
metabolites

H

OH

OH

Review

Volatile Metabolites Emission by In Vivo
Microalgae—An Overlooked Opportunity?

Komandoor E. Achyuthan 1,*, Jason C. Harper 2, Ronald P. Manginell 1

and Matthew W. Moorman 1

1 Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA;
rpmangi@sandia.gov (R.P.M.); mmoorma@sandia.gov (M.W.M.)

2 Bioenergy and Defense Technology Department, Sandia National Laboratories, Albuquerque,
NM 87185, USA; jcharpe@sandia.gov

* Correspondence: kachyut@sandia.gov; Tel.: +1-505-284-8979

Received: 28 April 2017; Accepted: 25 July 2017; Published: 31 July 2017

Abstract: Fragrances and malodors are ubiquitous in the environment, arising from natural and
artificial processes, by the generation of volatile organic compounds (VOCs). Although VOCs
constitute only a fraction of the metabolites produced by an organism, the detection of VOCs has
a broad range of civilian, industrial, military, medical, and national security applications. The VOC
metabolic profile of an organism has been referred to as its ‘volatilome’ (or ‘volatome’) and the
study of volatilome/volatome is characterized as ‘volatilomics’, a relatively new category in the
‘omics’ arena. There is considerable literature on VOCs extracted destructively from microalgae for
applications such as food, natural products chemistry, and biofuels. VOC emissions from living
(in vivo) microalgae too are being increasingly appreciated as potential real-time indicators of the
organism’s state of health (SoH) along with their contributions to the environment and ecology.
This review summarizes VOC emissions from in vivo microalgae; tools and techniques for the
collection, storage, transport, detection, and pattern analysis of VOC emissions; linking certain
VOCs to biosynthetic/metabolic pathways; and the role of VOCs in microalgae growth, infochemical
activities, predator-prey interactions, and general SoH.

Keywords: volatile organic compound; VOC; microalgae; in vivo emission; volatilome; volatilomics;
volatome; volatile metabolites

1. Scope and Limitations

This review is focused on volatile organic compound (VOC) emissions from microalgae that
were either living (in vivo), undergoing senescence or apoptosis, or perishing under predator attack.
It is hypothesized that such emissions are relevant to the real-time detection of microalgae’s state of
health (SoH). Consequently, this review excluded publications describing the collection of VOCs after
lysis of the microalgae during extraction and analysis. Although the latter publications are valuable,
the aim of this review was limited insofar as possible, to microalgal VOCs emitted under in vivo or
otherwise natural living/dying conditions. To illustrate, the eukaryotic, unicellular green benthic
microalga, Ulothrix fimbriata, was disintegrated using a freeze thaw cycle, followed by extraction of
VOCs for analysis [1]. The prokaryotic cyanobacteria, Nostoc sp. was heat treated in methanol-water
mixture followed by extraction of the volatiles using organic solvents; techniques which effectively
destroyed the blue-green algae [2]. Destructive steam distillation followed by diethyl ether extraction
was used to collect VOCs from the eukaryotic green alga, Capsosiphon fulvescens [3]. Such publications
are considered here further only if there are aspects that are relevant to in vivo VOCs. For example,
although VOCs were extracted after disintegrating U. fimbriata cells, such VOCs might be released by
naturally dying cells, attracting predators [1] and exhibiting semiochemical behavior. Alternatively,
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microalgae might release specific VOCs under predator attack that are chemical cues of predation
(disussed in detail under Section 5.5). In keeping with the title and scope of the review, emphasis
was on VOCs, although microalgae do emit carbon-containing (CO, CO2) and non-carbon types of
inorganic gases (example, H2, O2, N2O) that reflect upon the organism’s metabolic status. These gases
are briefly discussed. This is not an exhaustive review, despite the citing of over 250 references. It was
not possible to cite every paper published on VOC emanations from microalgae in vivo. Additional
information is in the publications cited in this review.

2. Introduction

Detection of VOCs has a broad range of applications in civilian (for example, food science,
cosmetics/fragrances, pharmaceutical, and environmental applications), military, medical,
and national security arenas, resulting in the publication of several books on these topics [4–7].
Two well-known VOC applications are the breathalyzer test for intoxication and the use of police
dogs for the detection of drugs, explosives, and crime scene evidence collection. The success of K9
(homophone for canine) units is due to the high number of odor receptor cells (ORCs) in the olfactory
epithelium of dogs (~300 million in bloodhounds [8] compared to a human’s ~10 million). The rapid
growth in VOC analysis is illustrated by several reviews within the last few years in Metabolites [9–11].
The explosive research output has spawned the new fields of volatilome (volatome) [12–14] and
volatolomics (volatilomics) [15–17].

