in 1992 [13]. Several diagnostic criteria, such as insulin resistance, body weight, blood
pressure, glucose and lipid were reported to define MS. The most commonly used criteria
for defining MS are from the WHO [14], the International Diabetes Federation (IDF) [15],
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the European Group for the study of Insulin Resistance (EGIR) [16] and the American
Association of Clinical Endocrinologists (AACE) [17]. Diagnostic criteria proposed for
defining MS by different authorized bodies are presented in Table 1.

Table 1. Diagnostic criteria proposed for MS (self-developed, concept was adopted from Jha et al.,
2023 [6]).

WHO IDF EGIR AACE

Insulin
resistance

Impaired glucose
tolerance, Impaired

fasting glucose, T2DM, or
Lowered insulin

sensitivity * plus any 2 of
the following.

-
Plasma insulin >75th

percentile plus any 2 of
the following

Impaired fasting glucose
or Impaired fasting

glucose plus any of the
following based on the

clinical judgment

Blood glucose
Impaired glucose

tolerance, Impaired
fasting glucose, or T2DM

≥100 mg·dL−1 (includes
diabetes) **

Impaired glucose
tolerance or Impaired

fasting glucose
(but not diabetes)

Impaired fasting glucose
or Impaired fasting

glucose (but not diabetes)

Dyslipidemia

TG ≥ 150 mg·dL−1

and/or High density
lipoprotein cholesterol <
35 mg·dL−1 in men or

<39 mg·dL−1 in women.

TG ≥ 150 mg·dL−1 or on
receiving treatment for

TG. High density
lipoprotein

cholesterol < 40 mg·dL−1

in men or <50 mg·dL−1

in women or on receiving
treatment for High

density
lipoprotein cholesterol.

TG ≥ 150 mg·dL−1

and/or High density
lipoprotein

cholesterol < 39 mg·dL−1

in men
or women.

TG ≥ 150 mg·dL−1 and
High density lipoprotein
cholesterol < 40 mg·dL−1

in men or <50 mg·dL−1

in women

Blood pressure ≥140/90 mm Hg

≥130 mm Hg systolic or
≥85 mm Hg diastolic or
on receiving treatment

for hypertension.

≥140/90 mm Hg or on
receiving treatment
for hypertension.

≥130/85 mm Hg

Body weight

Men: waist-to-hip
ratio >0.90;

Women: waist-to-hip
ratio >0.85 and/or
BMI > 30 kg·m−2.

Increased waist
circumference

(population specific) plus
any 2 of the following.

Waist circumference
≥94 cm in men or
≥80 cm in women.

BMI ≥ 25 kg·m−2

Others

Microalbuminuria:
Urinary excretion rate of

>20 mg·min−1 or
albumin: creatinine ratio

of >30 mg·g−1.

- - Other features of insulin
resistance ***

* Insulin sensitivity was considered under hyperinsulinemic euglycemic conditions, glucose uptake below
lowest quartile for background population under investigation. ** In 2003, the American Diabetes Associa-
tion (ADA) changed the criteria for impaired fasting glucose tolerance from >110 mg·dL−1 to >100 mg·dL−1.
*** Includes family history of T2DM, polycystic ovary syndrome, sedentary lifestyle, advancing age, and eth-
nic groups susceptible to T2DM. Abbreviations: WHO: World Health Organization, IDF: International Dia-
betes Federation, EGIR: European Group for the study of Insulin Resistance, AACE: American Association of
Clinical Endocrinology.

However, each definition holds some common features, there are several parameters
that differ according to authorized bodies. Different diagnostic criteria partly influence the
estimation of the prevalence of MS. Therefore, it may be realized that accurate estimation
of the prevalence of MS is quite difficult. The global prevalence of MS depends on several
issues, such as region, urban or rural environment, composition of the population (sex,
age, race and ethnicity), no matter which criteria are used to estimate the prevalence of
MS [18]. In addition to genetic and epigenetic factors, it was proven that physical inactivity,
environmental contaminants, an unhealthy lifestyle and diet are significantly associated
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with a wide range of metabolic diseases [19]. Therefore, MS comprises several complex
biochemical pathways and mechanisms that are not fully comprehended. It has been
estimated that the prevalence of MS ranges from around 10% to 30% of the world’s adult
population, depending on the diagnostic criteria suggested by the Adult Treatment Panel
III of the National Cholesterol Education Program (ATP-III) and the Joint Interim Statement
(JIS) [20]. There have been several studies on the medical costs of MS and related diseases
because the economic burden of MS has been greatly increasing [21,22].

Presently, technological advances have enabled more precise, intrinsic, high-throughput
analysis by different types of omics results. Multi-omics concepts, including genetics,
transcriptomics, epigenetics, proteomics and metabolomics have been considered as a
promising approach to detect, characterize and understand the pathophysiology of dif-
ferent metabolic diseases [23]. However, several risk factors of MS were identified; the
pipelines between them are complicated, still unclear and often contrasting results were
published [24]. It may be believed that MS is primarily contributed to by overproduction
of reactive oxygen species (ROSs), inflammatory biomarkers, dysfunctional adipocytes
(accumulation in visceral fat), and insulin resistance [25,26] and prothrombotic state [27].
Furthermore, an unhealthy gut microbiome and environmental contaminants in the food
chain modulate risk factors of MS [7]. Several meta-analyses of experimental evidence indi-
cated that the environmental contaminant Dichlorodiphenyltrichloroethane (DDT) and its
derivatives, such as Dichlorodiphenyldichloroe-thylene (DDE) in the food chain, modulate
mitochondrial dynamics (mitochondrial fusion and fission, mitophagy and mitochondrial
biogenesis), mitochondrial function and the prevalence of insulin resistance [28]. Results
of metagenomic studies of fecal microbiota and association of circulating trimethylamine
N-oxide (TMAO) in pathological conditions reveal the contribution of gut microbiota in
the prevalence of MS [29,30].

According to the WHO, IDF, EGIR and AACE, the impacts of two major metabolic
diseases, such as dyslipidemia and hyperglycemia, on mortality, morbidity and therapeutic
expenditures are rising [10]. Obesity is a multifactorial disorder, influenced by genetic fac-
tors, dietary pattern, gut microbiota and environmental factors. Mutations in various genes
responsible for controlling appetite and metabolism are primary causes of obesity; however,
several investigations documented that lifestyle factors including dietary patterns have
contributed to an increased occurrence of hyperglycemia and dyslipidemia, resulting in an
increased prevalence of obesity [31,32]. Furthermore, gene-environment interactions play a
significant role in MS including obesity. According to epidemiologic studies in 2016, it was
estimated that obesity can affect 1.12 billion persons by 2030 [33]. The recent Coronavirus
disease 2019 (COVID-19) pandemic also influenced illness severity and obesity. It has been
recognized that hyperglycemia in the non-diabetic range is an important risk factor for
COVID-19 [34]. However, the underpinnings of the pathogenesis of obesity are not yet fully
understood, it was confirmed that the etiology of obesity is the imbalance between energy
intake and expenditure, which is related with dietary intake (nutritional imbalance due to
mainly empty calorie food intake) and lifestyle [35]. Complex multidirectional interactions,
described by the “Interaction Model” in the case of obesity, are presented in Figure 2.
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Presently, fast foods are being taken into consideration in dietary patterns due to the
rapid socio-economic transition, taste preference, the relatively low cost for large portion
sizes and quick availability [37]. It has been proven by several investigations that con-
sumption of fast foods is linked with the mentioned two metabolic diseases, which may
lead to an increased risk of obesity and a number of non-communicable diseases [38,39].
Typically, high-calorie fast foods are composed with of amounts of soluble carbohydrates,
non-nutritive artificial sweeteners, saturated fats, and protein-carbohydrate (Maillard prod-
ucts), starch-lipid and starch-lipid-protein complexes [40]. The nutritional values of foods
are lost due to the biochemical modulation of macro- and micro- nutrients during cooking
and processing at high temperature [41]. Deep frying, spray drying, microwave heating and
extrusion processes are widely used for the preparation of a wide range of fast foods. The
oil-food interaction at high temperatures due to the deep frying process leads to physical
and chemical changes, such as starch gelatinization, protein denaturation, flavor and color
formation, and many more [42]. Edible oils undergo various biochemical modifications
during frying at high temperature and massive amounts of toxic active compounds are
produced. These products are generally nonvolatile (epoxides, oxidized polymers, car-
bonyls, and polar dimers) and volatile (aldehydes, alcohols, and hydrocarbons). These toxic
compounds are considered potential carcinogenic, mutagenic, genotoxic and teratogenic
substances for human health [43]. Due to prolonged heating of cooking oils, TGs begin
to break down to free fatty acids (FFAs) and glycerol, and glycerol is quickly dehydrated
to acrolein. A wide range of potentially toxic compounds in the class of aldehydes and
polycyclic aromatic hydrocarbons were identified in deep fried foods [44]. The lipid peroxi-
dation of fatty acids leads to the formation of lipid peroxides, which first convert to reactive
dicarbonyls and finally to advanced glycation end products (AGEs) [45]. Starch-lipid
and starch-lipid-protein complexes are produced by a series of noncovalent interactions,
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including hydrogen bonds, hydrophobic attractions and van der Waals forces among
macronutrients during the deep frying process [46]. One common complex biomolecule in
fast foods is Maillard products. They are produced by a Maillard reaction, where a covalent
bond forms between a free amino group in protein and a carbonyl group of a reducing
carbohydrate of polysaccharide due to cooking or processing at high temperature. A series
of reactions, such as the formation of a Schiff base, followed by an Amadori rearrange-
ment and subsequently oxidative modifications (glycoxidation) are involved to produce
Maillard products [47]. However, Maillard products are produced as a part of the healthy
metabolism of carbohydrates, but consumption of excessively high amounts of Maillard
products is not appreciable. Apart from Maillard products, several harmful substances
and toxic compounds, such as furan, heterocyclic aromatic amines, acrylamide, acrolein
and trans fatty acids were identified in food matrices produced by high temperature. They
have the ability to promote oxidative stress and inflammation by binding with cell surface
receptors or cross-linking with intracellular proteins, and modulate their structure and func-
tion [47]. Furthermore, the use of soluble carbohydrates and non-nutritive high-intensity
sweeteners, such as aspartame, neotame, acesulfame potassium, advantame, saccharin and
sucralose in fast foods has been reported [48]. Non-nutritive sweeteners modulate the secre-
tions of insulin and anorexigenic (appetite suppressing) hormones (glucagon-like peptide
1 (GLP-1), peptide YY (PYY) and cholecystokinin (CCK)), insulin resistance, composition of
gut microbiota and postbiotics, mainly short-chain fatty acids (SCFAs) [48].

Obesity is a heterogeneous and multifactorial health disorder; however, it is a well-
established fact that the risk of obesity is associated with food intake, appetite and energy
balance. Currently, obesity due to consumption of fast foods is considered one of the most
relevant topics of discussion in the context of the management of MS because an epidemic
heave of the incidence of obesity in both developing and underdeveloped countries has
been reached. Furthermore, it has been proven that moderate and higher affinity toward a
Western diet is associated with a higher risk of obesity and COVID-19 infection during the
pandemic [49]. The primary objective of this article is to make a link between two major
metabolic diseases, such as hyperglycemia and dyslipidemia with fast food-induced obesity.
Another objective of this review is to highlight the beneficial role of dairy milk (cow and
buffalo) proteins and peptides in dietary choice to combat obesity prevalence. Therefore,
inclusive information about obesity contributed to by hyperglycemia and dyslipidemia
due to consumption of high-calorie fast foods is presented in this narrative review article.
Subsequently, the therapeutics and beneficial attributes of dairy milk-based proteins and
peptides for fast food-induced obesity are mentioned with a biochemical viewpoint and
up-to-date results of clinical trials in this narrative review article.

2. Methodology

A rapid scoping review was conducted. It was conducted to map evidence on the men-
tioned topic, ascertain information from the available literature, summarize information
and concepts, identify prime concepts and theories, and identify the gaps in the existing
knowledge with the aid of planning and commissioning future research. The present scop-
ing review fits with the questions of aims and objectives which sit across diverse research.
It allowed for a broad search and the review was reported following the PRISMA Scoping
Reviews (PRISMA-ScR) Checklist [50].

3. Obesity

Obesity has been recognized as a disease since 1948 by the WHO and in 1997, the
WHO recognized this complex and chronic disease is not just constrained to the affluent
in Western nations. According to the International Classification of Diseases 11 (ICD-11),
obesity is a chronic complex and multifactorial disorder, characterized by an excess of
body fat. Obesity is associated with higher consumption of carbohydrates and fat, and
a wide range of metabolic dysfunctions, which affect multiple organs of the body and
subsequently disrupt their regular function. The epidemic heave of obesity has spread
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beyond the borders of high-income nations to low- and middle-income countries, pre-
dominantly in urban areas [51]. Presently, probable different biomarkers and molecular
mechanisms of Western diet-induced obesity and obesity-related carcinogenesis were
published. The contribution of insulin resistance, hyperglycemia, hypertriglyceridemia,
hypoxia, oxidative stress, mitochondrial dysfunction, dysregulation of glycolysis and lipo-
genesis, adipokine/cytokine/exosome release, angiogenesis and epithelial to mesenchymal
transition (EMT) have been recognized [52].

The prevalence of MS is increasing among adults worldwide and it is largely related
to possible factors, such as heredity, epigenetic modifications, socioeconomic status, diets,
gut dysbiosis, sedentary lifestyle, medication, medical condition and high body mass index
(BMI) [53]. According to the WHO in 2019, more than 1 billion people in the world were
obese, including 650 million adults, 340 million adolescents and 39 million children [54]. In
another report, there were ~2 billion adults who were overweight, while 650 million were
obese. It may be realized that if this rate will not slow down, 2.7 billion adults might be
overweight and over 1 billion will be obese by 2025 [55]. According to the World Obesity
Atlas 2023 report, 38% of the world population are currently either overweight or obese [56].

It is proven that the central nervous system plays an essential role in the control of
food intake and energy homeostasis through the expressions of a wide range of genes
in the hypothalamus and pituitary gland. In the early phase of the 20th century, it was
assumed that dysfunction of the pituitary/hypothalamus leads to obesity. During the 1940s
to 1970s, it was assumed that psychological and psychodynamic aspects are the key factors
leading to obesity. In 1956, obesity was introduced as a syndrome. The role of genetic
factors in body weight regulation came to the forefront in the 1980s and early 1990s [57].
Recently, it is stated that two factors, such as (a) obesogenic environment triggers obesity-
predisposing genes and (b) epigenetic modulation contribute to obesity incidence. The first
genome-wide association studies (GWAS) for obesity traits were published in 2007. The
first identified obesity-susceptibility locus was the FTO gene (fat mass obesity associated)
and until now this gene is recognized as the highest contributor to the risk of obesity [58].
Subsequently, many more GWAS were considered and approximately 60 GWAS identified
more than 1100 independent loci associated with a range of obesity outcomes [59]. Genomic
studies reveal that more than 300 single-nucleotide polymorphisms and 227 genetic variants
are related to obesity, although their functional attributions on the obese phenotype are
still unclear [60]. Genetic variations, such as single-nucleotide polymorphisms (SNPs),
copy number variants (CNVs), and small insertions and deletions of nucleotide sequences
contribute to the development of obesity [61,62]. Obesity can be classified into three
categories based on genetic contribution. Those are: (a) common polygenic obesity, outcome
of the interaction between environmental factors and genetic susceptibilities, (b) syndromic
obesity, characterized by obesity combined with developmental delay or dysmorphism and
(c) monogenic obesity, outcome of pathogenic variants in single genes, generally involved
in the hypothalamic leptin-melanocortin pathway along with the regulation of satiety
and hunger [63]. Common polygenic obesity has high prevalence, does not follow the
principles of Mendelian inheritance and heritability similar to other multifactorial diseases.
In this case, a wide range of variants in several genes interact with environmental factors.
Monogenic obesity has a low prevalence, follows a Mendelian inheritance pattern and
early onset devastated clinical manifestations. In the case of monogenic obesity, genetic
variants in single genes lead to large effects [62]. Furthermore, obesity can be classified
into the following categories, such as overweight (BMI = 25 to < 30 kg·m−2), moderate
obesity (BMI = 30 to <35 kg·m−2) and severe obesity (BMI ≥ 35 kg·m−2) [64]. Contributions
of leptin, leptin receptor, proopiomelanocortin, prohormone convertase 1, melanocortin
4 receptor, single-minded homolog 1, brain-derived neurotrophic factor and neurotrophic
tyrosine kinase receptor type 2 genes have been identified as causes for obesity [65,66];
however, more than 500 obesity-related genes were identified [67]. High maternal BMI,
high gestational weight gain and diabetes may cause metabolic disorders including obesity
in offspring. The epigenetic modifications and imbalance of unhealthy nutritional supply to
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the fetus in the maternal phase may influence the development of the fetus, fat accumulation
and other metabolic complications [68]. Obesity experiences in infancy and childhood
phase may predispose to adult obesity. Furthermore, it has been proven that children with
obesity are five times more likely to be obese in adulthood [69].

