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Abstract: Many proteins contain intrinsically disordered regions (IDRs) which carry out important
functions without relying on a single well-defined conformation. IDRs are increasingly recognized as
critical elements of regulatory networks and have been also associated with cancer. However, it is
unknown whether mutations targeting IDRs represent a distinct class of driver events associated with
specific molecular and system-level properties, cancer types and treatment options. Here, we used
an integrative computational approach to explore the direct role of intrinsically disordered protein
regions driving cancer. We showed that around 20% of cancer drivers are primarily targeted through
a disordered region. These IDRs can function in multiple ways which are distinct from the func-
tional mechanisms of ordered drivers. Disordered drivers play a central role in context-dependent
interaction networks and are enriched in specific biological processes such as transcription, gene
expression regulation and protein degradation. Furthermore, their modulation represents an alter-
native mechanism for the emergence of all known cancer hallmarks. Importantly, in certain cancer
patients, mutations of disordered drivers represent key driving events. However, treatment options
for such patients are currently severely limited. The presented study highlights a largely overlooked
class of cancer drivers associated with specific cancer types that need novel therapeutic options.

Keywords: intrinsically disordered regions; protein modules; short linear motifs; molecular switches;
cancer genomics; driver gene identification; cancer hallmarks; drug targets

1. Introduction

The identification of cancer driver genes and understanding their mechanisms of
action is necessary for developing efficient therapeutics [1]. Many cancer-associated genes
encode proteins that are modular, containing not only globular domains but also intrin-
sically disordered proteins/regions (IDPs/IDRs) [2–4]. IDRs can be characterized by
conformational ensembles; however, the detailed properties of these ensembles can vary
greatly from largely random-like behavior to exhibiting strong structural preferences, with
the length of these segments ranging from a few residues to domain-sized segments [5–7].
The function of IDRs relies on their inherent conformational heterogeneity and plasticity,
enabling them to act as flexible linkers or entropic chains, mediate transient interactions
through linear motifs, direct the assembly of macromolecular assemblies or even drive the
formation of membraneless organelles through liquid–liquid phase separation [5–8]. In
general, disordered regions are core components of interaction networks and fulfill critical
roles in regulation and signaling [4]. In accordance with their crucial functions, IDPs are
often associated with various diseases [9], in particular with cancer. The prevalence of
protein disorder among cancer-associated proteins was generally observed [10]. However,
cancer-associated missense mutations showed a strong preference for ordered regions,
which indicates that the association between protein disorder and cancer might be indi-
rect [11]. Nevertheless, a direct link between protein disorder and cancer was suggested in
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the case of two common forms of generic alterations: chromosomal rearrangements [12]
and copy number variations [13]. Cancer mutations were shown to occur within linear
motif sites located in IDRs [14]. In a specific case, the creation of IDR-mediated interactions
was suggested to lead to tumorigenesis [15]. However, it has not been systematically
analyzed whether mutations of IDRs can have a direct role driving cancer development or
what the main molecular functions and biological processes altered by such events are.

In recent years, thousands of human cancer genomes have become available through
large-scale sequencing efforts. The collected genetic variations revealed that cancer samples
are heterogeneous and contain a large number of randomly occurring, so-called passenger
mutations. Therefore, one of the main challenges for the interpretation of cancer genomics
data is the identification of genes whose mutations actively contribute to cancer devel-
opment, the so-called driver genes. When samples are analyzed in combination, various
patterns start to emerge that enable the identification of cancer driving genes [16]. These
signals can highlight genes which are frequently mutated in specific types of cancer [17,18],
biological processes/pathways that are commonly altered in tumor development [19,20] or
traits that govern tumorigenic transformation of cells [21]. The positional accumulation
of mutations within specific ordered structures, domains or interaction surfaces was also
shown to be a strong indicator of cancer driver roles [22–26]. The number of driver genes is
currently estimated to be in the low to mid hundreds [27], but this number could increase
with the growing number of sequenced cancer genomes [18]. However, most of the known,
well-characterized driver genes are associated with ordered domains of proteins. Overall,
the structural and functional properties of the affected proteins determine their oncogenic
or tumor suppressor roles, which, in the case of context-dependent genes, can also depend
on tissue type or the stage of tumor progression.

The complex relationship between protein disorder and cancer can be demonstrated
through two well-characterized examples, p53 (corresponding to gene TP53) and β-catenin
(CTNNB1). As a tumor suppressor, p53 is most commonly altered by truncating mutations,
but it also contains a large number of missense variations. Mutations collected from multi-
ple patients across different cancer types tend to cluster within the central region of p53
which corresponds to the ordered DNA-binding domain [28]. In contrast, significantly
fewer mutations correspond to the disordered N- and C-terminal regions which are in-
volved in numerous, sometimes overlapping protein–protein interactions [29]. In particular,
almost no mutations are located within the N-terminal region corresponding to a so-called
degron motif, a linear motif site recognized by the E3 ligase MDM2 that plays a critical
role in regulating the degradation of p53 [30]. Furthermore, the tetramerization domain
in the C-terminal part is also less affected by cancer mutations. This region represents
a so-called disordered domain, a conserved region that forms a well-defined structure
in its oligomeric form. The tetrameric ordered structure masks a nuclear export signal,
which needs to become exposed for the proper function of p53, highlighting the intrinsic
dynamic properties of this region [31]. The oncogenic β-catenin presents a completely
different scenario. In terms of domain organization, β-catenin also contains a disordered N-
and C-terminal and an ordered domain in between [32]. However, in this case the cancer
mutations are largely localized to a short segment within the N-terminal disordered region
which corresponds to the key degron motif regulating the cellular level of β-catenin in the
absence of Wnt signalling [11,14].