The diverse roles of microalgal VOCs in biochemistry, metabolism and physiology, ecology
and environment, and modulating predator-prey interactions, as well as how such VOCs could be
used to predict microalgae pond crashes due to predator attack, are amongst the key topics covered
in this review. There is a great deal of interest in VOC emissions from microalgae due to their
commercial value as food/feed, biofuels, and high value byproducts [18–23]. While considerable
research has been carried out on VOCs extracted from microalgae using destructive techniques [1–3],
this review focuses upon VOCs from living, growing, or naturally dying microalgae (in vivo VOCs).
It is proposed that such VOC emissions might be useful for monitoring in real-time, the SoH of the
microalgae. Where known, metabolic pathways leading to the emission of specific VOC molecules
are described and contextualized regarding their biological/biochemical role(s) in the microorganism.
This review may spark further interest in VOC profiles of microalgae in vivo for evaluating the role of
volatilome/volatome in microalgae physiology, pathology, and ecology.

It is helpful to begin by presenting definitions of the two key topics in this review, namely,
VOC and microalgae. In both cases, there is considerable scope for flexibility and ambiguity, depending
on the defining agency. The term VOC includes a broad range of classes of small molecular mass
(generally, ~200 g/mol) carbon chain or carbon ring-containing compounds, the smallest of which is
methane, CH4. These compounds have high vapor pressure under ambient temperature (ambient
conditions are defined as 20 ◦C and 101.3 kPa by the National Institute of Standards and Technology,
NIST, USA). Due to their low boiling point, such compounds can readily transform from liquid phase
to gaseous phase or from solid phase to gas phase (sublimation). VOCs can travel far from their
source and pass through atmosphere, soil, and water. Due to their low-to-moderate hydrophilicity,
VOCs can dissolve in water and disperse at the air–water interphase, exerting their infochemical
effects widely, temporally and spatially. In terms of biologically-generated VOCs (biogenic VOC,
BVOC), such volatiles represent secondary metabolites of the microalgae. The distinction between
primary and secondary metabolites is that the former being constitutive, are continuously produced
and are essential for maintaining life; secondary metabolites on the other hand may be derived from
primary metabolites and are not directly involved in the growth, development, and reproduction
of the organism. Here, the term VOC excludes gases such as carbon monoxide (CO) and carbon
dioxide (CO2), but includes compounds with perhaps up to 15 carbon atoms and a boiling point of
up to 260 ◦C, amongst the VOCs. Several different definitions exist for VOCs depending upon the
organization (World Health Organization, WHO; European Union, EU; Environmental Protection
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Agency, EPA, USA; American Society for Testing and Materials International, ASTM International)
responsible for issuing such definitions [24]. The general properties of VOCs are summarized in
Table 1.

Table 1. General properties of VOCs.

Class Abbreviation Vapor Pressure (VP) (p) and
Atmospheric Pressure (Patm)

VP (mm Hg)
at 25 ◦C

Boiling Point
(◦C) Example

Very Volatile Organic
Compound VVOC p >> Patm >380 <0 up to 50 Propane

Volatile Organic
Compound VOC p > Patm 0.1 to 380 ~50 to 250 Acetone

Semi-Volatile Organic
Compound SVOC p = Patm 10−7 to 10−1 250 to 400 Plasticizers

Non-Volatile Organic
Compound NVOC p << Patm <10−7 Not

applicable
Glucose
C6H12O6

Microalgae also have debatable definitions. It has even been asserted that the term algae itself
may have no formal taxonomic meaning [25], since algal taxonomy is continuously and rapidly
evolving based on genetic and microscopic data. Algae have been described as a polyphyletic
(organisms without a common origin, but arising along multiple and independent evolutionary
lines) group of oxygen-producing, photosynthetic organisms. This group includes both macroalgae
and microalgae [26]. According to phycologists, two criteria must be met to classify an organism as
an alga: (a) it must contain chlorophyll a, which is capable of utilizing sunlight to generate chemical
energy; and (b) it must possess a thallus (vegetative tissue) that, unlike plants, is not differentiated
into roots, stem, and leaves [27]. Cyanobacteria (blue-green algae) are frequently included amongst
microalgae, even though they are prokaryotic (lacking membrane-bound organelles), Gram negative
bacteria [20,25,27,28]. There is evidence that plastids in algae and higher plants evolved from
cyanobacteria through an endosymbiotic event with a host. Cyanobacteria and their VOCs are
therefore considered here but not VOCs from macroalgae, except as noted.