It has been proven that obesity plays an important role in the homeostatic regulation
of systemic glucose. Patients with type 1 DM (T1DM) are hardly obese at the time of
assessment and diagnosis; whereas patients can be overweight or obese due to insulin
resistance and impaired glucose tolerance. Subsequently, it manifests a hyperglycemic
condition, characteristic of T2DM. Due to high body fat content, patients with T2DM
often experience various types of cardiovascular risk factors, such as hypertension and
dyslipidemia (low high-density lipoprotein and/or elevated TGs) [70,71]. On the other
hand, a woman may experience hypertension and dyslipidemia prior to GDM [66]. Apart
from diabetes and dyslipidemia, obesity is correlated with other metabolic disorders,
including NAFLD, CVDs, chronic kidney diseases and cancers [72]. Therefore, the effects
of obesity attribute a tremendous financial burden on the health care system. Several
investigations indicate that medical costs of obesity management were higher compared to
individuals with normal body weight [73]. Obesity is characterized by changes in metabolic
pathways and complex metabolic imbalance related to energy balance, glucose, lipid and
adipose tissue homeostasis, dysregulation of other physiological processes, including the
activity of the central and peripheral nervous system, and their interactions.

3.1. Diabetes

DM has a long history reaching back to antiquity, dated back to 1500 BC. It is a
chronic metabolic disease involving all types of macronutrients (carbohydrate, protein
and lipid) metabolism. DM is characterized by a physiologically abnormal hyperglycemic
condition, represented by continued high levels of blood glucose as a result of a wide
range of biochemical pathways, predominantly related to insulin secretion or its action or
both. Diabetes with its ever-increasing global prevalence is parallel to the rapid economic
growth, urbanization and adoption of modern lifestyle [74]. In the year 2017, diabetes had a
global 22.9 million incidences, 476.0 million prevalence, 1.37 million deaths and 67.9 million
disability-adjusted life-years. It was projected that in 2025, diabetes may cause 26.6 million
incidences, 570.9 million prevalence, 1.59 million deaths and 79.3 million disability-adjusted
life-years [75].

Diabetes may be classified into four categories based on both etiology and pathogenesis
of the disease. Those are T1DM (accounts for 5–10% of all diabetic cases), T2DM (accounts
for 90–95% of all diabetic cases), gestational DM (GDM) (1–14% of all pregnancies) and
secondary diabetes caused or associated with certain specific conditions, pathologies,
and/or disorders (constitute a smaller percentage) [70,71]. T1DM, also known as insulin-
dependent DM (IDDM) or juvenile-onset diabetes, is an autoimmune disorder characterized
by T-cell-mediated destruction of β-cells in the pancreas, which results in insulin deficiency
and later hyperglycemia [76]. T2DM or adult-onset diabetes is non-insulin-dependent
DM (NIDDM) and is characterized by two main insulin-related irregularities, such as
insulin resistance and insulin deficiency due to the dysfunction of pancreatic β-cells [77].
GDM is defined as higher fasting and post-prandial blood glucose levels or any degree of
glucose intolerance at the onset of or during pregnancy, generally in the second or third
trimester [78]. Furthermore, T1DM, T2DM and GDM, secondary diabetes may appear
due to some specific conditions including various pathologies and/or several disorders.
The majority among this type of diabetes includes maturity-onset diabetes of the young
(MODY), neonatal diabetes, lipoatrophic diabetes, drug or chemical-induced diabetes,
ketosis-prone diabetes mellitus, and so on [79]. Hyperglycemia and its associated metabolic
pathways affect multiple organs of the body and disrupt their normal function, which leads
to micro- and macrovascular complications. These complications are manifested in a wide
range of body organs and systems, such as the kidney, heart, skin and nerves [70].
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One of the major factors responsible for T2DM is the dysfunction of pancreatic β-cells.
As an outcome of the dysfunction of pancreatic β-cells and consequently inadequate se-
cretion of insulin, postprandial and subsequently fasting glucose levels are increased. It
reduces glucose production in hepatocytes and increases glucose uptake in muscle and
hepatocytes. In early diabetic conditions, complications appear to be insufficient respon-
siveness of pancreatic β-cells to glucose and later it turns to the reduction in pancreatic
β-cell mass. The elevated plasma glucose in the case of diabetes might subsidize further
disease advancement through glucotoxic effects on pancreatic β-cells and insulin sensitiv-
ity [80]. However, the classic pathogenesis of T2DM was considered an insulin deficiency
from pancreatic β-cells only, later the contribution of insulin resistance was introduced.
Insulin resistance is clinically defined as the incapability of a known amount of insulin
(endogenous or exogenous) to escalate glucose uptake and utilization in an individual
similar to a usual one [26]. A number of genes are associated with the dysfunction of pan-
creatic β-cells and insulin resistance in T2DM. Among those genes, the transcription factor
TCF7L2 is well studied [81,82]. Glucose homeostasis is maintained by the activation of the
transcription factor FOXO1 in the liver and impaired skeletal muscle GLUT4 translocation.
FOXO1 induces the activities of key enzymes of gluconeogenesis; hence, its upregulation
increases the formation of glucose in hepatocytes. In hepatocytes, insulin generally involves
phosphorylation and suppression of FOXO1 activity through the action of protein kinase
Akt [83]. Downregulation of GLUT4 translocation to the plasma membrane is the cause of
insulin resistance. Interestingly, it has been reported that though GLUT4 level is reduced by
50% in adipose tissue in the case of T2DM, it is unchanged in skeletal muscle [84]. However,
non-esterified fatty acids (NEFAs) are critical for normal insulin release, high levels of the
formation of NEFA by a lipid infusion-induced pancreatic β-cell dysfunction and insulin
resistance in T2DM. The lipotoxicity due to the formation of NEFA in diabetic individuals
may cause more deleterious effects, known as ‘glucolipotoxicity’ [85]. Furthermore, the
declined capability of adipocytes to preserve and retain TG in obese individuals, resulting
in the accumulation of ectopic fat in hepatocytes and muscle cells, which may cause insulin
resistance. Signaling of insulin through Akt in hepatocytes activates fatty acid biosynthesis
from glucose and amino acids (de novo lipogenesis (DNL)), which extended the conversion
of TG to very-low-density lipoprotein (VLDL) and subsequently, accumulated in peripheral
tissues [86,87]. Insulin sensitivity modulates the activity of pancreatic β-cells and it is
decreased in the case of obesity. Dysfunction of pancreatic β-cells is noted with increasing
fasting glucose level. It is important to mention that fasting hyperinsulinemia without de-
tectable elevations in blood-glucose concentrations is generally noted in some individuals
with long-established obesity [88]. Insulin resistance is manifested in both the hepatic and
peripheral tissues. Hepatic insulin resistance results in over accumulation of glucose in the
basal state, despite the presence of fasting hyperinsulinemia and hyperglycemia. Insulin
resistance of peripheral tissues, mainly muscle, reduces insulin-stimulated glucose uptake
and postprandial hyperglycemia [89]. Chronic elevated glucose level leads to the generation
of ROSs which increase oxidative stress in a wide range of pancreatic cells followed by the
dysfunction of pancreatic activity [90]. As a consequence, secretions of insulin and amylin
from pancreatic β-cells and amylase from pancreatic acinar cells are reduced. Furthermore,
secretion of glucagon from pancreatic α-cells is improved [91]. Dipeptidyl-peptidase-IV
(DPP-IV) (EC 3.4.14.5) from epithelial and endothelial cells inhibits the secretion of PYY and
oxyntomodulin hormone from intestinal enteroendocrine cells and synthesis of intestinal
incretin hormones (glucose-dependent insulinotropic polypeptide (GIP) from K cells of the
upper intestine and GLP-1 from L cells of the lower intestine) responsible for postprandial
insulin secretion [92]. CCK from the I cells of the gut decreases postprandial glucose levels
and increases insulin levels in T2DM. Therefore, absence of CCK causes glucose intolerance
and influences T2DM [93]. Deficiency of gastric leptin interrupts glucose homeostasis by
modulating hepatic de novo gluconeogenesis and lipogenesis, and secretion of hepatic
TG [94] as well as modulating the activity of insulin [95]. Adipose tissue releases glyc-
erol, NEFAs, hormones (adiponectin, leptin and resistin) and proinflammatory cytokines
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(adipokines) that are involved in the development of insulin resistance [96]. Accumula-
tion of excessive visceral fat may be the cause of dysfunctionality of adipose tissue and
consequently increases the secretion of leptin and negatively affects adiponectin. Plasma
leptin stimulates oxidative stress, inflammation and insulin resistance [97]. As a conse-
quence of reduced insulin responsiveness in adipocytes, T2DM is associated with lipolysis
through the downregulated expression of adipocyte lipid-droplet proteins, such as CIDE
proteins [98] and perilipin [99]. Elevated plasma FFAs due to lipolysis may cause insulin
resistance in obese individuals, which may lead to cellular uptake of FFA and enhance lipid
oxidation. In muscle cells, FFA oxidation reduces insulin-mediated glucose disposal and in
hepatic cells, it promotes gluconeogenesis and hepatic glucose output [11]. Postprandial
hyperglycemia is associated with the activity of pancreatic α-amylase and α-glucosidase
in the brush border of enterocytes of the jejunum in the small intestine. α-amylase is
responsible for the initial hydrolysis of the α-D-(1-4) glycosidic bonds of polysaccharides
and starch to oligosaccharides; and subsequently, oligosaccharides are hydrolyzed into
monosaccharides by α-glucosidase. Therefore, their activity improves the rate of glucose
absorption [100]. Insulin resistance encourages individuals to consume high-calorie foods,
which is linked with gastric emptying and appetite. Food intake and energy expenditure
are associated with lower activity of GLP-1, PYY, CCK and oxyntomodulin from the gut.
Furthermore, ghrelin from the stomach, and leptin from the stomach and adipose tissues
influence appetite activity [101].

There are a number of cellular stress-responsive metabolic pathways associated with
hyperglycemia-induced superoxide synthesis and inflammation. Inflammation in the
intestine, hepatocytes, adipocytes and pancreatic cells may influence the synthesis and
abnormal regulation of these hormones and peptides, which may contribute to the devel-
opment of diabetes. It has been proven that circulatory pro-inflammatory molecules, such
as tumor necrosis factor (TNF)-α, interferon-gamma (IFN-γ), interleukin (IL)-1, IL-6, IL-8,
IL-1β, transforming growth factor (TGF)-β, monocyte chemoattractant protein (MCP)-1,
toll-like receptors (TLR)-2 and TLR-4 on the surface of monocytes, leptin, chemerin and
plasminogen activator inhibitor (PAI)-1, retinol binding protein-4, C-reactive protein and
monocyte chemotactic protein-1 are increased in diabetic and obese individuals. It may
be supposed that these pro-inflammatory molecules are associated with systemic insulin
resistance and T2DM complications [102]. In a hyperglycemic condition, a wide range
of metabolic pathways, namely, the polyol pathway (formation of sorbitol from glucose
and conversion to fructose), formation of AGEs pathway (formation of methylglyoxal
from glucose and conversion to AGEs), protein kinase C (PKC) isoform pathway (glu-
cose to diacylglycerol (DAG) and stimulation of PKC isoforms, especially PKC-β which
subsequently phosphorylate) and hexosamine biosynthetic pathway (glucose to uridine
diphosphate N-acetylglucosamine (UDP-GlcNAc) and subsequently N-acetylglucosamine
(GlcNAc)) lead to both oxidative and endoplasmic reticulum stress, resulting in chronic in-
flammation and insulin resistance [103]. These metabolic pathways may cause a wide range
of micro- and macro-vascular complications alongside diabetes, such as cardiovascular
disease, stroke, peripheral vascular disease, retinopathy, nephropathy, neuropathy and foot
ulcers [104]. Inflammation in the intestine is also associated with gut microbiota, which is
related to the type of consumed foods and dietary patterns [105]. Dysbiosis reduces the for-
mation of SCFAs and leads to the formation of trimethylamine N-oxide (TMAO). Bacterial
translocation and their toxic metabolites lead to inflammation in the gut and reduce insulin
sensitivity [106,107]. Putative relationships between different risk factors of diabetes and
associated complications are quite complex. Biochemical activities of risk factors and their
contribution to the metabolic pathways for diabetes and associated complications, induced
by the consumption of high-calorie fast foods are presented in Figure 3.
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Reactive carbonyl compounds (RCCs), such as AGEs are produced by non-enzymatic
exogenous and endogenous systems and are recognized as key players in the progression
of diabetes and diabetes-induced macrovascular and microvascular complications. The
pathogenesis of carbonyl stress by AGEs is dependent on two pathways: (a) trapping and
cross-linking of cellular or plasma proteins, including laminin, elastin and collagen with
AGEs. It induces physiological dysfunction, such as alternation of elasticity and function of
tissues, and (b) activating downstream cellular signaling pathways via RAGE receptors to
trigger oxidative stress and inflammation [110]. AGEs may exist alone as an amino acid con-
jugate or with free low-molecular-weight (LMW, <5 kDa) peptides or bound with proteins.
Absorption of pyrraline, a sugar derivative of Lys, is performed using peptide transporter 1
(PEPT1) across the intestinal epithelium [111]. The LMW peptide fractions of AGEs are
more likely absorbed; while, non-absorbed AGEs are passed through the gastrointestinal
tract [112]. AGEs can modulate cellular functions through binding with G-protein-coupled
receptors (GPCRs), TLRs, scavenger receptors and pattern recognition receptors; how-
ever, the interactions between AGEs with cell surface receptor for advanced glycation
end products (RAGE) is well-recognized for T2DM. Interaction between AGEs/RAGE
influences an array of signaling events, such as activation of the renin–angiotensin system
(RAS)-mediated extracellular signal-regulated kinase (ERK1/2), mitogen-activated protein
kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK),
phosphoinositide 3-kinase/Protein kinase B (PI3-K/AKT), Janus kinase/signal transduc-
ers and activators of transcription (JAK/STAT), Ras homologous GTP-binding proteins
(Rho GTPases) Rac-1, Cell division control protein 42 (Cdc42) pathways. Therefore, AGEs
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promote a wide range of cell-mediated pathophysiological responses, such as pancreatic
β-cell toxicity, elevation of cytosolic ROS, activation of nuclear factor kappaB (NF-κB), in-
creased formation of proinflammatory cytokines, stimulation of oxidative and endoplasmic
reticulum stress. It may be realized that they are supposed to maintain mechanistic links
between the risk factors of DM [110]. More specifically, the activation of JNK promotes the
phosphorylation of insulin receptor substrate (IRS-1) at Ser residue, which leads to negative
regulation of insulin signal transduction and induces insulin resistance. Activated NF-κB
upregulates the expression of various inflammatory cytokines (TNFα, IL-1β, IL-6) and
influences insulin resistance [113]. Interestingly, it has been reported that abnormal activa-
tion of the ERK1/2 signaling pathway is associated with several diabetogenic factors and
adipogenesis [114]. Interaction between AGE and RAGE modulates intracellular cascade
of biochemical reactions which inhibits insulin-induced GLUT-4 translocation and induces
insulin resistance [115]. RAGE binds with toxic intermediates from amyloid polypeptide
(IAPP) and transduces intracellular signals that lead to NADPH oxidase-mediated cellular
stress and inflammation. It plays a significant role in pancreatic amyloidosis-induced β-cell
proteotoxicity and β-cell apoptosis [116]. The accumulation of AGEs in the endoplasmic
reticulum interferes with protein folding. Furthermore, AGEs influence mitochondrial
proteins in the respiratory chain and may cause mitochondrial dysfunction (reduces the
synthesis of adenosine triphosphate (ATP)) which may cause oxidative stress [117]. When
AGEs in the body are relatively high, AGE-R1 typically degrades AGEs in cells and in-
fluences receptor-mediated endocytosis. AGE-RI inhibits RAGE-mediated activation of
the proinflammatory gene NF-κB through upregulation of SIRT1 and subsequently in-
hibits oxidative stress [118]. AGE-modified low-density lipoprotein (LDL) contributes
to reduced LDL clearance and oxidized LDL via activation of LOX-1. Oxidized LDLs
exhibit a wide variety of biological and atherogenic properties involving the activation of
inflammatory and mitogenic pathways. The biological activity of oxidized LDLs depends
on the presence of lipid peroxidation products, such as methylglyoxal. Modified LDL
alters the affinity with apoB/E receptor and deviates the metabolism towards scavenger
receptor-bearing cells, such as macrophages and smooth muscle cells. It was reported that
the formation of atherogenic foam cells from smooth muscle cells with angiotensin II is
progressive in T2DM [119]. Activation of LOX-1 along with oxidized LDL or AGEs can
produce ROS through the activation of NADPH oxidase, which subsequently influences
the ERK1/2-MAPK and PI3K pathway [120]. Interaction between AGE and RAGE activates
PI3K/PDKI along with downstream phosphorylation of mTOR, which triggers the mTOR
pathway [121]. Furthermore, LOX-1 influences cytochrome P450 (CYP450) which modu-
lates the activity of endothelium-derived hyperpolarizing factor (EDHF) and subsequently
may cause inflammation [122]. Unabsorbed AGEs in the colon can affect the homeostasis
of intestinal microbiota, specifically the loss of butyrate-producing bacteria. The damage
to the colonic epithelial barrier and chronic low-grade inflammation due to the loss of
butyrate-producing bacteria was correlated with insulin resistance and the pathogenesis of
DM [123]. Biochemical pathways and metabolites associated with the consumption of fast
foods are presented in Figure 4.
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Figure 4. Biochemical pathways of (A) formation of exogenous and endogenous AGEs (self-
developed, concepts were adopted from Inan-Eroglu et al., 2020 [124] and Takeuchi et al., 2020 [125]),
and (B) AGE/RAGE-mediated signaling and metabolic pathways for DM (self-developed, concept
was adopted from Salazar et al., 2021 [126] and Dong et al., 2023 [127]). Abbreviations: Fru-AGEs:
Fructose-derived glycation end products, Glycer-AGEs: Glyceraldehyde-derived glycation end prod-
ucts, MGO-AGEs: Methylglyoxal-derived glycation end products, 3-DG-AGEs: 3-Deoxyglucosone-
derived glycation end products, Glu-AGEs: Glucose-derived glycation end products, Glycol-AGEs:
Glycol-derived glycation end products, GO-AGEs: Glyoxal-derived glycation end products.