The aim of this work was to explore if other IDRs, similarly to β-catenin, play a poten-
tial driver role in cancer. Based on cancer mutations collected from genome-wide screens
and targeted studies [33], we identified significantly mutated protein regions [34] and
classified them into ordered and disordered regions by integrating experimental structural
knowledge and predictions. Automated and high-quality manually curated information
was gathered for the collected examples to gain better insights into their functional and
system-level properties, and to confirm their roles in tumorigenic processes. We aimed
to answer the following questions: What are the characteristic molecular mechanisms,
biological processes and protein–protein interaction network roles associated with proteins
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mutated at IDRs? At a more generic level, how fundamental is the contribution of IDPs
to tumorigenesis? Are IDP mutations just accessory events, or can they be the dominant
molecular background to the emergence of cancer? Is there a characteristic difference in
terms of treatment options between patient samples targeted mostly within ordered and
disordered regions?

2. Material and Methods
2.1. Identification of Driver Regions in Cancer-Associated Proteins

To collect mutation data, cancer mutations were retrieved from the v83 version of
COSMIC (Catalogue Of Somatic Mutations In Cancer) [33] and the v6.0 version of TCGA
(The Cancer Genome Atlas). Mutations used from both databases included only missense
mutations and in-frame insertions and deletions. Mutations were filtered similarly to the
procedure described in [34]. Mutations from samples with over 100 mutations were dis-
carded to avoid the inclusion of hypermutated samples. Samples including a large number
of mutations in pseudogenes or mutations indicated as possible sequencing/assembly
errors in [35] were also discarded. Redundant samples were filtered out. Mutations falling
into positions of known common polymorphisms [36] or genomically unconserved regions
based on the PhastCons method [37] were filtered out. The final set of COSMIC mutations
used as an input to region identification consisted of 599,137 missense mutations, 4189 in-
sertions and 12,670 deletions from 253,568 samples. The final set of TCGA mutations used
as an input to region identification consisted of 274,109 missense mutations, 2775 insertions
and 2900 deletions from 7058 samples.

Driver regions were identified using iSiMPRe [34] with the filtered mutations from
COSMIC and TCGA, separately. Then, regions obtained from COSMIC and TCGA muta-
tions were merged, and p-values for significance were kept from the dataset with the higher
significance. Only regions with high significance (p-values lower than 10−6) were kept.

2.2. Structural Categorization of Driver Regions

Regions were assigned ordered or disordered status based on the structural anno-
tation of the corresponding functional unit, incorporating experimental data as well as
predictions. For this, we collected experimentally verified annotations for disorders from
the DisProt [38] and IDEAL [39] databases, and for disordered binding regions from the
DIBS [40] and MFIB [31] databases. We also mapped known PDB structures [41]. Structure
of a monomeric single domain protein chain was taken as a direct evidence for order. In
contrast, missing residues in case of X-ray structures and mobile regions calculated for
NMR ensembles using the CYRANGE method [42] were taken as indication of disorder.
Pfam families annotated as the domain type were considered as ordered, while families
annotated as disordered were assigned as disordered. All these types of evidence were
extended by homology transfer.

Pfam entities with no instances overlapping with any protein regions with a clear
structural designation were annotated using predictions, together with protein residues
not covered by known structural modules. Such protein regions were defined as ordered
or disordered using predictions from IUPred [43,44] and ANCHOR [45,46]. Residues
predicted to be disordered or to be part of a disordered binding region, together with their
10 residue flanking regions, were considered to form disordered modules. Regions shorter
than 10 residues were discarded. Regions annotated as disordered were also checked using
additional prediction methods using the MobiDB database [47] and structure prediction
using HHPred [48]. The final ordered/disordered status of the identified regions was
based on manual assertion, taking into account information from the literature if available
(Supplementary Table S1). For the disordered regions, the level of supporting information
for the disordered region is also included (Supplementary Table S2). Please note that
we use gene symbols to refer to their protein products throughout the manuscript, with
corresponding names of protein products also specified in the Supplementary Table S2.
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2.3. System-Level Analyses

Gene Ontology terms (GO) [49,50] were used to quantify interaction capabilities,
involvement in various biological processes, molecular toolkits and hallmarks of cancer.
In each case, a separate collection of GO terms (termed GO Slim) was compiled. Each
GO Slim features a manual selection of GO terms that are independent from each other,
meaning that they are neither child or parent terms of each other. Terms were assigned a
level showing the fewest number of successive parent terms that include the root term of
the ontology namespace (considered to be level 0).

GO term enrichments in a set of proteins were calculated by first obtaining expected
values. Expected mean occurrence values for GO terms together with standard deviations
were calculated by assessing randomly selected protein sets from the background (the
full human proteome) 1000 times. The enrichment in the studied set is expressed as the
difference from the expected mean in standard deviation units.

GO for molecular toolkits: biological_process terms attached to proteins with identi-
fied regions were filtered for ancestry. The resulting set was manually filtered, yielding
93 terms which were manually grouped into 16 toolkits. Enrichments for toolkits were
calculated as the ratio of the sum of expected and observed values for individual terms.
Individual terms and enrichments for each toolkit are shown in Supplementary Table S3.

GO Slim for assessing interaction capacity: Terms from levels 1–4 from the molecu-
lar_function namespace were filtered for ancestry and only the more specific terms were
kept, i.e., terms from levels 1–3 were only included if they had no child terms. Only terms
describing interactions containing the keyword “binding” were kept. Individual terms are
shown in Supplementary Table S4.