Microalgae, as the term denotes, are a diverse group of microscopic, typically unicellular,
eukaryotic (consisting of membrane bound, cell function-controlling organelles such as nucleus,
mitochondria, chloroplast, Golgi body, flagella, surrounded by plasma membrane, the plasmalemma,
as shown in Figure 1A), plant-like photosynthetic microorganisms, capable of fixing atmospheric CO2

in the presence of sunlight and catalyzing its conversion into biomass for nutrition and growth [29].
Cyanobacteria (Cyanophyceae) are examples of prokaryotic microalgae (Figure 1B), whereas green algae
(Chlorophyta) and diatoms for example, represent eukaryotic microalgae. Microalgae are present in both
freshwater (lakes, rivers) and salt water (oceans), as planktonic (suspended) or benthonic (attached to
the bottom) marine systems. Microalgae can also be terrestrial (soil microalgae). Microalgae size ranges
from a few micrometers (µm) to >100 µm. It has been estimated that several thousands of microalgal
species exist distributed across different genera. Microalgae, phytoplankton, and picophytoplankton
(<1 µm) [25], form the base of the food chain in the marine environment, where oceans cover ~70% of
the earth’s surface. Autotrophic microalgae require only inorganic salts, CO2, and light for growth
and development, whereas heterotrophic microalgae, which are non-photosynthetic, need external
sources of organic compounds and nutrients for growth. Mixotrophic algae can survive either
by photosynthesis or acquire nutrients externally, depending upon the environmental conditions.
Microalgae generate about one-half to two-thirds of the atmospheric O2. Microalgae occur as green,
red, brown, gold, yellow-green, blue-green, and as diatoms. There are several sources available for
a list of microalgae cultures including the AlgaeBase and the microalgae culture collection from the
US Department of Energy (DOE) Aquatic Species Program, which is cataloged in the Solar Energy
Research Institute (SERI) database, Golden, CO, USA. A brief description is supplied of the microalgal
species whenever it is first mentioned in this review.
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Figure 1. Schematic of the major components of eukaryotic (A) and prokaryotic (B) microalgal cells. 
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Algal VOCs (AVOC or biogenic VOC, BVOC), being secondary metabolites [30] are produced 
under various conditions (Figure 2). The VOC chemistry, production rate, and the quantity of 
emission(s) depend upon several biotic and abiotic factors summarized in Figure 2, such as growth 
phase, species/strain type, stress (seasonal changes, temperature, light intensity, pH, salinity), water, 
nutrients, gases (H2O, CO2, O3), aeration (mixing/turbulence) or static culture, and the presence of 
predators [31]. 
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It is relatively straightforward to collect and study VOCs after lysing the microalgae using cell 
disruption techniques such as homogenization, sonication, freeze-thaw cycles, high temperature 
treatment, steam distillation, or extraction using organic solvents. On the other hand, extraction of 
VOCs from living (in vivo) microalgae is difficult and requires non-invasive techniques to avoid cell 
lysis. Furthermore, collection of emitted VOCs is more challenging depending on the culture, 
environmental, and climate conditions. Microalgae are generally cultured in the laboratory using 
flasks, and commercially cultivated in low-cost open raceway ponds (ORPs) or in closed, high-cost 
photobioreactors (PBRs) (Figure 3). While growth parameters can be carefully controlled and 
managed under laboratory culture conditions, this is less likely during microalgal commercial 
cultivation, and perhaps nearly impossible to manage in the microalgae’s natural marine habitat 

Figure 1. Schematic of the major components of eukaryotic (A) and prokaryotic (B) microalgal cells.

3. In Vivo Microalgae VOCs

3.1. VOC Production Conditions

Algal VOCs (AVOC or biogenic VOC, BVOC), being secondary metabolites [30] are produced
under various conditions (Figure 2). The VOC chemistry, production rate, and the quantity of
emission(s) depend upon several biotic and abiotic factors summarized in Figure 2, such as growth
phase, species/strain type, stress (seasonal changes, temperature, light intensity, pH, salinity), water,
nutrients, gases (H2O, CO2, O3), aeration (mixing/turbulence) or static culture, and the presence of
predators [31].
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Figure 2. Factors influencing in vivo microalgae VOCs emission.

It is relatively straightforward to collect and study VOCs after lysing the microalgae using cell
disruption techniques such as homogenization, sonication, freeze-thaw cycles, high temperature
treatment, steam distillation, or extraction using organic solvents. On the other hand, extraction
of VOCs from living (in vivo) microalgae is difficult and requires non-invasive techniques to avoid
cell lysis. Furthermore, collection of emitted VOCs is more challenging depending on the culture,
environmental, and climate conditions. Microalgae are generally cultured in the laboratory using
flasks, and commercially cultivated in low-cost open raceway ponds (ORPs) or in closed, high-cost
photobioreactors (PBRs) (Figure 3). While growth parameters can be carefully controlled and managed
under laboratory culture conditions, this is less likely during microalgal commercial cultivation,
and perhaps nearly impossible to manage in the microalgae’s natural marine habitat where conditions
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exist that are beyond human control. For example, phytoplanktons may be exposed to significant
temperature changes due to vertical mixing in the water column of the marine environment which
can change the organism’s metabolism [31]. Additionally, the low-cost advantage of ORPs is offset
by the high risk of contamination and significant difficulties of maintaining both species control and
contamination control. To date, microalgal cultures have failed to yield sustainable industrial-scale
volumes of biomass at low-cost. Biological contamination is an important factor behind this failure [32].
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Axenic cultures are important when assigning VOCs to a specific microalgae and not to a biological
pollutant such as contaminating bacteria, fungi, rotifers, amoebae, or viral infections [33,34]. The VOCs
may be produced by the invading organism or as a consequence of pathogen interactions with the host.
Algae and bacteria have coexisted in the evolutionary timeline, and the two microorganisms affect each
other’s physiology and influence the ecosystem where they dwell [28]. Although both microalgae and
bacteria emit odorous VOCs, this review is focused mainly on VOC emissions from microalgae (and
cyanobacteria). Regardless of whether the algae are grown in ORP or PBR, bacteria will inevitably and
over time become a pollutant, which could cause sudden death of microalgal culture (pond crash) [35].
The VOC sampling regimen is also critical since the abundance of a particular microalgal species
may not track directly with its AVOC levels or dynamics (asynchronous emission) [36]. Additionally,
certain species that occur together in the natural habitat can produce similar VOCs, confounding
assignment to a specific microalga. Several AVOCs also exist as more than one isomer, whereas
biological activity might be confined to just one due to such considerations as conformational flexibility,
stability, stereochemistry, or enantiomer blend [36]. The biosynthesis of AVOCs can vary within and
between taxa. Such variations are regulated by endogenous and exogenous processes. Despite these
challenges, AVOC metabolomics/volatilomics is important to microalgae’s biology, with commercial,
societal, and global implications.