Biomolecules 2024, 14, 478 14 of 61

3.2. Dyslipidemia

The metabolic disorder dyslipidemia is the imbalanced formation of elevated levels
of TG or LDL-C or lower formation of HDL-C. It may be caused by (a) mutations of a
single gene or multiple genes, (b) intake of excessive dietary saturated fats and soluble
carbohydrates (glucose, sucrose, fructose) with high caloric index, (c) over consumption of
alcohol and cigarette smoking, (d) diseases, including diabetes mellitus, chronic kidney
disease, hypothyroidism, HIV infection, nephrotic syndrome, primary biliary cirrhosis and
other cholestatic liver diseases, and (e) intake of medications and anabolic steroids [128]. It
was shown that the prevalence of dyslipidemia in pediatrics may be associated with high
BMI and promotes other cardiometabolic risk factors, such as insulin resistance, high blood
pressure and endothelial dysfunction. Therefore, dyslipidemia in childhood is associated
with atherosclerosis in adulthood [129].

Dyslipidemia is traditionally classified by patterns of elevation in lipids and lipopro-
teins in plasma, such as (a) pure or isolated hypercholesterolemia, which is caused by an
increase in cholesterol only, (b) pure or isolated hypertriglyceridemia, which is caused by
an increase in TGs only, and (c) mixed or combined hyperlipidemias, which is caused by an
increase in both cholesterol and TG [130]. Systematically dyslipidemia may be categorized
by the Fredrickson phenotype, such as (a) phenotype I where the elevated lipoprotein is
chylomicron and the elevated lipid is TG, (b) phenotype IIa* where the elevated lipoprotein
is LDL-C and the elevated lipid is cholesterol, (c) phenotype IIb* where the elevated lipopro-
teins are LDL-C and VLDL, and the elevated lipids are TG and cholesterol, (d) phenotype
III where the elevated lipoproteins are VLDL and chylomicron remnants, and the elevated
lipids are TG and cholesterol, (e) phenotype IV where the elevated lipoprotein is VLDL
and the elevated lipid is TG, and (f) phenotype V where the elevated lipoproteins are
chylomicrons and VLDL, and the elevated lipids are TG and cholesterol [131]. Particularly
high levels of plasma LDL-C are considered as a major risk factor for CVDs; whereas
hypertriglyceridemia associated with other diseases may cause acute pancreatitis and
NAFLD. Dyslipidemia could be determined genetically (primary or familial dyslipidemia)
or secondary to other conditions including DM, an unhealthy lifestyle, and so on. Hyperc-
holesterolemia with elevated plasma LDL-C is the most common form of dyslipidemia and
it increases the risk of CVDs. The global burden of dyslipidemia has significantly increased
over the last 30 years. Hypercholesterolemia was considered the 15th leading risk factor for
death in 1990 and 8th in 2019 [132].

Primary lipogenic tissues are hepatocytes; however, the contributions of white adipose
tissue (WAT) and brown adipose tissue (BAT) are well recognized for TG homeostasis and
energy storage [133]. Hepatic TG may be derived from dietary intake of long, medium and
free fatty acids, esterification of plasma FFA and hepatic DNL. Fasting and postprandial
TG concentrations are significantly increased by hepatic DNL [134]. In hepatocytes and
adipocytes, a wide range of transcription factors (liver X receptor (LXR), sterol regulatory
element-binding protein-1c (SREBP-1c) and carbohydrate response element binding protein
(ChREBP)) and lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthase, fatty acid
elongase 6 and stearoyl-CoA desaturase 1) play a significant role in DNL. The biochemical
pathway of hepatic lipogenesis may be characterized by three sequential steps, such as fatty
acid synthesis (formation of palmitate), fatty acid elongation (formation of stearate from
palmitate)/desaturation (formation of oleate from stearate) and esterification (formation
of TG) [135]. Therefore, saturated fatty acids (SFA) through dietary intake are associated
with DNL and obesity. The consumption of dietary SFA can promote insulin and leptin
resistance, and inflammation via endoplasmic reticulum stress, cellular apoptosis and
activation of proinflammatory pathways in the hypothalamus, hepatocytes, adipocytes,
skeletal muscle, pancreas and gastrointestinal tract [136]. Interestingly, it was reported that
dietary fructose increases insulin resistance and levels of enzymes involved in DNL even
more than a high-fat diet [137]. Fructose is absorbed via the portal vein because it does
not require insulin for its metabolism, a single phosphorylation step by fructokinase to
form fructose-1-phosphate prior to conversion to dihydroxyacetone phosphate (DHAP)
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and glyceraldehyde (GA) and non-influenced activity of phosphofructokinase by ATP and
citrate. Therefore, fructose is delivered to hepatocytes in much higher concentrations, unlike
glucose, and induces DNL. Interestingly, it has been reported that prolonged consumption
of fructose may lead to hyperinsulinemia and insulin resistance. Furthermore, fructose
metabolism is associated with the depletion of ATP, suppression of fatty acid oxidation in
mitochondria, formation of uric acid and endoplasmic reticulum stress, which promotes
inflammation and the formation of ROSs [138].

DNL is physiologically regulated, where a coordinated series of enzymatic metabolic
reactions are involved. For example, during fasting, DNL is downregulated due to high
levels of blood glucagon and cellular cAMP. On the other hand, blood glucose and in-
sulin levels are improved after consumption of a carbohydrate diet. Those stimulate DNL
through increasing substrate availability, activity of lipogenic enzymes and expressions of
lipogenic genes [139]. Glucose and fructose are directly absorbed in the luminal membrane
of enterocytes in the intestine via an energy-independent mechanism. Intestinal fructose is
transported by glucose transporter 5 (GLUT5) on the lumenal side and glucose transporter
2 (GLUT2) on the basolateral side [140]. Furthermore, enterocytes of the small intestine play
a significant role in the absorption of chylomicron from dietary fatty acids which are subse-
quently transported by carnitine palmitoyltransferase (CPT) and carnitine-acylcarnitine
translocase (CACT) in the mitochondrial membrane [141]. The biochemical process of DNL
in hepatocytes begins with the formation of DHAP and glyceraldehyde 3-phosphate (GA3P)
from soluble dietary carbohydrates. The formation of triose-phosphates (GA, DHAP, GA3P)
may concomitantly increase the formation of methylglyoxal (MG) as well as a precursor for
AGEs, which have been recognized in the pathogenesis of T2DM [142]. Triose-phosphates
are further metabolized to pyruvate and transported to mitochondria by MPC, a mitochon-
drial pyruvate transporter for energy production. In hepatic mitochondria, pyruvate is
oxidized to acetyl-CoA and subsequently used in the tricarboxylic acid (TCA) cycle. When
energy accumulation is abundant, citrate is transported from the mitochondria to cytoplasm
of hepatocytes by the mitochondrial citrate/isocitrate carrier (CIC). Citrate is converted
to acetyl-CoA, which is the first step of endogenous lipogenesis. Palmitate (C16:0) is the
primary endogenously synthesized fatty acid; however, it may be elongated to stearate
(C18:0) and subsequently to oleate (C18:1). The final step of lipogenesis is the conversion of
diacylglycerols into TG, catalyzed by diacylglycerol acyltransferase (DGAT). In hepatocytes,
TG is stored as stored energy depots or assembled into VLDL and subsequently transported
to the blood. Hepatic DNL induces fasting and postprandial TG concentrations [134]. VLDL
in the bloodstream is converted to LDL and lipolytic products via the complex catalytic
activity of lipoprotein lipase. LDL enters hepatocytes via LDL receptor (LDLR) and LDLR-
related protein-1 (LRP1), and acts as a precursor of TG [143]. Circulating glucose/fructose,
fatty acids from dietary chylomicrons, dietary FFAs and VLDL derivatives from hepato-
cytes are initiators of DNL in adipocytes. Fatty acid derivatives enter adipocytes through
fatty acid transporters, such as fatty acid transport protein-1 (FATP1), cluster of differ-
entiation 36 (CD36), Caveolin-1 and FABPpm [144]. DNL in adipose tissue is decreased
with increasing insulin resistance [145]. Therefore, in diabetic conditions, adipose-specific
GLUT4 is downregulated and TG is formed by lipolytic products from blood in adipocytes
by esterification [139]. It has been proven by several clinical investigations that DNL is
significantly higher in hepatocytes than adipocytes due to carbohydrate-rich diets [146].
Hydrolysis of TG (lipolysis) by adipose triglyceride lipase (ATGL), hormone-sensitive
lipase (HSL) and monoacylglycerol lipase (MGL) in adipose tissues liberates FFA and
glycerol, which can be taken up by hepatocytes and converted to VLDL in both fed and
fasted states. In the first step, ATGL hydrolyzes TG into diacylglycerol (DAG) and the
first molecule of fatty acid. Subsequently, HSL hydrolyzes DAG into monoacylglycerol
(MAG) and the second molecule of fatty acid. Finally, MGL hydrolyzes MAG into glycerol
and the third molecule of fatty acid. These liberated fatty acids can be oxidized in BAT or
muscle and glycerol may be used as a precursor in gluconeogenesis in hepatocytes [147].
Increased FFAs from lipolysis in adipose tissue reduces β-oxidation within the liver and
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upregulates hepatic DNL [148]. It has been proven by several clinical investigations that
a higher proportion of hepatic TG is derived from plasma FFA, produced by lipolysis
in adipose tissues than hepatic DNL in subjects with normal liver fat [149,150]. Under
pathological conditions, lipolysis in WAT leads to lipotoxicity and insulin resistance [151].
Furthermore, lower lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty
acids and consequently insulin resistance [152]. Due to the consumption of fast foods, the
amount of caloric intake exceeds the calorie demand. Adipose tissues accumulate TG and
grow both in size and number, resulting in obesity. The accumulation of diacylglycerols in
the pathway of DNL induces insulin resistance by activating PKC, the transcription factor
of NF-κB and c-Jun N-terminal kinase 1, which is linked with diabetes. Furthermore, hyper-
insulinemia promotes lipolysis and the release of FFA from adipocytes, which is the cause
of imbalance of adipocytokines (decreased adiponectin and/or increased proinflammatory
cytokines) and lipotoxicity, and consequently hepatic steatosis [153]. Interestingly, some
recent investigations represent that adipocyte-specific fatty acids improve systemic insulin
sensitivity and decrease inflammation [145]. Metabolic pathways related to dyslipidemia
due to the consumption of soluble carbohydrates (glucose and fructose) and dietary fats in
high-calorie fast foods are presented in Figure 5.
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Dyslipidemia may lead to symptomatic end-organ diseases, including vascular disease
(coronary artery disease (CAD), stroke and peripheral arterial disease), acute pancreati-
tis and hepatosplenomegaly. Very high TG levels may cause dyspnea, paresthesias and
confusion [156]. Severe hypertriglyceridemia (>22.6 mmol/L) may cause lipemia retinalis.
Severe dyslipidemia may include localized lipid deposits (xanthoma). High levels of
LDL-C may cause arcus cornea and xanthelasma palpebrarum. Xanthelasma palpebrarum
can also occur in patients with primary biliary cirrhosis. Furthermore, high LDL-C lev-
els may cause tendinous xanthomas at the achilles elbow, and knee tendons and over
metacarpophalangeal joints [157].

4. Management of Obesity

Obesity has been acknowledged as a major challenge in the healthcare system and is
considered an economic burden around the world. Reduction in the prevalence and risk
of obesity involves a combination of lifestyle changes and pharmacological interventions.
Reduction in body weight and maintaining the ideal body weight are essential to prevent a
wide range of metabolic diseases. The reduction in body weight signifies a loss of 7–10% in
baseline body weight within 6–12 months. It is associated with a reduction in caloric intake
by 500–1000 calories·day−1 [1,158]. Management of obesity includes cooperation between
patients and healthcare professionals with different specializations, including dietetics,
endocrinologists, medicine specialists, psychologists and physiotherapists in order to
achieve the best possible treatment outcome [159]. Three medications, such as sibutramine,
orlistat and rimonabant are generally used for weight loss. Sibutramine, a monoamine-
reuptake inhibitor, results in average weight losses of 4–5 kg; however, this medication
is not suitable for patients with coronary heart disease. Orlistat, a gastrointestinal lipase
inhibitor, reduces weight by average 3 kg and decreases development to diabetes in high-
risk patients; however, adverse gastrointestinal disorders were noted. Rimonabant, an
endocannabinoid receptor antagonist, reduces weight by an average of 4–5 kg and waist
circumference. It improves the concentrations of plasma TG and HDL-C; however, an
incidence of mood-related disorders can be noted [160]. Unfortunately, the unavailability
of a single medication for pharmacotherapy of metabolic diseases including obesity and
prolonged use of multiple medications are considered as challenging issues due to the
high risk of side effects [161]. Bariatric surgery has been considered an effective treatment
for metabolic diseases including obesity due to a significant decrease in calorie intake.
Dramatic improvement occurs in the case of glucose intolerance/insulin resistance one year
after the surgery in patients [162]; however, some bariatric surgery risks include acid reflux,
anesthesia-related risks, dizziness, chronic nausea and vomiting, dilation of the esophagus,
intestinal infection, ulcers, bowel obstruction, hernias and low blood sugar [163]. Low-
calorie diets and physical activity are generally recommended by dietitians and medical
practitioners as a first-line treatment for managing obesity and are approved by most
dietary guidelines and scientific societies. For a long time, physical exercise [164,165],
intake of healthy diets [166,167], natural products, and herbal medicines were considered
for individuals with such risk factors [168,169]. Current guidelines for the management
of T2DM recommend progressive resistance training (PRT) to improve muscle mass and
glycemic control [170]; however, nutritional/diet management is also considered a central
element for the treatment of T2DM and dyslipidemia. Presently, multiple studies have
confirmed the beneficial effects of the Mediterranean diet (fruits and vegetables, whole
grains, healthy fats, etc.) on obese individuals [171,172].

4.1. Nutraceuticals and MS

Understanding human physiology behind weight and energy gain through food intake
is extremely relevant to controlling obesity incidence and other metabolic diseases. Nutri-
tional challenges as well as caloric restriction for the management of metabolic diseases
have been reported several times [173]. Therefore, there is growing interest in nutraceu-
ticals/functional foods, management of diet habits, and lifestyle for reducing the risk
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factors of metabolic diseases. It may be realized that the selection of unique functional
foods provides wide ranges of biological activities, which can modulate different metabolic
pathways associated with the risk factors of MS [174]. A variety of plant-based nutraceuti-
cals and their contributions to metabolic diseases have been reported. Some examples of
them are mentioned herein: curcumin from turmeric (Curcuma longa), allicin from garlic
(Allium sativum), quercetin from onion (Allium cepa L.), gingerols, shogaols, and parasols
from ginger (Zingiber officinale), cuminaldehyde from cumin (Cuminum cyaminum), ter-
penine and cineol from cardamom (Elettaria cardamomum), polyphenols from cinnamon
(Cinnamomum verum), neem oil from neem seed (Azadirachta indica), berberine from Rhizoma
coptidis, bergamot essential oil from bergamot orange (Citrus bergamia), resveratrol and
3,5,4′-trihydroxy-trans-stilbene from grape seed (Vitus vinifera L.), saponins and galac-
tomannan from fenugreek (Trigonella foenum), polyunsaturated fatty acids from animal- and
plant-based oils, sulforaphrane from broccoli (Brassica oleracea), and SCFAs from symbiotic
activity of prebiotics and probiotics [158,175].