GO for the assessment of process overlaps: Terms from levels 1–4 from the biologi-
cal_process namespace were filtered for ancestry and only the most specific terms were
kept. Only those terms were considered that were attached to at least one protein from the
set studied (full human proteome, ordered drivers or disordered drivers). Individual terms
are shown in Supplementary Table S5.

GO for hallmarks of cancer: Terms were chosen from the biological_process namespace
via manual curation using the GO annotations of known cancer genes as a starting point.
Terms were only kept if they showed a significant (p < 0.01) enrichment on proteins in the
full census cancer driver set compared to randomly selected human proteins. Individual
terms and enrichments for each hallmark are shown in Supplementary Table S6.

To characterize the network properties of the selected examples, binary protein–
protein interactions for the human proteome were downloaded from the IntAct database [51]
on 06 May 2018. Data were filtered for human–human interactions, where interaction part-
ners were identified by UniProt accessions. Interactions from spoke expansions were
excluded. Interactions were kept in an undirected way. (Values for disordered drivers are
quoted in Supplementary Table S2).

3. Results
3.1. Disordered Protein Modules Are Targets for Tumorigenic Mutations

For the purpose of our analysis, it was necessary to use an approach that could identify
not only cancer drivers, but also the specific regions directly targeted by cancer mutations.
We used the iSiMPRe [34] method, which can highlight significantly mutated regions with-
out prior assumptions about the type or the size of such regions and was shown to perform
similarly to other methods in identifying cancer drivers [52]. Cancer mutations were col-
lected from the COSMIC and TCGA databases and were pre-filtered (see Section 2.1). The
filtering steps were necessary to eliminate cases with a random accumulation of mutations
with no biological significance, especially in the case of IDRs [34]. We restricted our analysis
to high-confidence cases to minimize the chance of false positives. The order/disorder
status of the identified significantly mutated regions was determined based on experimen-
tal data or homology transfer, when available, or by using a combination of prediction
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approaches (See Data and Methods). Cancer drivers were manually characterized as tumor
suppressors (TSGs), oncogenes and context-dependent cancer genes based on the literature.

Altogether, we identified 178 ordered and 47 disordered driver regions in 145 proteins
from the human proteome (Supplementary Table S1, Figure 1A). The ratio of disordered
driver regions was lower than expected on the ratio of disordered residues (21% vs. 30%).
This was the case for both oncogenes and tumor suppressor genes, but not for context-
dependent genes. Further underlining the relevance of IDRs, context-dependent cancer
drivers also had more residues and mutations within disordered regions in general, together
with a slightly higher proportion of disordered drivers (see Supplementary Figure S1).

Figure 1. The distribution of ordered and disordered driver protein regions. (A) The distribution of ordered and disordered
driver protein regions and their distribution among oncogenes, tumor suppressor genes (TSG) and context-dependent
genes. (B) Oncogene scores of full genes and oncogene scores explained by the identified regions in oncogenes and
context-dependent driver genes. “Unaccounted” corresponds to the fraction of mutations not in the identified, high
significance regions.

The identified driver regions typically represent compact modules, usually not cover-
ing more than 10% or 20% of the sequences in the case of oncogenes and tumor suppressors,
respectively (Supplementary Figure S2). It was suggested that true oncogenes are recog-
nizable from mutation patterns according to the 20/20 rule, having a higher than 20%
fraction of missense point mutations in recurring positions (termed the oncogene score [53]).
In contrast, tumor suppressors have lower oncogene scores, and predominantly contain
truncating mutations. Figure 1B shows that the 20/20 rule holds true for the vast majority
of the identified region-harboring oncogenes and context-dependent genes, even based
on the oncogene scores calculated from the identified regions alone. This underlines that
the identified driver regions are the main source of the oncogenic effect in almost all cases.
While most drivers contain both ordered and disordered modules, oncogenesis is typically
mediated through either ordered or disordered mutated regions. This effectively partitions
cancer drivers into “ordered drivers” and “disordered drivers,” regardless of the exact
structural composition of the full protein.

While many of the disordered drivers have already been identified previously as
cancer drivers, our analysis identified 13 additional examples that were not included in the
list of identified cancer drivers collected recently [27]. However, even in these cases there
is literature data supporting their importance in driving cancer (Supplementary Table S2).
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3.2. Disordered Drivers Function via Distinct Molecular Mechanisms

We collected available information about the possible mechanisms of action of the
disordered regions that are altered in cancer (Figure 2, Supplementary Table S2). Although
this information was partially incomplete in several cases, it still allowed us to highlight
the distinct properties of the identified disordered drivers.

Figure 2. IDP regions mutated in cancer. The classification of identified disordered cancer drivers. Protein names in gray
indicate known switching mechanisms either via post-translational modifications (PTMs) or overlapping functions. In
protein architecture schematics, blue ovals represent folded domains, blue lines represent disordered regions and red
rectangles represent disordered driver modules. Boxes placed between two categories indicate dual functions. For detailed
mutation profiles for each gene, see the online visualization links in Supplementary Table S2.