3.2. Inorganic Volatiles

Oxygen (O2) production is the most important step in any aerobic bioprocess, and this is true
of microalgal respiration as well [37]. Photosynthetic microalgae produce approximately one-half to
two-thirds of the molecular O2 in the atmosphere, and life on Earth evolved from, and now depends
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upon, such O2 generation. Equally important, microalgae consume CO2 (CO2 fixation), an important
greenhouse gas (GHG) from the atmosphere. Molecular hydrogen (H2) can be produced by direct and
indirect biophotolysis, which is suitable for solar energy to H2 transformation [37].

Nitrous oxide (N2O) is a potent GHG, a powerful scavenger of stratospheric ozone (O3) [38],
and its emission from microalgae was summarized previously [39]. N2O was produced by
several axenic cultures of microalgae, Chlorella vulgaris, Chlorella rubescens, Chlorella homosphaericas,
Scenedesmus obliquus, Coelastrum spp., and Chlorococcum vacuolatum, along with three different
cyanobacteria (Nostoc spp., Aphanocapsa PCC6308, and Aphanocapsa PCC6714). The microalgal cultures
had been grown at 25 ◦C, under continuous irradiance (8–11.3 W/m2) for 18 h. All cultures had been
checked for bacterial contamination and only data from bacteria-negative cultures were considered for
analysis. Headspace gas was analyzed by gas chromatography (GC) coupled to thermal conductivity
detector (TCD) and mass spectrometer (MS). It was suggested that microalgae play a role in aquatic
N2O systems and probably in the overall global N2 balance [40,41].

Florez-Leiva et al. [42] measured N2O from Nannochloris (Chlorophyceae, green microalgae)
monocultures grown in ORP with natural illumination and constant aeration using an airlift
recirculation system. Water temperature, pH, and salinity were recorded, and gas emission was
monitored over 46 days on a continuous basis. N2O was quantified using a GC-electron capture
detector (ECD) using helium headspace equilibration. Among the emitted gases, N2O was emitted
in the highest amount at a rate of 8 to 600 µmol/m3. N2O production abruptly peaked during
senescence. A positive correlation between N2O production and chlorophyll a content suggested that
a phototrophic pathway might trigger N2O generation, presumably by oxic NH4 oxidation.

Fagerstone et al. [43,44] reported N2O production by Nannochloropsis salina (chlorophyll a
containing green microalga, but without chlorophyll b or c) grown under laboratory conditions,
but simulating both ORP and PBR, with diurnal light–dark cycling. Microalgae were grown with
shaking (140 revolutions per minute, rpm) at 23 ◦C, with 16 h light (90 µmol/m2/s) and 8 h dark
periods. Headspace samples were collected in 8 h increments over the course of four days. Gas emission
was quantitated using Fourier transform infrared spectroscopy (FTIR). Gas emission was elevated
during the dark cycle but emission was minimal during the light periods. Anoxic N2O production was
attributed to denitrifying bacteria, whereas oxic N2O was assigned to the microalgae.

Axenic cultures of Chlorella vulgaris (eukaryotic, unicellular, green algae) cultivated under
laboratory conditions and in ORP were both shown to be capable of N2O production [45,46]. Microalgal
cultivation involved light (82 W photosynthetically active radiation (PAR)/m2 for lab conditions;
92 µE/m2/s for ORP) and dark cycles at 25 ◦C. Headspace samples were analyzed by GC-ECD.
Gas production was rapid initially during the first 4 h, and thereafter there was a linear N2O emission
period that lasted for more than 24 h. The N2O production was dependent on nitrate reductase
activity of Chlorella vulgaris, presumably involving nitrite reduction into nitric oxide (NO) which
then converted to N2O. Although the authors did not extrapolate these findings to N2O emissions
in the marine ecosystems, they did point out the impact a potentially open system of microalgae
mass cultivation might have upon global biogeochemical N2 cycle and the atmospheric N2O budget.
This is especially noteworthy, since the global warming potential (GWP) of N2O is 300 fold higher,
on a molecule-by-molecule basis, relative to CO2 on a 100-year timescale [47].