Some recent investigations indicate that diets rich in protein and vegetables with some
dietary restriction, such as consumption of refined carbohydrates can reduce insulin resis-
tance irrespective of the change in body weight [162]. The unique nutritional value of dairy
milk has catapulted it to the forefront of the functional food sector. For a long time, dairy
milk has been well accepted in diet charts for all ages around the globe. The presence of
wide ranges of biomolecules, such as proteins, carbohydrates, fats, minerals, and vitamins
in milk offers unique nutritional value to consumers of all ages [176]. Several epidemiolog-
ical and cohort studies confirmed that the consumption of dairy products decreased the
prevalence of MS, while experimental studies pointed to the roles of dairy protein [177]
and peptides [178] as dietary components that may modulate the activities of risk factors
of MS. Potential beneficial outcomes from milk proteins include a wide range of aspects.
Protein generally increases satiety to a greater extent than other primary macromolecules
(carbohydrates and fats) and may facilitate a reduction in energy consumption under all
dietary conditions. It may be supposed that the metabolic and appetite-suppressing effects
of proteins are dependent on the quality of the protein, which is determined by the amino
acid composition (non-essential or essential, glucogenic or ketogenic). Diets with higher
amounts of protein are associated with increased thermogenesis, which influences the
synthesis of satiety hormones, decreasing dietary calorie consumption and improving
energy expenditure. Consequently, protein may provide a stimulatory effect on muscle
protein anabolism and maintain BMI. Furthermore, peptides with unique functional values
are produced by in vivo gastrointestinal digestion of dietary proteins. Their unique char-
acteristics modulate physiological functions in an inclusive way and reduce the risks of a
wide range of diseases [179].

4.2. Proteins and Peptides from Milk Proteins

According to the FAO dairy review, ~930 million tons of milk was produced around
the globe in 2022, and it is expected to increase by 1.7% annually for almost a decade from
now. Cows are the largest global milk source (81%), followed by buffalo (15%). On a global
level, milk consumption stands at 112 kg·person−1·year−1, and milk and dairy products
contribute about 18–20% of protein consumption in adults [180]. Therefore, peptides from
cow and buffalo milk proteins, represented by dairy milk proteins for the management of
obesity, are considered in the present review article.

Cow milk and buffalo milk contain ~3.6% and ~4.3% protein by weight, respec-
tively [181], and have been considered excellent sources of all types of amino acids, in-
cluding essential amino acids (EAAs). The protein digestibility-corrected amino acid score
(PDCAAS) and digestible indispensable amino acid score (DIAAS) of milk proteins are
higher than those of most other protein sources [182]. Dairy proteins are classified as
(a) casein protein (80% (weight basis): αs1-casein, αs2-casein, β-casein, κ-casein) and
(b) whey protein (20% (weight basis): β-lactoglobulin, α-lactalbumin, immunoglobulins
(IgG, IgA, IgM), bovine serum albumin, lactoferrin, lactoperoxidase). The minor proteins
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in milk are glycoproteins and lipoproteins, which account for less than 2% of total milk
proteins. They are produced from distinct genes. Buffalo milk is just like cow milk and
contains two major protein fractions, such as casein protein and whey protein. Buffalo milk
has a higher protein content than bovine milk. Therefore, it contains higher concentrations
of caseins and whey proteins than bovine milk. The characteristics and quantity of milk
proteins may change depending on the breed, feeding regime, seasons, and rearing system
of animals [181]. Different distributions of caseins (αs1-casein, αs2-casein, β-casein, and
κ-casein) and major whey proteins (β-lactoglobulin and α-lactalbumin) in cow milk and
buffalo milk are reported in Table 2.

Table 2. Protein profile (g·L−1) of cow and buffalo milk (self-developed, information were adopted
from Roy et al., 2020 [183]).

Casein Protein (g·L−1) Whey Protein (g·L−1)

Total Protein for Cow (24.6–28) and Buffalo (32–40) Milk Total Protein for Cow (5.5–7) and
Buffalo (6) Milk

αs1-Casein αs2-Casein β-Casein κ-Casein β-Lactoglobulin α-Lactalbumin

Cow 8–10.7 2.8–3.4 8.6–9.3 2.3–3.3 3.2–3.3 1.2–1.3

Buffalo 8.9 5.1 12.6–20.9 4.1–5.4 3.9 1.4

Numerous attempts have been made to characterize milk proteins [184] and their
biological activities [185]. Casein contains a higher proportion of different types of EAAs,
such as His, Met, Phe, and Val, than whey proteins. Furthermore, casein contains a higher
proportion of several non-EAAs, including Arg, Glu, Pro, Ser, and Tyr. On the other hand,
whey protein contains a higher proportion of the branched-chain amino acids (BCAAs),
such as Leu, Ile, and Val, compared to casein. However, casein and whey proteins contain
all EAAs, but their digestion and absorption characteristics are different. Whey proteins are
highly soluble in the food matrix and under in vivo conditions. Therefore, after gastroin-
testinal digestion of whey proteins, their absorption rate is much faster than that of digested
casein, which leads to a dramatic short-lived rise in plasma AAs. On the other hand, casein
clots in the acidic conditions of the stomach, which leads to delayed gastric emptying
and a steady and prolonged release of AAs into the bloodstream [186–188]. Therefore,
whey protein is considered to be nutritionally superior to casein in terms of biological
value, protein efficiency ratio, and net protein utilization. For example, the biological
values for whey proteins and casein are 104 and 77, respectively; the protein efficiency
ratio values for whey proteins and casein are 3.2 and 2.5, respectively; and net protein
utilization for whey proteins and casein are 92 and 76, respectively [186,189]. Furthermore,
the composition of amino acids and protein/food structure may play an important role in
protein-stimulated physiological and metabolic effects. For example, casein could attenuate
plasma postprandial glucose with nominal stimulation of insulin secretion, whereas the im-
provement of insulin response after whey causes a greater reduction in plasma postprandial
glucose [190,191].

Besides the advantageous outcomes from dairy milk proteins, epitope mapping studies
presented the sequential or linear and conformational epitopes within milk proteins. Due
to the presence of immunoglobulin E (IgE)- and immunoglobulin G (IgG)-binding epitopes
in the protein structure, dairy milk proteins are listed among the “big 8” allergens. There-
fore, dairy milk protein allergy can be attributed to IgE-mediated and non-IgE-mediated
mechanisms [192]. Dairy milk protein-allergic subjects could be segregated into different
phenotypes according to reactivity [193]; however, no specific structure and function of
dairy milk proteins account for a major part of the allergenic activity of dairy proteins.
Therefore, it may be realized that the heterogeneity of the human IgE response could be
attributed to the allergenic potential of any dairy milk protein or protein fragment [194].
Clinical polysensitization (cross-sensitization or cross-reactivity and co-sensitization) to
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several dairy milk proteins is most often noted. IgEs and IgGs from mice allergic to cow
milk are capable of cross-reacting with buffalo milk proteins due to homologies in the
composition of amino acids [195]. Some major characteristics of different types of dairy
milk proteins are mentioned in Table 3.

Table 3. Characteristics of dairy milk proteins.

Fraction of Protein
Approximate

Molecular Weight
(kDa) [196,197]

Amino Acids (-)
[196,197]

Isoelectric
Point (-)
[197,198]

Denaturation
Temperature
(◦C) [198,199]

Allergome
Name [200]

Casein

αs1-casein 23.6 199 4.9–5.0 - Bos d 9

αs2-casein 25.2 207 5.2–5.4 - Bos d 10

β-casein 24 209 5.1–5.4 - Bos d 11

κ-casein 19 169 5.4–5.6 - Bos d 12

Whey

β-lactoglobulin 18.3 162 5.3 71.9 Bos d 5

α-lactalbumin 14.2 123 4.8 64.3 Bos d 4

Immunoglobulins
(IgG, IgA, IgM)

IgG 150–161, IgA
385–417, IgM 1000 - IgG 5.5–8.3 72 -

Bovine serum
albumin 66.4 583 4.9–5.1 72–74 Bos d 6

Lactoferrin 80 703 8.7 72–85 -

Lactoperoxidase 78 612 9.8 70 -

Apart from being an excellent source of EAAs for human nutrition, milk proteins can
exhibit a wide range of biological activities by producing peptides due to gastrointestinal di-
gestion. Peptides from dairy milk proteins are recognized as antioxidant, anti-angiotensin,
antimicrobial, antidiabetic, anticarcinogenic, anti-inflammatory, antihypertensive, antihy-
percholesterolemic, immunomodulatory, and many more [185,201]. These advantageous
outcomes from dairy milk proteins have encouraged the production of a wide range of
dried protein powders, such as milk protein concentrate (MPC), milk protein isolate (MPI),
whey protein concentrate (WPC), and whey protein isolate (WPI), as well as regular dairy
foods, such as yogurt, kefir, and ice cream. Different physiological functions of dairy milk
protein-derived peptides are shown in Figure 6.
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In the last two decades, the attention of the dairy industry has shifted. Presently,
the applications of dairy milk proteins are not limited to the development and fortifica-
tion of regular dairy foods. The significant income from individual dairy proteins and
peptides has been taken into consideration along with the marketing of regular dairy
foods [203]. It is well recognized that peptides from milk proteins modulate the synthe-
sis and activities of different risk factors of MS-associated diseases [204,205]. Some milk
protein-derived specific peptides offer two or more distinct biological activities (multifunc-
tional activities) [206]. Peptides are protein fragments produced by the action of proteolytic
enzymes and generally contain 2–20 amino acid residues and generally have a molecular
weight < 6 kDa [207]. Hydrolysis of milk proteins can be performed using suitable acids
or alkalis or food-grade proteolytic enzymes. Enzymatic hydrolysis of dairy milk pro-
teins is preferred because acid and alkali hydrolysis of milk proteins is difficult to control.
Acid hydrolysis oxidizes Cys and Met and partially destroys Ser and Thr and converts
Gln and Asn to Glu and Asp acids, respectively. Furthermore, alkali hydrolysis of milk
proteins causes racemization in amino acids. Enzymatic hydrolysis of dairy milk proteins
has been recognized as “safe” by the European Food Safety Authority (EFSA) and the
FDA [208]. Peptides from both plant- and animal-based proteins can be produced by a
wide range of proteases under in vitro conditions, and by fermentation and ripening by
microbial proteolytic systems. Furthermore, they can be produced in the gastrointestinal
tract (in vivo conditions) by digestive enzymes, such as pepsin, chymotrypsin, and trypsin.
Proteolysis of milk proteins through enzymatic routes not only produces peptides with
unique functional activities but also reduces the allergenic activity of proteins and oligopep-
tides [209]. Dairy milk proteins α-casein and β-casein have the potential to liberate more
than 20,000 functional peptides each [210]. The first identified food protein-derived peptide
was from casein, which had the potential for vitamin D-independent bone calcification
in rachitic infants [211]. Intestinal absorption of peptides is supposed to follow any of
the following mechanisms: carrier-mediated transporter system, passive diffusion and
transcytosis, paracellular pathways through tight junctions, and endocytosis [212]. One of
the shortcomings of producing peptides from milk proteins by enzymatic hydrolysis is the
generation of peptides with a bitter taste [213]. Some well-recognized peptides produced by
in vitro enzymatic hydrolysis of dairy milk proteins and their functional activities against
metabolic risk factors are presented in Table 4.

Table 4. Peptides from enzymatic in vitro hydrolysis of cow and buffalo milk proteins, and their
biological functions against the risk factors of MS.

Peptide Sequence Precursor Protein Source Hydrolysis
Enzymes Bioactivities Ref.

FFVAP α-casein

Cow milk

Trypsin ACE inhibitory [214]

KVLPVPQ β-casein Proteinase Anti-hypertensive [215]

YKVPQL β-casein Proteinase ACE inhibitory [215]

KVLPVP β-casein Carboxypeptidase ACE inhibitory [215]

KVLPVP β-casein Carboxypeptidase Antihypertensive [215]

YGLF α-lactalbumin Trypsin, Pepsin ACE inhibitory [216]

YLLF β-lactoglobulin Trypsin, Pepsin ACE inhibitory [216]

KKLGAPSITCVRRAF Lactoferrin Pepsin Anti-inflammatory [217]

KKLGAPSITCVRRAF Lactoferrin Pepsin Antioxidant [218]

KKLGAPSITCVRRAF Lactoferrin Pepsin Anticancer [219]

MAIPPKKNQDK κ-casein Chymosin, Trypsin Antithrombotic [220]
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Table 4. Cont.

Peptide Sequence Precursor Protein Source Hydrolysis
Enzymes Bioactivities Ref.

AVESTVATLEDΣPEVIESPPE,
where Σ is Ser(P) κ-casein Chymosin Modulatory of

satiety [221]

TVQVTSTAV,
MAIPKKNQDKTEIP κ-casein Chymosin, Papain Anti-obesity [222]

PGPIPN β-casein Trypsin,
Chymotrypsin Immunomodulatory [220]

YPSYGLNY κ-casein Trypsin, Pepsin,
Chymotrypsin Anti-opioid [220]

YGLF α-lactalbumin Trypsin/Pepsin ACE inhibitory,
Anti-opioid [223]

YLLF β-lactoglobulin Trypsin/Pepsin ACE inhibitory,
Anti-opioid [223]

HIRL β-lactoglobulin Trypsin/Pepsin ACE inhibitory [223]

RYLGYL, RYLGYLE, YVPFP α-casein - Anticancer [224]

YPFPGPI, YPFPG β-casein - Anticancer [224]

FKCRRWQWRMKK,
LGAPSITCVRRAF Lactoferrin - Anticancer [224]

PYPQ, YFYPE, EMPFK,
PQSV Casein Trypsin, Alcalase Antioxidant [225]

YQKFPQYLQY Casein Pepsin, Trypsin Antihypertensive [226]

LQPE, VAPFPE, TDVEN,
VLPVPQ Milk casein Neutrase Cholesterol

lowering [227]

HLPGRG, QNVLPLH,
PLMLP, MFE, GPAHCLL,

ACGP
Milk casein Alcalase, Pronase E

Antidiabetic
activity

(inhibit three
diabetic-related

enzymes; such as
DPP-IV,

α-glucosidase and
α-amylase)

[228]

RELEELNVPGEIVEΣLΣΣΣEESITRINK β-casein Chymotrypsin Immuno-
stimulatory [229]

LVYPFPGPI β-casein

Buffalo
milk

Proteinase ACE inhibitory [230]

FVAPFPE αs1-casein Trypsin ACE inhibitory [231]

YQQPVL β-casein Fermentation +
Pepsin + Trypsin ACE inhibitory [232]

FPGPIPK, IPPK, IVPN,
QPPQ β-casein Papain, Pepsin, or

Trypsin ACE inhibitory [233]

IPP/VPP β-casein - Anti-diabetic,
Antihypertensive [205]

IPP/VPP β-casein Proteases Antihypertensive [234]

RNAVPITPTLNR αs2-casein Protease
Antidiabetic/α-

glucosidase
inhibitory

[235]

TKVIPYVRYL αs2-casein Protease
Antidiabetic/α-

glucosidase
inhibitory

[235]
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Table 4. Cont.

Peptide Sequence Precursor Protein Source Hydrolysis
Enzymes Bioactivities Ref.

YLGYLEQLLR αs2-casein Protease
Antidiabetic/α-

glucosidase
inhibitory

[235]

FALPQYLK αs2-casein Protease
Antidiabetic/α-

glucosidase
inhibitory

[235]

YVEELKPTPEGDL β-lactoglobulin Pepsin Antioxidant [236]

VLPVPQK β-casein Pepsin + Trypsin ACE inhibitory [237]

VLPVPQK β-casein Pepsin + Trypsin Antioxidant [238]

YPSG, HPFA, KFQ β-casein Papain, Pepsin,
Trypsin Antioxidant [233]

RELEE, TVA, MEDNKQ Casein Trypsin, Alcalase Antioxidant [225]

Unfortunately, adequate quantities of peptides are not produced through the enzy-
matic hydrolysis of food proteins, including dairy milk proteins. Therefore, this technique
is not always considered economical. Chemical and recombinant DNA technologies came
to the forefront to solve the mentioned problem. Chemical synthesis is preferred for pro-
ducing small and medium-chain-length peptides, usually composed of 5–80 amino acids
in sequence, and recombinant DNA technology is preferred for producing larger pep-
tides and proteins. These techniques are usually employed when the peptide sequence is
known [239]. Chemical modifications of peptides usually improve membrane permeability,
affinity with receptors, and stability during delivery. Furthermore, it has been proven
that the bioavailability of peptides is improved by chemical modification. Purification of
such synthesized peptides from other products in the reaction mixture is a considerably
challenging issue. Gene expression in microorganisms using modern recombinant DNA
technology and cloning are advantageous for synthesizing peptides; however, these tech-
nologies require intensive research [240]. Bovine β-casomorphin 7 (BCM-7), which has the
potential to prevent cardiovascular diseases, type I diabetes, and neurological disorders,
was synthesized through this advanced molecular biology technique [241].