Several of the identified highly mutated disordered regions correspond to linear motifs,
including sites for protein–protein interactions (e.g., USP8, FOXO1 and ESR1) or degron
motifs that regulate the degradation of the protein (e.g CTNNB1, CCND3 and CSF1R).
However, other types of disordered functional modules can also be targeted by cancer
mutations. IDRs with autoinhibitory roles (e.g., modulating the function of adjacent folded
domains) are represented by EZH2, a component of the polycomb repressive complex 2.
While the primary mutation site in this case is located in the folded SET domain, cancer
mutations are also enriched within the disordered C-terminus that normally regulates the
substrate binding site on the catalytic domain. Another category corresponds to regions
involved in DNA and RNA binding. The highly flexible C-terminal segment of the winged
helix domain is altered in the case of FOXA1, interfering with the high affinity DNA
binding. For the splicing factor SRSF2, mutations affect the RNA binding region (Figure 2).
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Larger functional disordered modules, often referred to as intrinsically disordered
domains (IDDs), can also be the primary sites of cancer mutations. Mutated IDDs exhibit
varied structure and sequence features. In VHL, the commonly mutated central region
adopts a molten globule state in isolation [54]. The mutated region of APC incorporates
several repeats containing multiple linear motif sites, which are likely to function collec-
tively as part of the β-catenin destruction complex [55]. In CALR, cancer mutations alter
the C-terminal domain-sized low complexity region, altering Ca2+ binding and protein
localization [56].

Linker IDRs, not directly involved in molecular interactions, are also frequent targets
of cancer mutations. The juxtamembrane regions located between the transmembrane
segment and the kinase domain of KIT and related kinases are the main representatives
of this category. Similarly, the regulatory linker region connecting the substrate- and the
E2-binding domains is one of the dominant sites of mutations in the case of the E3 ubiquitin
ligase CBL.

One of the recurring themes among cancer-related IDP regions is the formation of
molecular switches (Supplementary Table S2). The most commonly occurring switching
mechanism involves various post-translational modifications (PTMs), including serine
or threonine phosphorylation (e.g., CCND3, MYC and APC), tyrosine phosphorylation
(e.g., CBL, CD79B, and CSF1R), methylation (e.g., histone H3s [H3F3A/H3F3B/HIST1H3B])
or acetylation (e.g., ESR1). An additional way of forming molecular switches involves
overlapping functional modules (Figure 2). In the case of PAX5, the mutated flexible
linker region is also involved in the high-affinity binding of the specific DNA binding
site [57]. Cancer mutations of the bZip domain of CEBPA disrupt not only the DNA
binding function, but the dimerization domain as well [58]. In addition to their linker
function, the juxtamembrane regions of kinases are also involved in autoinhibition and
trans-phosphorylation, regulating degradation and downstream signaling events [59,60].

The collected examples of disordered regions mutated in cancer cover both oncogenes
and tumor suppressors, as well as context-dependent genes (Figure 2). There is a slight
tendency for tumor suppressors to be altered via longer functional modules, such as IDDs.
Nevertheless, with the exception of linkers in tumor suppressors and IDDs in context-
dependent genes, every other combination occurs even within our limited set.

3.3. Disordered Driver Mutations Preferentially Modulate Receptor Tyrosine Kinases,
DNA-Processing and The Degradation Machinery

Disordered and ordered drivers can employ different molecular mechanisms in order
to fulfill their associated biological processes. To quantify these differences, we assembled
a set of molecular toolkits integrating Gene Ontology terms (see Data and Methods and
Supplementary Table S3). Based on this, we calculated the enrichment of each molecu-
lar toolkit in both disordered and ordered drivers in comparison with the full human
proteome, highlighting enriched and possibly driver class-specific toolkits (Figure 3A).
Receptor activity is the most enriched function for both types of drivers, owing at least
partially to the fact that receptor tyrosine kinases can often be modulated via both ordered
domains and IDRs (Figure 1B). In contrast, the next three toolkits enriched for disordered
drivers are highly characteristic of them. These are gene expression regulation and the
modulation of DNA structural organization—together representing the structural and the
information content-related aspects of DNA processing—and the degradation of proteins,
mainly through the ubiquitin-proteasome system. In addition, RNA processing, transla-
tion and folding is also characteristic of disordered drivers; and while this toolkit is not
highly enriched compared to the human proteome in general, ordered drivers are almost
completely devoid of this toolkit.

Among the highlighted functional groups, receptor tyrosine kinases (RTKs) are well-
known to be major players in tumorigenesis [61]. While for several RTKs the major
mutational events are oncogenic kinase domain mutations, there are also RTKs that contain
a secondary disordered mutation site with lower incidence rates, or an alternative primary
site which usually shows context dependent behavior. Several RTKs are clear examples of
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this context dependence: gastrointestinal stromal tumor mutations prefer IDR mutations
in both KIT and PDGFRA [62], while leukaemia prefers catalytic site mutations in KIT.
Group III receptor tyrosine kinases in general (including KIT, FLT3 and PDGFRA) are
especially prone to be mutated at their disordered juxtamembrane regions (Figure 3B). In
some cases, such as FLT3, these IDRs are the main sites for tumorigenic mutations [63].
However, RTK IDR mutations are not restricted to group III receptor tyrosine kinases, as
MET also often harbors missense mutations at its juxta-membrane loop region. These
mutations include missense mutations affecting the Tyr1010 phosphorylation site and
exon 19 skipping, removing a degron located within this region [64]. In contrast, CSF1R
mutations accumulate in the negative regulatory motifs (a c-Cbl ubiquitin ligase binding
motif) in the receptor tail, leading to the overactivation of the receptor [65] in various
haematopoietic cancers.

Figure 3. Pathways and processes modulated by disordered driver mutations. (A) Overrepresentation of molecular toolkits
defined based on gene ontology (GO) terms for ordered (blue) and disordered (red) drivers, compared to the average of
the whole human proteome. Categories enriched in disordered drivers represented in bold. B-D: schematic examples of
receptor tyrosine kinases (RTKs) (B), transcription factors (C) and components of the ubiquitin ligase machinery (D) that are
modulated through disordered driver regions. Typically, these proteins have a modular architecture. Functional modules
that are mutated preferentially in disordered or ordered regions are placed above or below the middle line.