Selenium (Se) chemically resembles sulfur (S) in that both elements occupy the same column in
the periodic table, group VIA. Both have six valence electrons in the ns and np orbitals in the same
arrangement of their outermost energy levels. Biochemically, Se is an essential trace element that
is incorporated into selenoproteins as selenocysteine. Se salts are toxic environmental pollutants.
The biogeochemistry of Se-VOC and volatile organic sulfur compound (VOSC) are thus closely
linked since both can be converted to reduced- and alkylated-volatiles. Due to their similar chemical
properties, sulfur can interfere with the uptake/absorption of selenium by microalgae.

In one study, Chlamydomonas reinhardtii (single cell green microalga) cultures (1 × 106 cells/mL)
were transferred to gas-tight solid phase microextraction (SPME) vials and the vials were crimped
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with a polytetrafluoroethylene (PTFE) septum. The cells were exposed to Se or S source for three
days. Then the cells were placed in a 23–25 ◦C incubator with shaking (90 rpm) under constant
illumination (100–120 µEin/m2), and Se-VOC and VOSC were measured using direct immersion
(DI)-SPME followed by GC-MS analysis. There were increasing amounts of both Se-VOC and
VOSC volatiles being produced under these conditions with the liberation of up to 500 µg/L of
dimethyl-selenide (DMSe). However, the microalga underwent senescence within the VOC sampling
periods of 3–9 days, owing to an absence of gas exchange in the gas-tight SPME vials [48]. Such
inorganic to inorganic–organic hybrid volatile conversion is not surprising since biomethylating
activity has been demonstrated in both freshwater and marine phytoplanktons [49].

Axenic culture of Chlorella sp. growth medium was supplemented with 20 µM Se, a concentration
that was relevant to wetlands, but one that was non-toxic to the microalgae. Following 24 h incubation
in the presence of antibiotics to prevent bacterial contamination, the gas-washing bottle containing
the culture was connected to a second bottle containing NaOH-H2O2 mixture to trap the volatiles
emitting from the culture bottle. The setup was maintained at 22–24 ◦C in a sunlit glasshouse
with 16 h light period. At timed intervals the trap was sampled for Se emissions using flame
atomic absorption spectroscopy. Chlorella converted toxic Se into volatile DMSe at rates which were
several orders of magnitude higher than other wetland macroalgae or even plants. It was concluded
that this “hypervolatilization” of Se by Chlorella may represent a new detoxification response by
the microalgae [50]. A similar detoxification mechanism was also observed with three different
microalgal species, Ankistrodesmus sp., (freshwater, long needle/spindle shaped green microalgae);
Chlorella vulgaris, and Selenastrum sp., (freshwater, green microalgae), all of which were capable of
metabolizing Se to DMSe. The DMSe was present in the headspace of the microalgal cultures as
detected by GC-flame ionization detector (FID) [51].

3.3. VOCs-Containing Sulfur

Appropriately enough, VOSCs were perhaps the first odorous compounds to be systematically
detected from algae. Paul Haas [52] observed in 1935 the malodor from decomposing seaweeds that
was absent from natural, healthy seaweeds and correlated these malodors to VOCs emitted by the
decaying Polysiphonia fastigiata, a small reddish-brown, filamentous macroalgae. He extracted the
VOCs from the organism using a series of solvents (water, alcohol, acetone) and identified methyl
sulfide being emitted during decomposition of the algae as at least one of the VOCs responsible
for the malodor. More recently, a specialist group on taste and odor (T&O, T/O), belonging to the
International Association on Water Pollution Research and Control (IAWPRC), listed the odorous algal
culture collections worldwide in order to systematically study their biogenic origins. This list included
microalgae (blue-green algae, cyanobacteria, green algae, Chrysophyta, Chlorophyta and diatoms),
and macroalgae [53]. Since the pioneering work of Haas [52], there have been numerous studies of
VOSCs (Figure 4), and some of these from in vivo microalgae are summarized below.
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the atmosphere annually [56]. Additionally, alkane thiols such as methanethiol and isopropylthiol
are intensely malodorous compounds that are known to be emitted by cyanobacteria. In fact,
cyanobacterial mats are important sources of methanethiol and Microcystis aeruginosa (freshwater
cyanobacteria) has been identified as a major emitter of isopropylthiol [55]. This microalga is a common
toxic algal bloom-forming microorganism capable of causing considerable ecological and economic
damage [57]. The emission of VOSCs might be a cue to early detection of microalgae, thus enabling
preventive actions to be implemented.