Currently, attempts are being made to assess the biological significance of milk protein-
derived peptides and their characterization through advanced technologies and concepts,
known as peptidomics [242]. In the last few decades, the BIOPEP database [243] has
been upgraded. The outstanding development of peptidomics [242] opens a new hori-
zon in science, known as nutrigenetics and nutrigenomics [244]. Recently, they are being
considered in dairy foods to understand the biofunctional activities in a comprehensive
way [245]. Presently, in silico approaches, including quantitative structure–activity relation-
ship (QSAR), are used to predict the physicochemical information of these peptides and
their responsive biological activities [246].

Peptides from food proteins, including dairy milk proteins, have gained attention in
both the nutraceutical and pharmacological sectors due to their unique therapeutic potential
and biocompatibility without side effects. In some cases, they are used for the fortification of
conventional foods to provide unique beneficial outcomes to consumers [247,248]. Dietary
products enriched with milk protein-derived peptides are commercially available with
therapeutic information [249]. Some of them are used for combating metabolic diseases.
Commercial peptides from dairy milk proteins, along with their sequence and appealing
health or functional benefits, are mentioned in Table 5.
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Table 5. Commercial peptides from dairy milk proteins (self-developed, information were adopted
from Carrasco-Castilla et al., 2012 [249]).

Commercial Brand Name Food Type Peptide Sequence Health/Functional Claim Manufacturers

Ameal bp®,
Ameal peptide® Tablets VPP, IPP derived from

β-casein and κ-casein
Reduction in

blood pressure
Calpis Co.,

Tokyo, Japan

BioZate 1
Hydrolyzed

whey
protein isolate

Fragments from
β-lactoglobulin

Reduction in
blood pressure

Davisco Foods
International Inc.,
Savage, MN, USA

BiPRO WPI WPI GMP (106–109) Antithrombic
and Anticariogenic

Davisco Foods
International Inc.,
Savage, MN, USA

Calpis Sour milk IPP and VPP Hypotensive Calpis Co.,
Tokyo, Japan

Calpico®/Calpis®

AMEALs
Fermented milk IPP and VPP Hypotensive Calpis Co.,

Tokyo, Japan

C12 peptide Peptide
ingredient FFVAPFPEVFGK Hypotensive DMV International,

Veghel, The Netherland

Evolus® Fermented milk IPP and VPP Reduction in
blood pressure

Valio Ltd.,
Helsinki, Finland

GC tooth mousse Water-based
creme Caseinomacropeptide Anticariogenic GC Europe N.V.,

Leuven, Belgium

Glycomacropeptide (GMP) Fresh cheese,
WPI κ-casein f(106–169) Anticariogenic and

Antithrombotic

Davisco Foods
International Inc.,
Savage, MN, USA

insuVidaTM Tablets Casein hydrolysate Antidiabetic DSM Food Specialties,
Delft, The Netherland

Lactium® Milk protein
hydrolysate

αs1-casein f(91–100)
YLGYLEQLLR Reduction in stress effects Ingredia Nutritional,

Arras, France

LACPRODAN-DI-3065 Healthy food
formula

Whey protein
hydrolysate (WPH)

Benefits to sufferers from
impaired digestion as a

result of surgery, illness or
health conditions, such as

short bowel syndrome,
pancreatic insufficiency

and inflammatory
bowel disease.

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-DI-3091 Healthy food
formula WPH

Supplements for patients
with maldigestion
or malabsorption.

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-DI-3092 Healthy food
formula WPH

Supplements for patients
with maldigestion
or malabsorption.

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-IF-3070 Healthy food
formula WPH Sustainable gastrointestinal

system for infant

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-IF-3071 Healthy food
formula WPH Sustainable gastrointestinal

system for infant

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-IF-3080 Healthy infant
food formula WPH Lower allergenic

Arla Foods Ingredients
Group P/S,

Viby, Denmark
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Table 5. Cont.

Commercial Brand Name Food Type Peptide Sequence Health/Functional Claim Manufacturers

LACPRODAN-IF-3090 Healthy infant
food formula WPH Lower allergenic

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-DI-2021 Healthy food
formula

Casein
phosphopeptides

Increase calcium
absorption and bone health

Arla Foods Ingredients
Group P/S,

Viby, Denmark

LACPRODAN-CGMP-10
and CGMP-20

Healthy food
formula

Fragment from
α-lactalbumin

Improves sleep
and memory

Arla Foods Ingredients
Group P/S,

Viby, Denmark

MI pasteTM/MI
paste plusTM Toothpaste Caseinomacropeptide Anticariogenic GC America,

Alsip, IL, USA

Pep2Dia®

Capsule
(vegetable fiber
with 350 mg of
milk protein hy-
drolysate/capsule)

RP Antidiabetic Ingredia S.A., Arras
Cedex, France

PROTARMOR™ 80 Ingredient Casein hydrolysates Weight loss Armor Proteines, Maen
Roch, France

RecaldentTM Ingredient Caseinomacropeptide Anticariogenic
Cadbury Enterprises

Pte. Ltd., Jurong,
Singapore

Trident xtra careTM Chewing gum Caseinomacropeptide Anticariogenic Cadbury Adams, East
Hanover, NJ, USA

4.2.1. Anti-Diabetic Activity

Both casein and whey protein-derived peptides or amino acids may affect insulin
secretion from pancreatic β-cells and the release of incretin hormones, i.e., GIP and GLP-1,
from the gut. It is anticipated that insulin sensitivity is related to the characteristics of
the amino acid pool (qualitative and quantitative) from dairy proteins in plasma [250].
Whey protein is more effective than micellar casein for the rapid secretion of insulin [187].
It was found that the absorption rate of casein in its native micellar form is lower [251];
however, hydrolysis of casein improves the absorption of amino acids and the secretion
of insulin [252]. The insulinotropic activity of WPH might be related to intestinal amino
acid absorption and the increased concentration of FAAs (Leu, Ile, Phe, Arg, Tyr, Thr,
Val, Ala, and Lys), BCAA-containing dipeptides (IL, LL, and VL), and possibly cyclic
dipeptides in plasma [253,254]. Furthermore, whey proteins influence the synthesis of
GLP-1 more than casein [255]. Insulin does not have a remarkable contribution in insulin-
sensitive tissues exclusively; it has wide-ranging direct and indirect effects on metabolism,
including stimulation of glucose uptake, glycogen synthesis, gluconeogenesis, lipid uptake,
TG synthesis, lipolysis, protein synthesis, and inhibition of protein breakdown [256]. In
addition to stimulating insulin release from pancreatic β-cells, dairy proteins and their
hydrolysates may alter tissue glucose uptake in skeletal and muscle cells and suppress the
high postprandial blood glucose level [257,258]. Interestingly, it was proven that longer-
term consumption of casein and whey protein supplementation decreases fasting blood
insulin levels and diminishes the physiological effects of DM [259]. The contribution
of milk protein-derived peptides with anti-DPP-IV activity and anti-α-glucosidase and
anti-α-amylase activity in hyperglycemic conditions was anticipated by several investi-
gators [260,261]. Both hydrophobic amino acids (Ala, Gly, Ile, Leu, Phe, Pro, Met, Trp,
and Val) and hydrophilic amino acids (Thr, His, Gln, Ser, Lys, and Arg) are found within
DPP-IV inhibitory peptides. The presence of hydrophobic amino acids in potent DPP-IV
inhibitory peptides may enhance the interaction with the active site of DPP-IV (S1 subsite
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of DPP-IV) [262,263]. Peptides from dairy milk proteins with one or two Pro residues at
the N-terminus are highly effective DPP-IV inhibitors; however, tryptophan-containing
milk protein-derived dipeptides against DPP-IV were reported [264]. Casein, particularly
β-casein, contains a high amount of Pro residues. Therefore, peptides from β-casein are
potential DPP-IV inhibitors compared to β-lactoglobulin-derived peptides [265]. It is an-
ticipated that two other enzymes, α-amylase and α-glucosidase, play significant roles in
normal glucose homeostasis. α-Amylase competitively interacts with peptide sequences
having hydrophobic amino acids, such as Leu, Met, and Pro, at the terminal; while α-
glucosidase is inhibited by the hydrophobic amino acids Met, Pro, Phe, and Leu in peptide
sequences [228]. It has been proven that antioxidant peptides offer antidiabetic activity and
can protect cells from reactive oxygen-induced stress by modulating multiple pathways and
biochemical reactions, including inhibition of the synthesis of malondialdehyde (MDA) and
protein carbonyls [266], reduction in the activity of lactate dehydrogenase (LDH) [267,268],
increase in the activity of oxidative enzymes (catalase, glutathione peroxidase, and su-
peroxide dismutase) [269], and expression of genes in the Keap1-nuclear factor erythroid
2–related factor 2 (Nrf2) signaling pathway [267,270]. Peptides with effective antioxidant
capacity are hydrophobic in character and comprise unique amino acids, such as Trp, Tyr,
His, and Pro. In addition, the presence of two hydrophobic amino acids, such as Leu and
Val, in peptides contributes to antioxidant and lipid peroxidation capacity [266]. Two well-
known milk protein-derived peptides, IPP and VPP, demonstrated effective enhancement
of insulin signals and anti-inflammation via the NF-κB pathway under TNF stimulation
and prevention of insulin resistance. These two peptides offer an insulin-sensitizing effect,
which is independent of insulin receptors in adipocytes. Furthermore, they are recognized
as potential DPP-IV inhibitors [234,271].

In addition, peptides from casein and whey protein show a satiating effect [272], which
is related to the gastrointestinal system and the appetite center of the brain [273]. Casein
reduces gastric emptying and improves a slow postprandial increase in amino acids in
plasma. Contradictorily, whey proteins improve a fast, high, and transient increase in amino
acids in plasma. Some investigations have suggested that whey proteins are more satiating
than casein proteins [255,274], and their thermogenesis and influence on body weight
differ to some extent [275,276]. Casein hydrolysates activate peripheral opioid and CCK
receptors and block the antagonist receptors associated with food consumption [277,278].
Whey protein-derived peptides increase the concentration of postprandial plasma amino
acids, CCK, GLP-1, and GIP. The satiating effect of whey protein is mainly due to a high
concentration of BCAAs, particularly L-Leu [279]. Therefore, milk protein-derived peptides
modulate the release of satiety hormones (CCK, GLP-1, GIP, PYY, an ghrelin), increase
diet-induced thermogenesis, and activate opioid receptors [190]. Milk protein-derived
small peptides and amino acids act via GPCRs, increasing intracellular Ca2+ and/or the
concentration of cyclic adenosine monophosphate (cAMP), or via peptide/amino acid
transporters, which depolarize the enteroendocrine cell membrane, activating Ca2+ influx
and stimulating satiety hormones [280,281].

4.2.2. Anti-Dyslipidemic Activity

Dairy milk proteins modulate intrahepatic lipids and circulating TGs through a wide
range of biochemical mechanisms, including gastric emptying, insulin secretion, lipogene-
sis (downregulation), and gluconeogenesis and glycogenesis (upregulation) in hepatocytes.
They suppress postprandial lipemia due to insulinotropic effect, modulate metabolic path-
ways dedicated to lipid metabolism, and offer lipid peroxidation activity [282].

The concentration of postprandial TG is influenced by many factors, such as insulin
concentration, secretions of intestinal chylomicrons and hepatic VLDL, transformation
of TG-rich lipoproteins to TG-depleted lipoproteins, and tissue uptake of TG-depleted
lipoproteins [283]. Insulin is a well-known activator of lipoprotein lipase, but high levels
of postprandial insulin inhibit hormone-sensitive lipase [284]. Therefore, consumption
of dairy milk proteins may result in lower formation of chylomicrons, and subsequently,
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FFA from adipose tissue and lipotoxicity in hepatocytes. Due to the insulinotropic effect
of whey proteins, they may enhance the activity of lipoprotein lipase and promote chy-
lomicron clearance. In the chronic state, whey proteins affect intestinal lipid absorption,
excretion, and de novo cholesterol biogenesis in hepatocytes [259]. Peptides from dairy
milk casein offer cholesterol-lowering activity by diminishing cholesterol micellar solubility
and absorption and by reducing mRNA expression of acetyl-CoA acetyltransferase-2 and
microsomal triacylglycerols (MTP) in proximal intestinal cells [227].

Dairy milk protein-derived peptides may inhibit hypercholesteremic enzymes and as-
sociated genes. They inhibit the activities of cholesterol esterase and pancreatic lipase [285]
and expression of the lipogenesis-related genes SCD-1, ACC1, and FASN. They increase the
peroxisome proliferator-activated receptor-α (PPAR-α) signaling pathway and expression
of the β-oxidation-related genes CPT-1a, PPARα, and ACOX1 [286]. Dairy milk casein-
derived peptides enhance trans-intestinal cholesterol excretion (TICE) via regulation of the
liver X receptor-α (LXR-α) signaling pathway and upregulation of ABCG5. Lys in dairy
milk proteins is known to be involved in the lipid accumulation metabolism of long-chain
fatty acids, which are crucial for the endogenous synthesis of carnitine. It was found that
Lys-supplemented formula reduces the concentration of TGs in tissues [287]. Moreover, the
concentration of triacylglycerols and gene expression of lipogenesis enzymes in hepatocytes
are suppressed by Leu and Ala in milk proteins and, consequently, are linked with reduced
body fat accumulation [288]. Dairy milk protein-derived peptides induce fibroblast growth
factor 15/19 (FGF15/19) from enterocytes, which suppresses hepatic bile acid synthesis
involved in adjusting hepatobiliary cholesterol [289].

Metabolic diseases, including obesity, are associated with a proinflammatory state
and intracellular redox imbalance and the formation of ROS, which result in mitochondrial
dysfunction, lipid oxidation, ROS-related impairment, and many other issues [290]. Milk
protein-derived peptides offer lipid peroxidation activity due to the presence of Leu or Val
and other hydrophobic amino acids, such as Trp, Tyr, His, and Pro. It has been proven
that peptides derived from milk proteins can protect Caco-2 cells from lipid peroxidation
(peroxide-induced oxidative stress) by modulating the Keap1-Nrf2 pathway [291], which
may be responsible for the suppression of excessive body weight [268]. Peptides from
milk proteins inhibit the activity of XO, supposed to be the source of ROS that causes
atherosclerosis and cholesterol crystals [292].