Cancer mutations often target various elements of the transcriptional machinery,
including transcription factors, repressors, transcriptional regulators and coactivators/
corepressors [66] (Figure 3C). In most cases, transcription factors are targeted through linear
motifs that regulate the degradation (EPAS1, CTNNB1, MYC and NMYC) or localization
of the protein (FOXO1). Mutated IDRs can also directly affect the activity of the protein.
These regions often work in conjunction with a separate DNA-binding domain and can
shift affinities for various DNA-binding events (such as FOXA1 mutations preferentially
affecting low-affinity DNA binding [67]), or can disrupt interaction with cofactors (such as
the SMAD3 interaction of the FOXL2 [68]). In the case of bZip-type dimeric transcription
factors, mutations can affect the interaction through the modulation of the disordered
dimerization domain. Depending on the activating/repressive function of individual
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transcription factors, IDR-mutated proteins can be both oncogenes (with MYOD1 mutations
promoting the dimerization with MYC [69]), or tumor suppressors (with ID3 mutations
impairing its repressor activity [70]). Disordered mutational hotspots also target other
elements of the transcription machinery, affecting either covalent or non-covalent histone
modifications and altering histone PTMs or histone exchange/movement along the DNA.
However, the exact role of several other proteins involved in chromatin remodelling is still
somewhat unclear (SETBP1 or ASXL1).

The alteration of protein abundance through the ubiquitin-proteasomal system (UPS)
is a central theme in tumorigenesis [30]. Interestingly, ubiquitination sites are seldom
mutated directly. More commonly cancer mutations directly alter degron motifs which
typically reside in disordered protein regions (Figure 3D). Such mutations lead to increased
abundance of the protein by disrupting the recognition by the corresponding E3 ligase.
Complementing degron mutations, ubiquitin ligases are also implicated in tumorigenesis
(Figure 3D). These enzymes are typically highly modular and can harbor driver mutations
in both ordered and disordered regions (Supplementary Table S1). FBXW7 is mutated
at its ordered substrate-binding domain, paralleled with target degron mutations in its
substrates, MYC and MYCN. In contrast, VHL, which is the substrate recognition com-
ponent of the cullin-2 E3 ligase complex, is targeted through a large disordered driver
region, with its target EPAS1 bearing a mutant degron. The activity of CBL, the main E3
ligase responsible for the regulation of turnover for RTKs, is targeted through a disordered
linker/autoregulatory region in acute myeloid leukemia (AML) and other hematopoietic
disorders. In addition to the disruption of ubiquitination, the enhancement of deubiquitina-
tion can also provide a tumorigenic effect. USP8, the deubiquitinase required for entry into
the S phase, is mutated at its disordered 14-3-3-binding motif, enhancing deubiquitinase
activity in lung cancer [71].

3.4. Disordered Mutations Give Rise to Cancer Hallmarks by Targeting Central Elements of
Biological Networks

Almost all of the analyzed IDRs are involved in binding to a molecular partner, even
some of the linkers owing to their multifunctionality. Therefore, we analyzed known
protein–protein interactions of ordered and disordered cancer drivers in more detail (see
Data and Methods). Our results indicate that both sets of drivers are involved in a large
number of interactions and show increased betweenness values compared to average
values of the human proteome, even compared to the direct interaction partners of cancer
drivers (Figure 4A). However, this trend is even more pronounced for disordered drivers.
The elevated interaction capacity could also be detected at the level of molecular function
annotations using Gene Ontology (see Supplementary Table S4 and Data and Methods).
Figure 4B shows the average number of types of molecular interaction partners for both
disordered and ordered drivers contrasted with the average for the human proteome. The
main interaction partners are similar for both types of drivers, often binding to nucleic
acids, homodimerizing or binding to receptors. However, disordered drivers are able
to physically interact with a wider range of molecular partners, and are also able to
more efficiently interact with RNA and the effector enzymes of the post-translational
modification machinery. This, in particular, can offer a way to more easily integrate and
propagate signals through the cell, relying on the spatio-temporal regulation of interactions
via previously demonstrated switching mechanisms (Supplementary Table S2).

The high interaction capacity and central position of disordered drivers allows them
to participate in several biological processes. The association between any two processes
can be assessed by quantifying the overlap between their respective protein sets (see Data
and Methods). We analyzed the average overlap between various processes using a set of
non-redundant human-related terms of the Gene Ontology (Supplementary Table S5). The
average overlap of proteins for two randomly chosen processes is 0.15%, showing that as
expected, in general biological processes utilize characteristically different gene/protein
sets. Restricting proteins to the identified drivers and only considering processes connected
to at least one of them, the average overlap between processes increased to 3.00% for or-
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dered drivers and 5.80% for disordered drivers (Figure 4C). This shows that the integration
of various biological processes is a distinguishing feature of cancer genes in general and for
disordered drivers in particular, and that IDPs targeted in cancer are efficient integrators of
a wide range of processes.