Marine microalgae produce secondary organic aerosols (SOA), some of which involve VOSCs
such as methane sulfonic acid (from dimethyl sulfide, DMS, H3C-S-CH3). The SOAs affect Earth’s
climate by forming haze which blocks heat and impacts the marine boundary layer (MBL). Sulfates are
important constituents of SOAs. Several microalgae like Emiliania huxleyi [58] (marine photosynthetic
coccolithophore microalgae, largely found in subarctic ocean waters) and marine unicellular flagellate
such as Isochrysis galbana [59], produce significantly more dimethylsulfoniopropionate (DMSP,
precursor for DMS) than diatoms. Such microalgae could play an important role in marine sulfur
cycling. Methanethiol and DMS are amongst the largest concentrations of BVOCs in the global sulfur
cycle. A pathway for DMS production is by DMSP lyase acting on DMSP (Figure 5) [54,56].
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The DMSP arises from the sulfur-containing amino acid methionine, initially from the
enzymatic action of methionine decarboxylase and subsequently undergoes decarboxylation, oxidation,
and methylation reactions to yield the final product [54]. Additionally, demethiolation of DMSP leads
to methanethiol (H3C-SH) [54] which can be converted to DMS by methylation. The malodorous
DMS is a low boiling point (~37 ◦C) liquid. Due to its high volatility, DMS can be detected using
GC-flame photometric detector (FPD) or GC-MS. In addition to these biological and chemical roles,
DMSP also functions as an osmolyte agent [60] by combating osmotic shocks to the microorganism
arising from the varying salinities that may be encountered in the marine environment. Both DMS and
DMSP also function as antioxidants [61], protecting the microalgae against damaging oxidizing
radicals in the environment. DMS is released into the ocean waters in very high amounts of
>107 tons/year [62]. It can then be transported from the ocean surface into the atmosphere where it
undergoes secondary, abiotic chemical reactions involving hydroxyl and nitrate radicals to generate
a variety of degradation products such as CO2, carbonyl sulfide (COS), dimethyl sulfoxide (DMSO,
(CH3)2SO), dimethyl sulfone (C2H6O2S), and organic acids of sulfur [54]. Furthermore, DMSP can
undergo a non-enzymatic elimination reaction in the presence of base that also leads to the formation
of DMS and acrylic acid. These enzymatic and non-enzymatic reaction products are capable of acting
as grazing deterrents to the zooplankton, presumably due to DMS, but also attributed to the biocidal
activity of acrylic acid [63,64]. Within the intact cell, the enzyme (DMSP lyase) and the substrate
(DMSP) are segregated. Upon cell lysis due to grazing by a predator, the two come into contact,
leading to the release of the concentrated acrylate which deters further grazing of Emiliania huxleyi
by the protozoan, Oxyrrhis marina (dinoflagellate marine heterotroph) [65]. Thus, all these VOSCs
play an important role in geochemical processes with global implications [63] well beyond their
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roles in the marine microalgae’s biology and biochemistry. This is supported by DMSP lyase in
Emiliania huxleyi and invoking the possibility of using enzyme activity levels for the quantification
of biogeochemical contributions of the microalgae and relating them to global DMS production [62].
Other sulfur compounds of potential climate impact include dimethyl disulfide (DMDS), dimethyl
trisulfide (DMTS), isopropylthiol, diisopropyl disulfide, and diisopropyl trisulfide [55] (Figure 4).

In an early study of VOSCs from microalgal headspace, bacteria-free axenic cultures of
several microalgae (Gyrodinium cohnii, eukaryotic dinoflagellate; Amphidinium carterii, dinoflagellate;
Cyclotella nana, marine, freshwater diatom; Glenodinium sp., marine dinoflagellate; Nannochloris oculata,
Polytoma urella, colorless, freeliving, flagellate chlorophyte; Scenedesmus obliquus, colonial,
nonmotile green algae; Chlorella vulgaris; Chlorella pyrenoidosa; Euglena gracilis; and Astasis longa,
eukaryotic uniflagellate) were all grown in chemically defined synthetic media. The headspace was
sampled for volatiles during the growth phase. The sample was fractionated into an absorption
train consisting of three parts for identifying specific VOSCs: thioether (using mercury (II) chloride,
HgCl2); mercaptan (using mercury cyanide, Hg(CN)2); and hydrogen sulfide, H2S (using zinc acetate,
Zn(O2CCH3)2) [66,67]. Despite early time period of this paper, an innovative system was employed
for the identification of headspace volatiles from several microalgal cultures, since GC systems were
still in an early phase of development in the US [68] when this work [66,67] was reported.