4.3. Biochemical Mechanisms Considering IPP and VPP as Model Peptides

Two milk protein-derived tripeptides, IPP and VPP, were meticulously studied con-
cerning their effects on biomarkers of metabolic diseases. Hyperglycemia, hyperinsuline-
mia, and lipotoxicity are influenced by the expression of local RAS components, especially
the Ang II-AT1R axis. Ang II impedes adipocyte differentiation, which promotes adipocyte
dysfunction and reduces insulin sensitivity through reduced adiponectin and greater proin-
flammatory adipokine secretion. Ang II further enhances ROS formation and modulates a
wide range of metabolic pathways in different tissues. Inflammation in cells, distressed
insulin signaling in the endothelium, hepatocytes, muscle, and adipose tissues promote
endothelial dysfunction and insulin resistance. Furthermore, stress-responsive damage
to pancreatic β-cells is the cause of lower insulin secretion, which enhances fasting blood
glucose [293,294]. It may be realized that understanding the pipelines among inflam-
mation, insulin secretion and resistance, and dysregulation of lipid metabolism will be
useful to explain how dairy protein-derived peptides IPP and VPP modulate different
biochemical pathways and metabolic biomarkers associated with hyperglycemia and dys-
lipidemia. In Figure 7, the interconnections between RAS-mediated inflammation, oxidative
stress, insulin secretion and resistance, and dysregulation of glucose and lipid metabolism
are presented.
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Formation of stress-responsive inflammatory cytokines is influenced by several physi-
ological and metabolic factors, such as the activity of the RAS, dysregulation of NADPH
oxidase, adipokines, extracellular signal-regulated kinase (ERK), formation of plasminogen
activator inhibitor-1 (PAI-1) and C-reactive protein, and activation of the NF-κB pathway,
among others [294]. Antioxidant peptides, either direct scavengers or inhibitors of the
inflammatory pathways mentioned above, participate in counter-regulatory pathways
and act as anti-maladaptation agents in metabolic diseases [295,296]. The ACE inhibitory
activity of dairy milk protein-derived IPP and VPP was proven by in vitro studies [297,298],
animal models [299–302], and clinical trials [303–306]. Note that the effects were not equiv-
ocal regarding their biological efficacy [307,308], but there is a consensus that they are ACE
inhibitors. ACE prefers to bind peptides containing a hydrophobic (aromatic or branched
side-chain) amino acid residue, such as proline, at the C-terminal position [309]. These
hydrophobic residues provide the structural basis for the ACE inhibitory effect; however,
the downstream effects are not uniform. While both IPP and VPP inhibited the NF-κB
pathway, only VPP antagonized the activation of extracellular signal-regulated kinase
(ERK) 1/2 in a rat aortic vascular smooth muscle cell (VSMC) line, A7r5 [310]. It was found
that administration of VPP and IPP might be beneficial for preventing atherosclerosis due
to the activity of ACE and hypercholesterolemia. Plasma lipid levels and 8-isoprostane, a
biomarker of oxidative stress, remained unchanged after 31 weeks of oral feeding of IPP
and VPP to mice; however, mRNA expression of inflammatory cytokines, such as IL-6
and IL-1β, oxidized low-density lipoprotein receptor, and transcription regulators were re-
duced [311]. He antihypertensive and cholesterol-lowering effects of the tripeptides IPP and
VPP were proven by a 10-week clinical trial. It was reported that systolic (but not diastolic)
blood pressure was significantly decreased. Furthermore, total cholesterol and LDL-C were
decreased; however, HDL-C, triacylglycerols, and CRP remained unchanged [312]. Bovine
casein-derived tripeptides IPP and VPP from casein hydrolyzate have been reported to pre-
vent obesity-induced chronic adipose inflammation in both animal models and cell cultures.
High-fat diet-induced systemic inflammatory factors, hypertrophic white adipocytes, and
macrophage infiltration were suppressed in C57BL/6J mice due to casein hydrolyzate feed-
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ing for 6 weeks. Casein hydrolyzate was able to mitigate adipocyte dysfunction induced
by TNF-α by increasing the expression of CCAAT/enhancer binding protein α (C/EBP-α)
rather than PPAR-γ in the 3T3-L1 cell line. Furthermore, casein hydrolyzate suppressed
mitogen-activated protein kinase (MAPK)-c-JNK phosphorylation and enhanced phos-
phorylation of ERK 1/2 in TNF-α-induced 3T3-L1 cells [313]. VPP was tested in high-fat
diet-fed C57BL/6J mice for 10 weeks to understand its effect on inflammation in adipose
tissues. The results showed that the expression level of CD18 in peripheral blood mono-
cytes was significantly decreased compared with the placebo group. This was particularly
prominent in the stromal vascular fractions of the fatty tissue of mice treated with VPP.
Moreover, the expression of monocyte chemoattractant protein-1 and IL-6 in adipose tissue
was also lower [314]. IPP and VPP were able to promote adipocyte differentiation and
inhibit inflammation in the murine preadipocyte cell line 3T3-F442A. The upregulation of
PPAR-γ and secretion of the protective lipid hormone adiponectin from these cells were
reported as underlying mechanisms for beneficial adipogenic differentiation. IPP and VPP
inhibited cytokine-induced changes, such as reduction in adipokine levels and activation of
the NF-κB pathway [315]. These findings were supported by another study, suggesting that
both IPP and VPP can prevent the activity of the inflammatory mediator NF-κB under TNF
stimulation in similar cell lines. Under TNF stimulation, they were able to prevent insulin
resistance and enhance the expression of GLUT4 [234]. Furthermore, they can enhance
glucose consumption in HepG2 cell lines via upregulated protein expression of p-AKT
and GLUT2 and regulate the activities of glucose-metabolizing enzymes in HepG2 cells.
IPP also directly interacts with the insulin receptor, activating the insulin/AKT signaling
pathway; whereas the contribution of VPP to glucose consumption is not attributed to
insulin receptor binding [316]. On the other hand, both peptides promoted glucose uptake
via the adenosine monophosphate-activated protein kinase (AMPK) pathway, accompanied
by GLUT4 translocation rather than the insulin signaling pathway, in the L6 rat myoblast
cell line [317]. Therefore, it may be realized that both IPP and VPP can modulate blood
glucose levels and may have an impact on glucose-mediated metabolic disorders.

4.4. Clinical Investigations

Several acute (less than 1 week) and some long-term (4 to 12 weeks) intervention
studies were performed with obese and diabetic individuals to understand the influence of
dairy proteins on gastric emptying, gastric secretion, amino acid absorption, and entero-
gastrone response on serum glucose and insulin levels because they are directly related to
diabetic conditions; however, the underlying pipelines are not fully comprehended [191].
Furthermore, results of some clinical investigations proved that dyslipidemia in obese or
non-obese subjects is associated with insulin resistance and diabetic conditions. Summariz-
ing all the findings, it may be supposed that dairy milk proteins and peptides derived from
them can reduce the risks of hyperglycemic and dyslipidemic incidences by stimulating
insulin and secretion of incretin hormones (GLP-1, GIP), suppressing appetite, slowing
gastric emptying, and modulating glucose and lipid metabolism. It is noteworthy to men-
tion that co-ingestion of a protein hydrolysate or specific amino acids with intact proteins
modulates glucose and lipid metabolism [191,318]. There were no experiments performed
specifically for fast food-induced obesity, except [319]. Placebo food formulas associated
with modulation of biomarkers of hyperglycemia and dyslipidemia may explain fast food-
induced obesity. Therefore, it may be realized that results of some clinical investigations
about the impacts of milk proteins and peptides on biomarkers of hyperglycemia and
dyslipidemia can explain their role in fast food-induced obesity. Results of some clinical
investigations about the effects of milk proteins and peptides on outcomes and biomarkers
of hyperglycemia and dyslipidemia are summarized in Table 6.
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Table 6. Effects of milk proteins and peptides on outcomes and biomarkers of hyperglycemia and dyslipidemia.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2005/[320]

Randomized, Acute
(2 separate occasions with

≥1 week gap
between each)

T2DM (14) Whey protein (27.6 g) Ham (96 g) and
Lactose (5.3 g)

↓ Postprandial plasma
glucose by whey protein.

↑ Plasma insulin
response and

postprandial GIP by
whey protein. → GLP-1

by whey protein
and ham.

-

2005/[321]

Randomized order and a
double-blind (2 trials,

separated by a 2 weeks
gap between each)

T2DM (10)

No diabetes (n = 10), 0.7 g
carbohydrate/kg body

weight/h (50% glucose and
50% maltodextrin) with or

without 0.35 g/kg body
weight/h of a protein

hydrolysate and AA mixture
(50% casein hydrolysate,

25% free Leu and 25% free
phenylalanine) every 15 min

until t = 165 min

No diabetes (n = 9), 0.7 g
carbohydrate/kg body

weight/h (50% glucose and
50% maltodextrin) with or

without 0.35 g/kg body
weight/h of a protein

hydrolysate and AA mixture
(50% casein hydrolysate,

25% free Leu and 25% free
phenylalanine) every 15 min

until t = 165 min

↑ Plasma insulin and ↓
plasma glucose

responses by
carbohydrate + protein
trial than carbohydrate
trial in diabetic subjects

and matched to
control subjects.

-

2006/[322]
Randomized cross-over
(4 occasions with 7 days

gap between each)
Overweight (19)

Preloads made by water
solutions of (a) WPI (55 g),

(b) Calcium caseinate (55 g),
(c) Glucose (60 g),
(d) Lactose (56 g)

-

↓ Acute appetite and
energy intake by casein-
or whey-, lactose- than

glucose-preload. ↓
Postprandial plasma
glucose by protein

(mean value of casein
and WPI)-preload than

lactose- and
glucose-preload. →
Plasma insulin by

different preloads. ↑
CCK response and ↓

ghrelin by
protein preload.

-
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2006/[323]

Randomized,
double-blind,

placebo-controlled,
cross-over, acute challenge

(Participants consumed
3 meals/day in a single

24 h period)

T2DM (11), Healthy (11)

T2DM (11), Casein
hydrolysate (0.3 g/kg body

weight) + Leu (0.1 g/kg
body weight) + meal (64%
carbohydrate, 25% fat and

11% protein)

Healthy (11), Flavored water
+ meal (64% carbohydrate,
25% fat and 11% protein)

↓ Plasma glucose by
casein hydrolysate in

average 24 h by casein
and Leu

supplemented meal.

-

2006/[324]

Acute, randomized,
double-blind (3 trials,
separated by at least

1 week gap between each)

T2DM (10), Healthy (10)

T2DM (10), (a)
Carbohydrate (50% glucose

and 50% maltodextrin)
(0.7 g/kg body weight),

(b) Carbohydrate + Casein
hydrolysate (0.7 g/kg body

weight + 0.3 g/kg body
weight), (c) Carbohydrate +
Casein hydrolysate + Leu

(0.7 g/kg body
weight + 0.3 g/kg body

weight + 0.1 g/kg
body weight)

Healthy (10), Similar diet
like diabetic group

↑ Insulin response and ↓
plasma glucose response

in subjects with T2DM
and control subjects by
Carbohydrate + Casein

hydrolysate and
Carbohydrate + Casein
hydrolysate + Leu for

both T2DM and healthy
subjects (Carbohydrate

diet basis).

-
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2007/[325]

Double-blind, randomized,
controlled cross-over

clinical trial (5 days study
with 2 weeks gap

between each)

Non-obese, T2DM (12)

Mixed meal
(≈31% carbohydrates, ≈17%
lipids and ≈52% proteins as
total calories) with (a) WPI
(fast protein), (b) micellar
casein (slow protein), (c) a

mixture of FAAs resembling
the AA composition of

micellar casein.

-

↓ Postprandial plasma
glucose by FAA meal
than WPI meal and

casein meal. ↑ Plasma
BCAAs, EAAs,

C-peptide, insulin and
pro-insulin

concentrations by WPI
meal than casein meal
and similar with FAA
meal. ↓ Plasma GLP-1

response by casein meal
than WPI meal. ↑ Plasma

GIP response by WPI
meal and casein meal

than FAA meal.

-

2009/[326] Acute (3 occasions) T2DM (8)

(a) Pre-meal: 55 g whey in
350 mL beef soup,

(b) Main-meal: 55 g whey
in potato

No whey in pre-meal and
main meal

↑ Plasma insulin, GIP
and CCK by whey diet.
↓ Gastric emptying and
postprandial glycemia

by whey diet.

-

2009/[327]

Randomized crossover
(4 separate occasions with

2–5 weeks gap between
each)

T2DM (12)
Whey protein (45 g) in meal

(80 g fat and 45 g
carbohydrate)

(a) Casein (45 g), (b) Cod
(45 g), (c) Gluten (45 g) in

meal (80 g fat and 45 g
carbohydrate)

↑ Postprandial plasma
insulin and incretins

(GLP-1, GIP) by whey
protein. → Glucagon by

all types of proteins.

↑ Postprandial lipemia
by whey protein than

other proteins.
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2009/[328]

Randomized (Energy
restriction period of

5–6 weeks followed by a
weight maintenance

period of 12 weeks with
1 week in-between to

change back from liquid to
normal food)

Overweight and
obese (48)

(a) Casein, (b) Whey protein
supplements (2 × 25 g/day) Maltodextrin

↑ Plasma glucagon.
Fasting glucose in

normal range by protein
diet. → Plasma insulin
resistance by casein and

whey proteins.

↑ Serum TG by
maltodextrin. →

Serum total cholesterol,
leptin, adiponectin,

LDL-C and HDL-C by
protein diets.

2010/[329]

Randomized, single blind,
three-way crossover
design (3 separate

intervention days, each
preceded by a 1 week

washout period)

Overweight or obese (20) (a) WPI (45 g), (b) Sodium
caseinate (45 g) Glucose (45 g)

↓ Plasma glucose by WPI
than sodium caseinate

and glucose.

↓ Serum TG-enriched
lipoprotein by WPI

than casein and
glucose. → Serum
total cholesterol,

LDL-C, HDL-C, NEFA,
apolipoprotein B-48,
insulin and leptin.

2010/[330]

Randomized, controlled,
cross-over, acute challenge

trial (4 test meals with
intervals of >2 weeks)

T2DM (11)

(a) Casein (45 g) +
Carbohydrate (45 g) + Fat

(80 g), (b) Casein (45 g) + Fat
(80 g), (c) Carbohydrate

(45 g) + Fat (80 g)

Fat (80 g)

↑ Plasma insulin and
glucagon by Casein + Fat

meal and Casein +
Carbohydrate + Fat meal

than Fat-meal. ↑ GIP
response by Casein +

Carbohydrate + Fat meal.
→ GLP-1 response.

→ Serum TG and
retinyl palmitate in the

chylomicron-rich
fraction for all meals. ↑

Retinyl palmitate in
the chylomicron-poor

fraction by 45 g of
protein as casein.

2011/[259] Randomized parallel
(12 weeks)

Overweight and
obese (70)

(a) WPI (27 g) in 250 mL of
water, (b) Sodium caseinate

(27 g) in 250 mL of water.
Twice in a day

Glucose (27 g) in 250 mL
of water

→ Plasma glucose by
WPI than control or

casein meal. ↑ Fasting
plasma insulin by

whey protein.

↓ Fasting serum TG,
plasma total

cholesterol and LDL-C
by WPI.
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2011/[331]

Randomized double-blind
partial cross-over (3 out of
4 treatments separated by
a week gap between each)

T2DM (36)
(a) Intact casein, (b) Casein

hydrolysate, (c) Casein
hydrolysate with Leu

Carbohydrate (maltodextrin
and glucose monohydrate)
without (a) intact casein,
(b) unhydrolyzed casein,

(c) Casein hydrolysate and
Leu

↓ Plasma glucose by
casein hydrolysate with

or without Leu.
-

2011/[332]

Randomized placebo
controlled double blind
(Separate 3 days with

1 week gap between each)

T2DM (13)

In a single oral bolus (300
mL) containing 50 g of

carbohydrates (50% glucose
and 50% maltodextrin and
casein hydrolysate (6 g or

12 g)

No casein hydrolysate

→ Plasma insulin and
glucose by 6 g of casein

hydrolysate. ↑
Post-challenge plasma
insulin and ↓ glucose

levels by 12 g of casein
hydrolysate.

-

2012/[333]

Single blind crossover
(4 separate occasions with

a washout period ≥2
weeks)

T2DM (12)

Protein supplement ((a)
LACPRODAN-ALPHA-10

(45 g),
(b) LACPRODAN-DI-9224
(45 g), (c) LACPRODAN

CGMP-10 (45 g),
(d) LACPRODAN-DI-3065

(45 g)) + Fat (80 g) +
Carbohydrate meal (45 g)

-

↑ Plasma glucose,
insulin, glucagon and

GLP-1 by
LACPRODAN-DI-3065
than other proteins in

fat-carbohydrate meals.

→ Postprandial serum
TG by all dietary

proteins. ↑ Retinyl
palmitate in the

chylomicron-rich
fraction by

LACPRODAN-DI-
3065 than dietary

proteins. → FFA and
Retinyl palmitate in

the chylomicron-poor
fraction by all dietary

proteins.
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2013/[334]

Randomized crossover (4
different meals in different

days with a 2 weeks
washout period between

each meal)

Obese non-diabetic (11) WPI + Fat (80 g) +
Carbohydrate (45 g)

Carbohydrate (45 g) + Fat
(80 g) + (a) Cod or casein
(45 g), (b) gluten protein

(45 g)

↑ Biomarkers (GLP-1,
insulin, glucagon) of

postprandial glycemia, ↓
Postprandial GIP by

WPI. The larger initial
plasma insulin and

glucagon response after
whey meal did not

correlate with the initial
GLP-1 or GIP responses.

↓ Postprandial serum
TG by WPI than cod

and gluten proteins. ↓
NEFA by whey and
casein than cod and
gluten proteins. →
Retinyl palmitate in
chylomicron by all

types of dietary
proteins.

2013/[335]

Double-blind, randomized
(Each trial was performed

on a distinct day with
3 days intervals between

each trial)

T2DM (10)

(a) WPH beverage (0.1 g/kg
body weight, 0.2 g/kg body
weight and 0.4 g/kg body
weight), (b) WPI beverage

(0.1 g/kg body weight,
0.2 g/kg body weight and

0.4 g/kg body weight)

Distilled water

↑ Postprandial plasma
insulin and ↓

post-challenge plasma
glucose by 0.2 g/kg

body weight WPH or 0.4
g/kg body weight WPI.
↑ Postprandial plasma

insulin and ↓
concomitant glucose

level to normal range at
2 h after 0.2 g/kg body

weight WPH.