Figure 4. Characteristics of cancer drivers at the network/pathway and cellular levels. (A) Average degree (top) and
betweenness (bottom) of all human proteins, showing the direct interaction partners of drivers, ordered drivers and
disordered drivers. (B) The average occurrence of various types of interaction partners for the whole human proteome
(grey circle), ordered drivers (blue circle) and disordered drivers (red circle). Values in circles show the average number of
types of interactions together with standard deviations. The most common interaction types are shown in grey boxes, with
connecting lines showing the fraction of proteins involved in that binding mode. Only interaction types present for at least
1/8th of the proteins are shown. (C) Top: An example subset of disordered drivers with associated biological processes
marked with arrows (dashed and solid arrows marking processes involving only one or several disordered drivers). Bottom:
Average values of overlap between protein sets of various biological processes, considering the full human proteome (grey),
ordered drivers (blue) and disordered drivers (red). Process names in grey represent processes that involve at least two
disordered drivers, names in white boxes mark other processes attached to disordered drivers. (D) Overrepresentation of
hallmarks of cancer for ordered (blue) and disordered (red) drivers compared to all census drivers.

Cancer hallmarks describe ubiquitously displayed traits of cancer cells [21]. In order
to quantify the contribution of drivers to each of the ten hallmarks, we manually curated
sets of biological process terms from the Gene Ontology that represent separate hallmarks
(see Data and Methods and Supplementary Table S6). Enrichment analysis of these terms
shows that all hallmarks are significantly overrepresented in census cancer drivers com-
pared to the human proteome (Supplementary Figure S3A), serving as a proof-of-concept
for the used hallmark quantification scheme. Furthermore, comparing drivers with iden-
tified regions to all census cancer drivers shows a further enrichment (Supplementary
Figure S3B), indicating that the applied region identification protocol of iSiMPRe is able
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to pick up on the main tumorigenic signal by pinpointing strong driver genes. Separate
enrichment calculations for ordered and disordered drivers show that despite subtle dif-
ferences in enrichments, in general all ten hallmarks are overrepresented in both driver
groups (Figure 4D). This indicates that while the exact molecular mechanisms through
which ordered domain and IDR mutations contribute to cancer are highly variable, both
types of genetic modulation can give rise to all necessary cellular features of tumorigenic
transformation. Hence, IDR mutations provide a mechanism that is sufficient on its own
for cancer formation.

3.5. Disordered Drivers Can Be the Dominant Players at The Patient Sample Level

We assessed the role of the identified drivers at the patient level using whole-genome
sequencing data from TCGA; 10,197 tumor samples containing over three and a half million
genetic variations were considered to delineate the importance of disordered drivers at the
sample level across the 33 cancer types covered in TCGA. In driver region identification,
we only considered mutations with a local effect (missense mutations and in frame indels),
which naturally yielded only a restricted subset of all true drivers. However, in patient-
level analyses, we also considered other types of genetic alterations of the same gene in
order to get a more complete assessment of the alteration of identified driver regions per
cancer type (see Data and Methods).

In spite of the incompleteness of the identified set of driver genes, we still found
that on average about 80% of samples contain genetic alterations that affect at least one
identified ordered or disordered driver region. Thus, the identified regions are able to
describe the main players of tumorigenesis at the molecular level (Figure 5A). While at the
protein level typically either ordered or disordered regions are modulated (Figure 1B), at the
patient level most samples show a mixed structural background, most notably in colorectal
cancers (COAD and READ). Some cancer types, however, show distinct preferences for
the modulation of a single type of structural element. For thyroid carcinoma (THCA) or
thymoma (THYM), the molecular basis is almost always the exclusive mutation of ordered
protein regions. At the other extreme, the modulation of disordered regions is enough for
tumor formation in a considerable fraction of cases of liver hepatocellular, adrenocortical,
and renal cell carcinomas, together with diffuse large B-cell lymphoma (LIHC, ACC, KIRC
and DLBC). These results, in line with the previous hallmark analyses, show that IDR
mutations can constitute a complete set of tumorigenic alterations. Hence, there are specific
subsets of patients that carry predominantly or exclusively disordered driver mutations in
their exome.

Whole genome sequencing data was also used to assess the cancer type specificity
of disordered drivers (Figure 5B). Basically, all studied cancer types have at least one
disordered driver that is mutated in at least 1% of cases, with the exception of thyroid
carcinoma (THCA). There are only four disordered drivers that can be considered as generic
drivers, being mutated in a high number of cancer types. p53 presents a special case in this
regard, as it is the main tumor suppressor gene in humans and thus is most often affected
by gene loss or truncations which are likely to eliminate the corresponding protein product.
These alterations abolish the function of both the ordered and disordered driver regions at
the same time (the DNA-binding domain and the tetramerization region). In contrast, the
other three generic disordered drivers are predominantly altered via localized mutations in
their disordered regions: the degrons of β-catenin and NRF2 and the central region of APC,
and hence these are true disordered drivers which are commonly mutated in several cancer
types. However, the majority of disordered drivers show a high degree of selectivity for
tumor types, being mutated only in very specific cancer types. This specificity is strongly
connected to the tumorigenic roles of disordered drivers (Figure 5C). Considering 1%
of patient samples as the cutoff, tumor suppressors are typically implicated in a broad
range of cancer types, while oncogenes on average show a high cancer type specificity.
Context-dependent disordered drivers are often mutated in only a very restricted set
of cancers.
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Figure 5. Therapeutic options for targeting disordered drivers. (A) Fraction of samples that contain altered driver genes
per cancer type. Samples can contain mutations affecting only ordered drivers (blue), only disordered drivers (red) or
both (mixed, gray). (B) Percentage of cancer samples, grouped by cancer types, containing genetic alterations that target
the identified disordered driver regions. (C) The distribution of disordered drivers from the three classes of cancer genes
(oncogenes, tumor suppressor genes (TSG) and context dependent genes) categorized into specific, narrow and broad range
based on the frequency of samples they are mutated in (see Data and Methods). (D) The probability of having an available
FDA-approved drug for at least one mutation-affected gene for patients, as a function of the ratio of affected disordered
genes compared to all mutated genes in the sample. The horizontal black line represents the total fraction of targetable
samples (0.49) from 8444 samples.