Blue-green algal mats collected from a hot spring in Yellowstone National Park (USA) were placed
in vials containing spring water and incubated at 55 ◦C (mimicking in situ, hot spring temperature)
under light and dark conditions. The algal mat underwent rapid decomposition, especially in the
top 3 mm segment. Headspace VOCs were collected and analyzed using GC-FPD and contained
only traces of DMS; instead copious amounts of methyl mercaptan and H2S were measured [69].
Furthermore, VOSC production was considerably lower under light conditions relative to dark
incubations. These changes were attributed to the microalgae converting to aerobic metabolism
due to O2 production [69]. As the blue-green algal mat grew upwards, the algae beneath entered
the dark phase and began to decompose. Decomposition decreased (along with VOSC production)
under aerobic, light incubation conditions. Because of growth and self-shading effects, photosynthesis
occurred only in the top 3 mm of the mat. Beneath this zone, decomposition took place, accompanied
by the emission of VOSCs. It is hard to draw additional conclusions due to a lack of identification
of the microalgal species populating the mat and perhaps the xenic nature of the culture. In a larger
study involving 123 phytoplankton clones from 12 different microalgal classes, the VOSC emissions
were examined using headspace gas analysis by GC-FPD. Once again, since all cultures were xenic,
the results have to be interpreted cautiously. It was noted that all species produced DMS. A strong
correlation was observed between the taxonomic position of the phytoplankton and the production of
DMS [59].

Oceanic DMS levels vary seasonally and regionally, dependent upon the population density of
the microalgal species. For example, diatoms which produce relatively low levels of DMS, might yet be
significant contributors to the ocean’s VOSCs budget due to the microalga’s population density. Release
of DMS into the marine environment might depend on salinity, since in lab experiments, intracellular
DMSP concentrations increased with an increase of salt concentration in the media [59]. Release of
DMS from DMSP could arise from DMSP lyase activity of microalgae such as Emiliania huxleyi [59,70]
or from co-existing bacterial action. As algae age, entering the senescent phase [70], or getting eaten by
predators, intracellular stores of DMS and DMSP are released into the water column where DMS could
be oxidized to sulfur dioxide (SO2), and then to sulfuric acid (H2SO4), resulting in acid precipitation.
A portion of the DMS could get converted to sulfate aerosols which serve as cloud condensation nuclei
(CCN), and are critical to cloud formation [59].

3.4. VOCs-Containing Halogens

Volatile halocarbons (VHCs) (Figure 6) incorporate halogen atoms of the same or dissimilar type,
linked by covalent bonds. In air, VHCs are implicated in the destruction of the UV-protective ozone
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layer. In water, they appear as trihalomethanes (THM) due to chlorination disinfection or from release
of waste products, becoming environmental pollutants and suspected carcinogens. The VHCs released
into marine waters by the microalgae may be transported into the atmosphere, where they directly
or indirectly affect global climate. Deleterious effects of VHCs were confirmed by the O3 destroying
effects of chlorofluorocarbons (CFCs) in the troposphere and stratosphere [71]. The CFCs are split by
exposure to ultraviolet (UV) radiation, resulting in the release of chlorine atom, a long-lived radical
which converts ozone into molecular oxygen:

CCl3F→ CCl2F + Cl

Cl + O3 → ClO + O2

Other photolabile halogens emitted by microalgae are tribromomethane (CHBr3),
dibromomethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), iodoethane (C2H5I),
bromoiodomethane (CH2BrI), chloroiodomethane (CH2ICl), iodine (I2) bromochloromethane
(CH2BrCl), bromodichloromethane (CHBrCl2), chloroflorm (CHCl3), and dibromochloromethane
(CHBr2Cl) [72,73]. Although radicals from these VHCs might be gases with a life span of several
days to weeks at mid and high altitudes, in the tropics such VHCs could ride convection currents
and be carried into the troposphere and stratosphere [74] and participate in ozone depletion events
(ODEs) in the troposphere, acting as CCN for larger particles with global climate-changing impact [75].
For example, Br2 and I2 pulses were suggested as ODEs [76,77].
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Reactive halogen species (RHS) are integral to biogenic emissions. It was estimated that marine
algae contribute approximately 70% of the Earth’s bromoform [78]. Microalgae were proposed
as the major contributors to global biogenic production of halocarbons due to their wide spread
distribution and abundance in the marine environment, despite production rates being lower than
macroalgae [79,80]. Microalgal production of VHCs is influenced by the usual factors such as C, N,
nutrient availability, pH, illumination, photosynthetic activity, oxidative stress, mechanical wounding,
predator grazing, salinity, and so on (Figure 2) [81]. Furthermore, the rates of VHC biosynthesis and
exudation into the environment might depend on the type of microalgal species, its geographical
location, and seasonal variations. For example, a decrease in seawater pH may lead to an increase in
VHC emission [81]. In this context, the pH of ocean waters is reported to be decreasing at a rate of
0.0019 units per year, leading to a phenomenon known as ocean acidification (OA) [82,83]. Microalgae
may also indirectly contribute to VHC production. For example, microalgae exude copious amounts
of dissolved organic matter (DOM) into the marine environment [84,85] which plays a role in the
ocean’s biogeochemistry. The DOM includes VHCs produced on the marine surface through a range
of biological and photochemical processes, creating a strong flux. The DOM itself can react abiotically
with light and ozone in a photochemical degradation reaction to further generate halocarbons.
These halocarbons undergo water–air gas exchange, releasing VHCs into the atmosphere [84,85].