-

2013/[336]

Randomized crossover
(4 test days, which were
separated by a washout
period of at least 3 days)

Obese men (16)

Butter cake (high fat) + (a)
500 mL milk or (b) 500 mL
water + milk protein 23.4 g

or (c) 500 mL water +
calcium 2.3 g

Butter cake + 500 mL water

↑ Plasma insulin and ↓
glucose by milk protein.
↑ Plasma concentrations
of total AAs, EAAs and
non-EAAs by milk and

protein milk.

↑ Serum TG by milk
protein. ↓

Apolipoprotein B-48 by
calcium meal

compared with milk.
→ NEFA by all drinks.
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2014/[337]

Double-blind randomized
and cross-over (3 trials

was separated by at least
6 days gap between each)

T2DM (60)

(a) Carbohydrate + Intact
casein (0.7 g/kg body

weight + 0.3 g/kg body
weight), (b) Carbohydrate +

Casein hydrolysate
(0.7 g/kg body weight +
0.3 g/kg body weight)

Carbohydrate (50% glucose
+ 50% maltodextrin)

(0.7 g/kg body weight)

↑ Plasma insulin and ↓
plasma glucose

responses by
Carbohydrate + Protein
diet than Carbohydrate
diet. ↑ Plasma insulin

response by
Carbohydrate + Casein
hydrolysate diet than
Carbohydrate + Intact
protein diet. ↓ Plasma
glucose response by

Carbohydrate + Casein
hydrolysate diet than
Carbohydrate + Intact

protein diet.

-

2014/[338]

Randomized, open-label
crossover (2 meals in

2 separate days and a at
least 2 weeks gap

between each)

T2DM (15) Preload: 50 g whey in
250 mL water Preload: 250 mL water

↓ Plasma glucose, ↑
plasma insulin, ↑

C-peptide, ↑ GLP-1, and
→ DPP4 by whey

pre-load.

-

2015/[339] Randomized, cross-over
study (4 weeks) T2DM (7)

Preload: WPI (25 g) + 25 g
chocolate-flavor
in 100 mL water

Preload: 25 g
chocolate-flavor without

WPI in 100 mL water

↓ Postprandial plasma
blood glucose and peak

blood glucose by
WPI formula.

-
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2015/[340]

Single-center, randomized,
single blind (3 blind

challenges on 3 different
occasions with a minimum

of 2 days gap
between them)

Healthy (15),
Prediabetic (15)

50 g casein or WPI + 50 g of
maltodextrin with dextrose

equivalent 19 + 2 g of
hydroxyproline + 10 g of

lactulose in 300 mL of water.

50 g of maltodextrin with
dextrose equivalent 19 + 2 g
of hydroxyproline + 10 g of
lactulose in 300 mL of water.

↑ Plasma insulin,
glucagon, C-peptide,

GIP, GLP-1 and satiety
by casein and whey

proteins than glucose.
Plasma glucose by casein
and whey proteins than
glucose. → All effects

two proteins.

-

2015/[341]

Randomized,
parallel-controlled,

double-blinded (Each test
meal with 12 weeks
intervention period)

Obese (52)

(a) Whey + Low
medium-chain saturated

fatty acids, (b) Whey + High
medium-chain saturated

fatty acids, (c) Casein + Low
medium-chain saturated
fatty acids, (d) Casein +

High medium-chain
saturated fatty acids

-

↓ Postprandial
apolipoprotein B-48
response after whey

compared with casein
independently of fatty

acid composition. ↑
Postprandial plasma

GLP-1 by casein
compared with whey. →

Postprandial plasma
insulin, glucose,
glucagon, or GIP
among groups.

→ Postprandial serum
triacylglycerol and FFA

among groups.
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2017/[342]

Randomized open-label
parallel-arm (12 weeks,

dietary intake on 3 days in
each week)

T2DM (56)

(a) Whey protein breakfast:
25% fat + 50% carbohydrates

+ 25% protein (28 g whey
from 42 g total protein).

(b) Protein breakfast: 25% fat
+ 50% carbohydrates + 25%
(42 g) protein mainly from
eggs (7 g), tuna (20 g), soya

(7 g).

Carbohydrate breakfast: 25%
fat + 64% carbohydrates +

11% (17 g) soya protein

↓ Overall plasma
postprandial incremental
area under curve (iAUC)
for glucose, ghrelin and
hunger scores by whey
protein breakfast and
protein breakfast than
carbohydrate breakfast.
↑ Postprandial plasma

overall iAUC for insulin,
C-peptide, GLP-1 and
satiety scores by whey
protein breakfast than
protein breakfast and

carbohydrate breakfast.

-

2017/[343]

(a) Parallel-armed acute
challenge (One serving

(21 g) of whey protein) and
(b) Crossover design
(continuous glucose

monitoring (CGM) twice,
over 2 consecutive weeks,

3.5 days each week)

n = 18 underwent a
challenge test (not

crossover design). n = 22
underwent CGM and

controlled feeding twice
(crossover design),

Two consecutive weeks:
one week WPI and other

week placebo diet.

WPI (21 g protein + 3 g
carbohydrate + 0.5 g fat)

Indigestible potato starch
(1 g protein + 25 g

carbohydrate 20 g fiber +
0.5 g fat)

Acute challenge studies:
↑ Plasma insulin, ↑

GLP-1, ↓ Plasma glucose
and ↓ Ghrelin by WPI
diet. Placebo diet had

no effect.

↓
Hypertriglyceridemia

by WPI diet.

2018/[344]

Randomized,
double-blind,

placebo-controlled
(10 weeks)

T2DM (24)
WPI beverage (20 g protein +

10 g carbohydrate +
3 g milk fat)

Without WPI (30 g
carbohydrate + 3 g milk fat)

↓ Fasting plasma blood
glucose and insulin
resistance by whey

protein diet.

-
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2018/[345]
Randomized crossover

(2 separate test days with 1
week gap between each)

Overweight and
obese (9)

Breakfast (74 g carbohydrate,
2.1 g fat and 8.5 g protein in
100 mL orange juice) with

10% (w/v) solution of a
novel casein hydrolysate

Breakfast (74 g carbohydrate,
2.1 g fat and 8.5 g protein in
100 mL orange juice) with

10% (w/v) solution of
sodium caseinate
(intact protein).

→ Gastric emptying
outcome by intact casein

and hydrolysate. ↑
Insulin response and ↓

glucose response by
casein hydrolysate

compared to
intact casein.

-

2018/[346]

Randomized, single-blind
crossover (3 separated
occasions separated by

7 days gap between each)

T2DM (11)

(a) Intact whey protein
(15 g), (b) WPH (15 g) before

mixed-macronutrient
breakfast and lunch meals,

separated by 3 h.

Flavored water

↓ Plasma glucose by
WPH (early) and intact
whey protein. ↑ Satiety
and Plasma insulin by
both WPH and intact

whey protein.

-

2018/[347]

Acute, randomized,
cross-over (Test days

separated by a washout
period of approximately

1 week gap between each)

Non-diabetic (12),
T2DM (12)

Preload: 20 g whey protein
in 200 mL water as pre-meal
or part of the fat-rich meal.

Preload: 200 mL water

Plasma ↑ insulin, ↑
glucagon, ↑ GIP and ↓

gastric emptying in
subjects with and

without T2DM by whey
protein pre-meal. Plasma
↑ insulin, ↑ glucagon, ↑

GIP and ↓ gastric
emptying in subjects

with and without T2DM
by pre-meal than

main meal.

→ Postprandial TG,
apolipoprotein B-48

and NEFA in subjects
with and

without T2DM.
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2018/[348]

Acute, randomized,
cross-over (The test days

were separated by a
wash-out period of

approximately 1 week gap
between each)

MS (20)
Preload: (a) 10 g whey

protein, (b) 20 g
whey protein

Preload: No whey protein

↑ Insulin response, ↑
postprandial glucagon, ↓

glucose and ↓ gastric
emptying after a

pre-meal with 20 g whey
protein than 10 g whey
protein and placebo. →

GIP by whey protein
pre-meal.

→ TG, apolipoprotein
B-48 and FFA by whey

protein pre-meal.

2019/[349]

Randomized,
double-blind,

placebo-controlled,
monocentric,

3-way-cross-over (6 weeks,
a wash-out period of
7 days between each

study day)

Prediabetic (21)
Milk protein hydrolysate

(1.4 g and 2.8 g),
2 dosages/day

Maltodextrin with dextrose
equivalent of 9

↓ iAUC of plasma
glucose by milk protein

hydrolysate in
dose-dependent manner.

→ Insulinotropic
properties

were insignificant.

-

2020/[350] Prospective randomized
pilot study (45 days)

Obese and insulin
resistance (48)

Protein diet (90 g/meal),
5 meals/day for (a) whey

protein, (b) vegetable
protein (soya, green peas, or
cereals), (c) animal protein

(meat, fish, egg)

-
↓ Insulin resistance and

fasting glycemia by
whey protein.

Serum ↓ total
cholesterol, LDL-C and
TG by whey protein.

2020/[351] Double-blind randomized
clinical trial (13 weeks)

Obese and type 2
(pre-)diabetes (123)

21 g of Leu-enriched whey
protein ((3 g total Leu), 9 g
carbohydrates, 3 g fat, 800

IU cholecalciferol
(Vitamin D3))

Carbohydrate (25 g) and fat
(6 g) mix

↓ Insulin resistance and
postprandial plasma

glucose by Leu-enriched
whey protein.

-
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Table 6. Cont.

Publication
Year/Reference

Study Design,
Duration

Characteristics and
Number of Subjects (n)

Dairy Milk
Proteins Formula

Comparison
Formula

Effects and Remarks

Hyperglycemia Dyslipidemia

2020/[352]
Single-center randomized,

placebo-controlled
(3 months)

T2DM (120)
Cys-rich (2.7%) WPI with a
standardized lactoferrin in

100 mL of water
5 g casein in 100 mL of water ↓ Fasting plasma glucose

by Cys-rich WPI diet.

Serum ↓ total
cholesterol,

triacylglyceride and
LDL-C levels by

Cys-rich (2.7%) WPI
than placebo.

2020/[319]

Randomized, parallel,
placebo-controlled,

double-blind study (20
weeks: 1 week pre-study
measurement period, a 3

weeks baseline period and
a 16 weeks energy

restriction
intervention period

Overweight or obese

n = 21, Unhealthy
western-style eating patterns

+ 1.5 g total protein
(MPI)/kg body weight/day

n = 23, Unhealthy
western-style eating patterns

+ 0.8 g total protein
(MPI)/kg body weight/day

→ Fasting plasma
insulin and glucose

Serum ↓ fasting TG, →
total cholesterol

and LDL-C

Legend: ↓: decrease, ↑: increase, →: unchanged or insignificant effect, -: not mentioned, +: and.
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4.4.1. Dairy Proteins in Meals and T2DM Subjects

In a clinical investigation, it was found that the glucose response was lower when
whey protein was included in breakfast and lunch (test meals) for T2DM subjects. The post-
prandial plasma GIP response was higher in meals with whey; whereas no differences were
found in GLP-1 between the reference (ham and lactose) and test meals [320]. In another
investigation, it was found that although gastric emptying and plasma insulin, glucagon,
C-peptide, GIP, and GLP-1 were improved by the consumption of bovine casein or whey
protein with carbohydrates (co-administration) compared with carbohydrate feeding in
healthy and prediabetic adults, their effects were similar. Likewise, venous blood glucose
was reduced by the two types of protein diets compared with the carbohydrate diet [340].
Interestingly, it was found that even though whey protein can reduce postprandial TG,
FFA, and glucose responses more than casein, cod, and gluten protein in a supplemented
fat-rich meal without eliciting plasma insulin, glucagon, GLP-1, and GIP in individuals
with T2DM, the retinyl palmitate response in the chylomicron-rich fraction was lower;
whereas the retinyl palmitate response in the chylomicron-poor fraction was higher with
whey protein than with casein protein and cod protein in the fat-rich meal. A higher retinyl
palmitate response in the chylomicron-rich fraction compared to the chylomicron-poor
fraction signifies more lipolysis rather than lower hepatic clearance [327]. In another in-
vestigation, it was found that casein in a fat meal and a carbohydrate-fat meal increased
concentrations of plasma insulin and glucagon more than a fat meal in subjects with T2DM.
Casein in a carbohydrate-fat meal increased the plasma GIP response; however, no GLP-1
response was noted. The plasma postprandial glucose concentration was also reduced by
the fat meal and casein + fat meal compared to the fat-carbohydrate meal. An increase
in chylomicron-rich retinyl palmitate compared to chylomicron-poor retinyl palmitate
after the casein + fat meal was noted; however, no significant differences were found in
postprandial TG levels between the casein-fat and casein-free meals [330].

4.4.2. Dairy Proteins in Preload Formulas and T2DM Subjects

Several investigations indicate that preloading whey protein plays a significant role in
carbohydrate-rich meal consumption and physiological responses in subsequent periods.
Consumption of whey protein before a carbohydrate meal suppressed gastric emptying
and postprandial glycemia; whereas the secretion of plasma insulin, GIP, and CCK was
stimulated in subjects with T2DM [326]. It was found that plasma glucose was reduced
and insulin and C-peptide responses and GLP-1 were increased in T2DM subjects due to
whey preloading of a high-calorie breakfast [338]. In another investigation with T2DM
subjects, the overall postprandial iAUC for plasma glucose, ghrelin, and hunger scores were
reduced, and greater postprandial overall AUCs for plasma insulin, C-peptide, GLP-1, and
satiety scores were noted for a whey protein-based breakfast than for a high-carbohydrate
breakfast [342]. Similar results were also reported by other investigators when T2DM
subjects consumed WPI before breakfast [339] and both breakfast and dinner [343].

Likewise, whey protein preloading influences the consumption of fat-rich meals and
physiological responses after meal consumption. For example, consumption of whey
protein before a fat-rich meal reduced gastric emptying and enhanced plasma insulin,
glucagon, and GIP responses but did not influence lipid or glucose responses in subjects
with T2DM [347]. In another investigation, pronounced responses of plasma insulin and
GLP-1 and lower responses of plasma glucose were noted due to WPI consumption prior
to a fat-rich meal; however, responses of GIP, FFA, and appetite were not influenced [348].

Furthermore, a reduction in fasting glucose and insulin resistance due to the consump-
tion of a whey protein beverage for 10 weeks in subjects with T2DM before and after 45 early
morning high-intensity mixed-mode interval training (MMIT) sessions was reported [344].
Interestingly, it was found that consumption of WPI and lactoferrin with Cys (non-BCAA)
prior to breakfast was more potent than casein in reducing insulin resistance and fasting
plasma glucose in T2DM subjects. Positive effects also manifested in blood lipid profiles.
Total serum cholesterol, TG, and LDL-C levels were reduced by WPI and lactoferrin with
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Cys. Furthermore, it was found that daily supplementation of undenatured Cys-rich WPI
for 3 months, even at a low dose (4625 g/day), improved antioxidative biomarkers (super-
oxide dismutase, glutathione peroxidase, glutathione, and reduced glutathione-to-oxidized
glutathione ratio) and suppressed inflammatory biomarkers (high-sensitivity C-reactive
protein, IL-6, tumor necrosis factor-α, and malondialdehyde), which play a central role in
diabetes complications and risks of other metabolic diseases [352].

4.4.3. Dairy Proteins in Meals and Obese/Overweight Subjects

Positive effects of whey protein on overweight and obese individuals were also noted
because it may be supposed that whey proteins reduce insulin resistance and improve
fasting insulin levels. WPI was recognized as a better dietary protein than cod, casein,
and gluten protein in a high-fat, high-carbohydrate diet [334] and a vegetable protein-
supplemented high-fat diet [350] for obese individuals. It was found that there was a
significant decrease in postprandial serum TG after consumption of a whey meal com-
pared to a casein meal; however, postprandial total cholesterol, LDL-C, HDL-C, NEFAs,
apolipoprotein B-48, plasma insulin, and leptin were unchanged due to the consumption
of casein and whey proteins in obese subjects [329]. In another investigation, it was found
that serum total cholesterol, fasting TG, and LDL-C were decreased more by whey protein
than by casein protein diets when obese subjects consumed them before breakfast and
evening meals. Surprisingly, it was found that fasting plasma glucose was improved after
the consumption of whey and casein meals [259]. Similar results were reported by other
investigators. It was proven that insulin resistance, serum total cholesterol, adiponectin,
LDL-C, HDL-C, and leptin were not changed; however, fasting plasma glucose was in-
creased by both casein and whey protein diet compositions [328]. Furthermore, increases
in postprandial GLP-1, insulin, and glucagon and reductions in postprandial GIP, total
cholesterol, LDL-C, NEFA, and TG by WPI in a ketogenic diet compared with animal- and
plant-based proteins in a high-fat diet were proven [334,350]. Likewise, plasma insulin and
total AAs were increased when milk or milk protein was consumed with a high-fat meal by
obese individuals; however, serum TG was increased by milk protein [336]. There were no
significant changes in fasting plasma insulin, glucose, total cholesterol, LDL-C, whole-body
mass, lean mass, fat mass, or thigh muscle area with 1.5 g total protein (MPI)/kg body
weight/day compared with 0.8 g total protein (MPI)/kg body weight/day, except for
fasting serum TG. The reduction in fasting serum TG was more significant with higher MPI
consumption than with lower consumption [319]. Low-fat, high-casein, or high-whey pro-
tein diets were considered more effective for weight control than low-fat, high-carbohydrate
diets for obese subjects [328].