Strikingly, the identified disordered drivers can have an even more dominant role.
In several rarer cancers or more specific cancer subtypes which are not included in the
broad classes described in TCGA (including both malignant and benign cases), mutations
in a specific disordered driver are the main, or one of the main, driver events (Table 1).
Altogether, this list includes 18 of our disordered cancer drivers. In the collected cancer
types, targeting disordered regions can have a potentially huge treatment advantage,
and in many cases, the counteraction of these IDR mutations may be the only viable
therapeutic strategy.
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Table 1. Cancer types with mutation incidence rates around or above 10% in the disordered driver gene of interest per total
patients studied.

Tumor Type (Name) Implicated Gene Product Malignancy Incidence Reference

Diffuse large B-cell lymphoma
(ABC subtype) CARD11 malignant 9.6–10.8% (7/73, 4/37) [72,73]

Burkitt lymphoma CCND3 malignant 14.6% (6/41) [74]

Diffuse large B-cell lymphoma
(ABC subtype) CCND3 malignant 10.7% (3/28) [74]

Diffuse large B-cell lymphoma
(PCNS subtype) CD79B malignant 31.6% (6/19) [75]

Acute myeloid leukaemia CEBPA malignant 15% (16/104) [76]

Myelodysplasia and acute
myeloblastic leukemia CSF1R malignant 12.7% (14/110) [77]

Endometrioid endometrial
carcinoma (low-grade) CTNNB1 malignant 87.0% (47/54) [78]

Ovarian endometrioid carcinomas
(low-grade) CTNNB1 malignant 53.3% (16/30) [79]

Hepatocellular carcinoma
(HBV/HCV related) CTNNB1 malignant 26% (32/122) [80]

Desmoid tumor CTNNB1 benign 73% (106/145) [81]

Juvenile nasopharyngeal
angiofibroma CTNNB1 benign 75% (12/16) [82]

Paraganglioma EPAS1 possibly malignant 17% (7/41) [83]

Adult granulosa cell tumors of the
ovary FOXL2 malignant 93–97% (52/56, 86/89) [84,85]

Pediatric anaplastic
astrocytoma/glioblastoma H3F3A malignant 17.9–27.1%

(5/28, 35/129) [86]

Giant cell tumor of bone
(stromal cell) H3F3A benign 92% (49/53) [87]

Chondroblastoma (stromal cell) H3F3B benign 95% (73/77) [87]

GIST KIT malignant 47% (57/121) [88]

Extrauterine leiomyoma and
leiomyosarcoma MED12 (possibly)

malignant 19% (6/32) [89]

Phyllodes tumor of breast MED12 possibly malignant 49% (41/83) [90]

Uterine leiomyoma MED12 benign 70% (159/225) [91]

Rhabdomyosarcoma MYOD1 malignant 20% (10/49) [92]

Esophageal squamous cell
carcinoma NFE2L2 malignant 9.6% (47/490) [93]

B-cell progenitor acute
lymphoblastic leukemia PAX5 malignant 34–39% (40/117, 94/242) [94,95]

Chronic myelomonocytic leukemia SETBP1 malignant 25% (14/56) [96]

Atypical Chronic Myeloid
Leukemia SETBP1 malignant 24.3% (17/70) [97]

Chronic myelomonocytic
leukaemia SRSF2 malignant 47% (129/275) [98]

Pituitary adenoma USP8 possibly malignant 14% (6/42) [99]
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3.6. Cancer Incidences Arising through Disordered Drivers Lack Effective Drugs

Next, we addressed how well disordered drivers are targetable by current FDA
approved drugs, as collected by the OncoKB database [100]. This database currently
contains 83 FDA-approved anticancer drugs, either as part of standard care or efficient
off-label use (see Data and Methods). These drugs have defined exome mutations that
serve as indications for their use. The majority of these drugs target ordered domains,
mostly inhibiting kinases. Currently only seven drugs are connected to disordered region
mutations, which correspond to only four sites in FGFR and c-Met. These drugs act
indirectly, targeting ordered kinase domains, to counteract the effect of the listed activating
disordered mutations.

This represents a clear negative treatment option bias against patients whose tumor
genomes contain disordered drivers. Considering all mutations in patient samples gathered
in TCGA, the fraction of disordered driver mutations actually serves as an indicator of
whether there are suitable drugs available. Patients with mostly ordered driver mutations
have a roughly 50% chance that an FDA-approved drug can be administered with the
expected therapeutic effect. This chance drops to 10% for patients with predominantly
disordered mutations (Figure 5D). Thus, incidences of cancer arising through disordered
driver mutations are currently heavily under-targeted, highlighting the need for efficient
targeting strategies for IDP-driven cancers.

4. Discussion

In recent years, cancer genome projects have revealed the genomic landscapes of many
common forms of human cancer. As a result, several hundred cancer driver genes have been
identified whose genetic alterations can be directly linked to tumorigenesis [27]. Only a few
of these genes correspond to “mutation mountains,” i.e., genes that are commonly altered in
different tumor types, while most of the cancer drivers are altered infrequently [53]. Cancer
driver genes are associated with a set of core cellular processes, also termed hallmarks [21].
At a more detailed level, however, drivers are surprisingly heterogeneous in terms of
molecular functions and cellular roles. In this work we showed that cancer drivers are
also diverse in terms of their structural properties. Using an integrated computational
approach, we identified a set of cancer drivers that are specifically targeted by mutation
in a disordered region. IDRs represent around 30% of residues in the human proteome
and are also an integral part of many cancer-associated proteins. Despite the critical roles
of these regions, they are often not the main sites of driver mutations [11]. Our results
confirmed that driver mutations that alter the proper functioning of ordered domains of the
encoded protein are slightly overrepresented compared to those that modulate the function
of disordered regions. Nevertheless, in a significant number of cases, corresponding to
around 20% of the mutated drivers, cancer mutations specifically target disordered regions
(Figure 1A).

The critical role of these disordered drivers in tumorigenesis is supported not only
by the enrichment of single nucleotide variations and in-frame insertions and deletions,
but also by literature data (Supplementary Table S2). Disordered drivers are associated
with known cancer hallmarks through specific biological processes (Figure 3A) and show
strong evolutionary conservation [101]. Driver mutations within IDRs are present in
samples across a wide range of cancer types, and can also be the main, or one of the
main, driver events for several tumor subclasses, including both malignant and benign
cases (Table 1). Our work highlighted several novel drivers that are not yet included in the
previous collections of cancer driver genes previously assembled based on a combination of
computational methods [27], indicating a hidden bias in the identification of driver genes.

The collection of disordered cancer drivers highlighted many interesting examples
that carry out important functions without relying on a well-defined structure, extending
the list of IDR with disease relevance. Many of the collected cases correspond to linear
motif sites which mediate interactions with globular domains, regulating interactions
and localization or cellular fate of proteins. However, the collected examples represent a
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broader set of functional mechanisms, encompassing DNA- and RNA-binding regions,
linkers, autoinhibitory segments and disordered domains. These functional modules can
also regulate the assembly of large macromolecular complexes and regulate the activity
of neighboring domains. The key to the proper functioning of the targeted IDRs is their
structural disorder, which enables them to undergo drastic conformational changes de-
pending on context-dependent regulation. While in most cases it has been clarified how
mutations of the critical IDR disrupt the balance between the different functional states,
our understanding of this mechanism is still incomplete for several examples (Figure 2,
Supplementary Table S2). For instance, the mutation and conservation pattern of MLH1
highlights a novel linear motif site within the disordered linker region of MLH1 with un-
known function. In the case of p14Arf, the functional role of the mutated region needs to be
revisited in the light of recent evidence on the relevance of phase separation organizing the
nucleolus [102]. ASXL1 and EP300 are both involved in chromatin remodelling, but little is
known about the functional roles of the disordered regions targeted by cancer mutations.

At the patient level, samples in general contain a combination of genetic alterations
that involve both ordered and disordered drivers. However, patients with mostly IDR
mutations typically have significantly limited treatment options. Most current anticancer
drugs target ordered protein domains, and are inhibitors designed against enzyme activity
(using either competitive or noncompetitive inhibition) [103–105]. In general, current
successful drug development efforts mainly focus on ordered protein domains derived
within the framework of structure-based rational drug design [106]. However, IDPs can
potentially offer new directions for cancer therapeutics [107]. Currently tested approaches
include the direct targeting of IDPs by specific small compounds, or blocking the globular
interaction partner of IDPs [108,109]. The successful identification of disordered drivers
and corresponding tumor types provides the first step in providing the means for new
therapeutic interventions in cancer types that currently lack treatment options.

5. Conclusions

In this work, we went beyond a simple association between IDRs and cancer by taking
advantage of the avalanche of data produced by systematic analyses and large-scale se-
quencing projects of cancer genomes. Our work underlines the direct driver role of IDRs in
cancer. It provides fundamental insights into the specific molecular mechanisms and regu-
latory processes altered by cancer mutations targeting IDRs, highlighting important regions
that need further structural and functional characterizations. Furthemore, we showed
that many already known cancer drivers rely on intrinsic flexibility for their function and
identified novel cancer drivers that had been overlooked by current driver identification
approaches, revealing a structure-centric bias that still exists in these methods. Importantly,
our work also demonstrates the relevance of disordered drivers at the patient level and
highlights a strong need to expand treatment options for IDRs. By looking at the timeline
of the COSMIC database, we can observe a steady growth of disordered drivers with every
new release (Supplementary Figure S4). Nevertheless, our study was restricted to cases
that were targeted by point mutations or in-frame insertions or deletions, therefore the
location of alterations can be directly linked to the perturbed functional module. However,
there are additional disordered drivers that are altered via more complex genetic mecha-
nisms in cancer, such as specific frameshift mutations (e.g., NOTCH1 [110]), chromosomal
translocations (e.g., BCR [111], ERG [112]) or copy number variations (e.g., p14ARF [113]).
Altogether these observations suggest that we can expect the emergence of further exam-
ples of genetic alterations of driver genes that interfere with structurally disordered regions
as the number of cancer studies increase/ Furthermoe, this paper also highlights cancer
types where novel drug design strategies targeting disordered regions are needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/3/381/s1, Figure S1: The distribution of residues and cancer mutations, Figure S2: Iden-
tified regions are compact functional units, Figure S3: Overrepresentation of cancer hallmarks,
Figure S4: Growth of disordered cancer drivers, Table S1: List of regions identified using iSiMPRe,
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based on both COSMIC and TCGA mutations, Table S2: Identified disordered driver genes with all
annotations, Table S3: Gene Ontology terms used in the quantification of molecular toolkits used
by cancer driver genes, Table S4: Gene Ontology terms used in the quantification of interaction
capabilities, Table S5: Gene Ontology terms used in the quantification of biological process overlaps,
Table S6: Gene Ontology terms used in the quantification of hallmarks of cancer.
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