4.4.4. Dairy Proteins in Preload Formulas and Obese/Overweight Subjects

Positive effects of dairy protein consumption before meals were proven in overweight
subjects. In an investigation, it was found that acute appetite and energy intake were
equally reduced after consumption of casein- or whey-based preloads compared to glucose-
based preloads. This might be due to higher CCK and lower ghrelin responses induced
by dairy protein preloads. Postprandial plasma glucose was reduced by protein (mean
value of casein and WPI)-based preloads compared to lactose- and glucose-based preloads;
however, insulin levels did not change among the different preloads [322]. The impacts of
a whey protein meal prior to a fat-rich meal on responses of serum TG and apolipoprotein
B-48 in subjects with and without T2DM were investigated. Subsequently, efforts were
made to understand whether a whey protein pre-meal had a more pronounced effect on
lipid responses than whey protein being part of the fat-rich meal. It was found that a
whey protein pre-meal before a fat-rich meal improved plasma insulin, glucagon, and GIP
responses in subjects with and without T2DM; however, gastric emptying was delayed by
the whey protein pre-meal. Plasma insulin, glucagon, and GIP responses were improved in
subjects with and without T2DM by the pre-meal compared to whey protein in the fat-rich
meal. Interestingly, it was found that gastric emptying was delayed by the whey protein
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pre-meal compared to whey protein in the fat-rich meal; however, postprandial serum
TG, apolipoprotein B-48, and NEFA levels in subjects with and without T2DM were not
significantly changed [347]. In another investigation, it was found that a pre-meal with
20 g of whey protein prior to a high-fat meal stimulated the secretion of insulin and
glucagon and reduced blood glucose and gastric emptying compared to a pre-meal with
10 g of whey protein and placebo (no whey protein). There were no changes in GIP, TG,
apolipoprotein B-48, or FFA levels with the whey protein pre-meal [348].

An interesting investigation was performed by Danish research groups. The inter-
action between protein and fat in preload diets was examined to understand all gene
expressions and postprandial apolipoprotein B-48, GLP-1, GIP, insulin, glucagon, glucose,
triacylglycerol, and FFA levels in obese subjects. The fasting gene expressions of lipoprotein
lipase, G protein-coupled receptor 120, and CD36 were upregulated; whereas postpran-
dial gene expression of G protein-coupled receptor 120 and CD36 were downregulated
after casein with a high amount of medium-chain saturated fatty acids in the preload
diet. No postprandial changes in gene expression were observed with casein and a low
amount of medium-chain saturated fatty acids in the preload diet. Upregulation of post-
prandial lipoprotein lipase gene expression was noted after whey with a high amount of
medium-chain saturated fatty acids in the preload diet. The fasting gene expressions of
G protein-coupled receptor 120 and CD36 were upregulated by whey with a low amount
of medium-chain saturated fatty acids in the preload diet; whereas downregulation of
postprandial lipoprotein lipase and G protein-coupled receptor 120 gene expression was
noted. Interestingly, no modulation of FABP4 or FAS genes in either fasting or postprandial
conditions was noted with any of the proteins and medium-chain saturated fatty acid
combinations in the preload diets [341].

4.4.5. Dairy Protein Hydrolysates and T2DM Subjects

The insulinotropic effect of WPH was proven in several investigations, and in many cases,
the addition of EAAs offered better results. Some results are mentioned herein. Higher glucose,
insulin, glucagon, and GLP-1 responses were contributed by LAPRODAN-DI-3065 (WPH)
than by LACPRODAN CGMP-10 (caseinoglycomacropeptide), LACPRODAN-ALPHA-10
(α-lactalbumin), and LAC-PRODAN-DI-9224 (whey protein isolate) in fat-carbohydrate
meals for T2DM subjects. However, no significant differences were noted for postprandial
TG, retinyl palmitate in the chylomicron-poor fraction, and FFA with any of the dietary
proteins; higher levels of retinyl palmitate in the chylomicron-rich fraction were contributed
by LACPRODAN-DI-3065 than by all other dietary proteins [333]. It was found that plasma
insulin concentration was increased significantly by WPH in a dose-dependent manner,
which suppressed the plasma glucose level to the normal range at 2 h after the meal [335].
Likewise, the postprandial plasma glucose response in T2DM subjects was decreased by
both whey protein and WPH after breakfast and a mixed-macronutrient meal. Similarly,
insulin response and satiety were increased by both intact whey protein and WPH after
breakfast and lunch [346]. Furthermore, insulin resistance and postprandial plasma glucose
were reduced when obese and type 2 (pre-)diabetic subjects consumed whey protein
enriched with Leu and vitamin D [351]. Beneficial outcomes from casein hydrolysate were
also reported. It was found that intake of 12 g of casein hydrolysate had a positive effect on
post-challenge insulin and glucose levels in subjects with T2DM [332]. The insulin response
was increased and the glucose response was decreased by casein hydrolysate compared to
carbohydrate diet and intact casein [337,345]; however, no significant difference in gastric
emptying outcomes was noted between intact casein and hydrolysate [345]. The effects
of different concentrations of milk protein hydrolysates containing a bioactive arginine-
proline dipeptide with α-glucosidase-inhibiting properties were investigated in prediabetic
subjects. Although the iAUC of plasma glucose was significantly reduced by low-dose
milk protein hydrolysates compared to placebo, only a minor insulinotropic effect was
noted [349].
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4.4.6. Co-Consumption of Amino Acids with Dairy Proteins and T2DM Subjects

Furthermore, it was proven that the addition of specific amino acids to protein for-
mulas markedly promoted the secretion of insulin, leading to a concomitant reduction
in the post-challenge plasma glucose response. For example, implementation of Leu and
casein hydrolysate with a carbohydrate-based diet offered a greater insulin response, re-
duced postprandial plasma glucose, and improved blood glucose homeostasis in both
T2DM [323,324] and healthy [324] subjects. Similar outcomes were reported in other in-
vestigations [321,325,331]. The plasma insulin response was higher with a carbohydrate
and protein (50% as casein hydrolysate, 25% as free Leu, and 25% as free Phe) diet than
with a carbohydrate diet, and concomitant plasma glucose responses were lower with the
carbohydrate and protein diet in T2DM subjects [321]. Consumption of insuVida™, an
enzymatic hydrolysate of casein with or without the addition of Leu, could significantly
lower plasma glucose compared to placebo and intact casein in T2DM subjects due to its
insulinotropic effect [331]. In another investigation with non-obese T2DM subjects, con-
centrations of postprandial plasma glucose were reduced, and total amino acids, BCAAs,
EAAs, insulin, C-peptide, and proinsulin were elicited more by whey protein and/or FAA
meals than by casein meals, except for GLP-1 [325].

4.4.7. Contradictory Results

Contradictory results were also reported, mentioned herein. Although it was proven
by several investigations that predominant insulin responses and suppression of concomi-
tant plasma glucose responses occur due to co-ingestion of a protein hydrolysate with a
meal or prior to a meal, unfortunately, in one experiment, it was found that casein hy-
drolysate with every main meal did not improve glucose homeostasis over a 24 h period in
long-standing T2DM [353]. Smaller postprandial suppression of NEFAs after consumption
of LACPRODAN-DI-3065 meals compared with other proteins (LACPRODAN-ALPHA-
10, LACPRODAN-DI-9224, and LACPRODAN CGMP-10) in fat-carbohydrate meals was
noted in obese non-diabetic individuals; however, no significant differences in body weight
or fasting concentrations of plasma glucose, glucagon, CCK, ghrelin, GLP-1, and GIP
were noted [354]. Although it was proven that dairy milk proteins are superior to many
animal (cod, meat, fish, and egg) [327,334,350] and vegetable (gluten, soya, green pea, and
cereal) [342,350] proteins in many investigations, lupin protein compared to casein was
more potent in improving the LDL-C:HDL-C ratio in obese/hypercholesterolemic subjects.
No significant differences in plasma glucose, Arg, Asn, Cys, Gln, Glu, His, Ile, Leu, Phe,
Ser, Trp, or Tyr levels were noted when obese subjects consumed casein and lupin protein,
except for plasma TG levels. Plasma TG levels and Ala and Gly were reduced in obese
subjects due to the consumption of casein [355]. In another investigation, it was found
that there were no differences in postprandial and 24 h energy expenditure or appetite
regulation when overweight and moderately obese subjects consumed high concentrations
of hydrolyzed casein, intact casein, and intact whey. The results were explained by similar
absorption rates when proteins were served as high-protein mixed meals. Lipid oxidation
and NEFA concentrations were found to be higher after consumption of intact whey than af-
ter consumption of intact and hydrolyzed casein during the daytime and after the breakfast
meal [356]. Fasting blood glucose and insulin resistance were significantly increased due to
3 months of consumption of bread fortified with 20 g WPC in overweight/obese subjects
with T2DM, and no significant difference compared with placebo was noted. Similarly,
consumption of the 20 g WPC-fortified bread led to no significant difference in serum lipid
(TG, HDL-C, LDL-C) profile compared with the placebo diet. Investigators realized that
20 g of WPC in bread formulation was not sufficient for providing benefits to overweight
T2DM subjects [357]. Other investigators also published similar results. For example,
1.5 g total protein (MPI)/kg body weight/day with an unhealthy Western-style eating
pattern did not change fasting plasma insulin, glucose, total cholesterol, or LDL-C levels in
obese subjects [319]. In older overweight/obese adults with T2DM, regular consumption
of whey protein with vitamin D supplementation for 24 weeks did not offer additional
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benefits to PRT on measures of glycemic control, body composition, muscle strength, or
cardiometabolic risk factors. Investigators felt that there might have been an inadequate
concentration of whey protein (20 g whey protein each morning on non-training days with
an additional 20 g whey protein after exercise on training days) in the diet, which was
insufficient to provide additional PRT benefits in adults with T2DM [170].

4.4.8. Limitations of Clinical Investigations

It is necessary to indicate some limitations of the investigations mentioned in Table 6.
While the effects of dairy milk proteins on plasma GLP-1 and GIP were investigated
in several studies, very little information was published regarding the effects of milk
proteins on the physiological roles of ghrelin [322,342,354], CCK [322,326,354], and DPP-
4 [338] in subjects with T2DM. Although dairy protein hydrolysates were used in different
investigations [321,323–325,331–333,335,337,345,346,349,351], the degree of hydrolysis (DH)
and reaction conditions of hydrolysis were not reported, except in [335]. DH of protein
is an important issue in protein-based dietary formulas because the absorption of lower-
molecular-weight peptide and AAs in the bloodstream and biofunctional activity depend
on peptide length and amino acid sequence. Furthermore, AA sequences of peptides in
protein hydrolysates were not mentioned by investigators, except in [349]. Different criteria
for the consideration of obesity, hyperglycemia, and dyslipidemia were mentioned by
different authorized committees (WHO, IDF, EGIR, and AACE) [6]. These criteria were
considered to describe obesity, hyperglycemia, and dyslipidemia in different investigations,
as mentioned in Table 6. Therefore, results from a particular research group were not
directly comparable with those from other investigators.

5. Conclusions

Metabolic diseases, including obesity, are the consequence of a complex interplay
between genetic, dietary, gut microbiota, and environmental factors, and they currently
stretch across developed and developing countries. One of the major reasons for obe-
sity is an imbalance of energy intake and expenditure, where high calorie fast foods may
have a significant contribution. It is associated with a wide range of physiological fac-
tors, such as insulin resistance, hyperglycemia, hypertriglyceridemia, hypoxia, oxidative
stress, mitochondrial dysfunction, imbalanced glucose and lipid metabolism, release of
adipokines/cytokines/exosomes, angiogenesis, and EMT. The underpinnings of the patho-
genesis of obesity are not yet fully understood; however, the contributions of hyperglycemia
and dyslipidemia in the case of obesity are recognized. Therefore, obesity is considered
one of the key drivers of increased healthcare expenditure. Realizing the contribution
of high-calorie fast foods to the prevalence of obesity, efforts have been focused on the
modulation of dietary perception and components in the context of obesity management
corroborated by hyperglycemia and dyslipidemia.

Dairy proteins emerge as pivotal players in the functional food sector, offering bio-
therapeutic activities that modulate obesity prevalence. They offer positive effects on
postprandial and post-exercise glucose, lipid, and protein metabolism, and may improve
metabolic health by reducing body weight and fat mass through enhanced satiety, maintain-
ing the anabolic sensitivity of muscle to nutrition, muscle protein synthesis, and skeletal
muscle metabolic function. Diets with higher amounts of dairy protein improve ther-
mogenesis, which influences the balance of dietary calorie consumption and improves
energy expenditure. Several epidemiological and cohort studies have confirmed that the
consumption of dairy products decreases the prevalence of MS, while experimental studies
reveal that dairy proteins and peptides derived from them play a promising role in the
modulation of different risk factors of MS. The significance of BCAAs in dairy proteins for
the modulation of glucose and lipid metabolism has been recognized. In the present review,
possible molecular interactions and biochemical mechanisms related to fast food-induced
obesity are mentioned comprehensively. Furthermore, the role of dairy proteins and pep-
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tides produced from cow and buffalo milk proteins in the amelioration of fast food-induced
obesity has been represented.

Chemical, enzymatic, and recombinant DNA technology have been employed for
producing peptides from milk proteins according to the literature survey; however, their
production is limited to certain manufacturers, as mentioned in Table 5. This might be
due to complicated processing and a lack of awareness of health-promoting benefits and
economic factors. The characteristics of dairy protein hydrolysates (FAAs, length, and
AA sequence in peptides) are not mentioned by most manufacturers; however, this is
an important aspect in protein-based dietary formulations because physiological roles
depend on peptide length and amino acid sequence. Therefore, sequencing of peptides
produced from dairy milk proteins by liquid chromatography-electrospray ionization
quadrupole time-of-flight mass spectrometry (LC-ESI-Q-TOF-MS) might be important for
understanding their physiological roles and bio-efficacy comprehensively. Although a lot
of scholarly information exists on the synthesis of various milk protein-derived peptides
through enzymatic and chemical routes along with their physicochemical information
via in silico QSAR approaches, their applications in the food and clinical sectors are
hindered to some extent. Therefore, future research efforts should be directed toward
evaluating the molecular mechanisms of action and overall possible health-promoting
effects in vivo. Production of targeting peptides on an industrial and semi-industrial scale
for the development of functional foods could be interesting. Separation of these peptides
followed by their encapsulation in order to increase their shelf life and controlled release
in the intestinal system would make them astonishing biotherapeutics. Furthermore,
masking of the mentioned therapeutic peptides by sweeteners to reduce bittering effect
may be investigated by stopped-flow fluorescence, molecular docking, electronic tongue,
and clinical trials. The mode of administration (with or without water), time (fed or
fasted phase), and inter-individual variability due to sex, age, pathological condition,
and ethnicity affect the bioavailability and functional activities of peptides. Therefore,
pharmacokinetic information is necessary to understand the effective mode, time, and
dosage of administration.

Milk protein hydrolysates have great market value, and their demand is increasing
with the progress of time. Presently, some food industries are focusing on marketing
individual dairy proteins and peptides along with regular dairy foods; however, this is
limited. Protein hydrolysates can be produced from whey, a byproduct of cheese processing.
Whey cannot be disposed of directly to the aquatic system due to stricter environmental
legislation. It may be supposed that besides the commercialization of regular dairy foods,
the production of peptides or protein hydrolysates from whey proteins may bring an
economic boon to dairy and biopharmaceutical industries and will be considered a hallmark
in the context of zero-waste disposal.

It may be believed that dairy milk protein-derived peptides may be accepted as poten-
tial candidates for the treatment of obesity and other metabolic diseases after rectifying the
limitations. The multifaceted discussion in this review may open avenues for future inves-
tigations and pave the way for impactful therapeutic interventions for the management of
fast food-induced obesity.
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