Despite wide ecological distribution and the capability to produce RHS, VHC emissions by
microalgae “are still poorly known” [86] and not well understood [80]. “Waste microalgae”, defined as
algae from laboratory algal growth systems, underwent I2 mobilization which was linearly correlated
with carbon emission, suggesting the formation of organoiodine [87]. Arctic microalgae (predominantly
pennate diatoms) were found to emit significant amounts of bromoform [76]. The global contribution
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of organic bromine compounds (5–80 × 109 g/year) was suggested to be at levels that were
comparable to macrophyte and anthropogenic sources [76]. Several classes of halomethanes were
produced by different types of cyanobacteria and other microalgae such as diatoms, chlorophytes,
and coccolithophorids [80]. Biosynthesis of mono-halomethanes is catalyzed by methyl transferase
and occurs in Pavlova pinguis, a marine eukaryotic microorganism. Polyhalomethanes are also formed
via catalysis by haloperoxidase [88]. During haloperoxidase reactions, one molecule of H2O is lost.
Here, H2O2 oxidizes halide ion (X) yielding hypohalous acid, which then halogenates the electron-rich
organic compounds to produce polyhalomethanes:

S-adenosyl-L-methionine (SAM) + X− → (methyl transferase)→ CH3X + SAM (minus methyl)

H2O2 + X− + H+ → (haloperoxidase)→ HOX + RH→ R-X

Methyl iodide was produced by the phytoplankton Nannochloropsis salina (CCMP1776) during
a reaction catalyzed by halide ion thiol methyl transferase (HTMT). Significant amounts of methyl
iodide were produced in these reactions (668.1 pmol/g biomass/day) despite the fact that a fraction of
the product was converted to methyl chloride and lost to sea water [89]. In a systematic study, axenic
cultures of Porphyridium purpurem (mesophilic, unicellular red microalga) were grown with orbital
mixing (50 rpm) under 17:7 h cycles of light (20 µmol quanta/m2/s) and dark at 22 ◦C. Headspace
halocarbons were extracted and analyzed using GC-MS. Only chloroform and methyl iodide were
produced in measurable amounts in these experiments. Chloroform production was maximal during
the logarithmic growth phase of the microalgae [90].

Diatom cultures of Mediopyxis helysia and Porosira glacialis were incubated at 16 ◦C under a 12 h
light (40 µmol PAR) and 12 h dark cycle inside a 10 L glass tube, with constant mixing under
a continuous flow of synthetic air (3.4 L/min) over the microalgal suspension. The chamber’s
outflow gas was sampled and the halocarbons were detected using GC-MS. The following VHCs were
emitted from both diatom cultures: iodomethane, iodochloromethane, diiodomethane, iodite, iodate,
iodine, and bromoform [77]. Axenic cultures of the phytoplanktons Nitzschia sp. (pennate marine
diatom), Navicula sp. (primarily aquatic, eukaryotic, photosynthetic diatom), Thalassiosira pseudonana,
(eukaryotic marine diatom), Emiliania huxleyi, and Dunaliella tertiolecta (unicellular, rod-to-ovoid shape
green microalgae), all produced iodide. Iodide production was sensitive to environmental conditions,
and interestingly enough, was also sensitive to strain level differences [91], which might be helpful for
identifying microalgal strains using iodide as a volatile biomarker.

Some microalgae such as Nitzschia sp., Navicula sp., Porosira glacialis (unicellular diatom) and
Phaeocystis sp. (wide spread, eukaryotic phytoplankton), were shown to produce methyl iodide
in lab monocultures by headspace gas sampling [79]. It was unclear whether the cultures were
axenic. Scarratt and Moore [92] examined cultures of several marine phytoplanktons: Emiliania huxleyi,
Prorocentrum sp. (photosynthetic dinoflagellate), Tetraselmis sp. (eukaryotic, photosynthetic Chlorophyta),
Phaeocystis sp., Isochrysis sp. (brown-golden marine microalga), Porphyridium sp. (red microalga,
Rhodophyta), Synechococcus sp. (unicellular cyanobacterium), Chaetoceros calcitrans (fast growing diatom),
Thalassiosira weisflogii (centric diatom, unicellular microalga), and Phaeodactylum tricornutum (diatom
existing in different shapes, morphotypes). All cultures were axenic, with the exception of Porphyridium
sp. and Prorocentrum sp. Cultures were bubbled with ultra-high purity (UHP) air and grown in 17 h
light (150 µmol/m2/s) and 7 h dark cycles. The effluent air was cryotrapped and analyzed by
GC-MS or GC-ECD [92]. All microalgae produced methyl bromide and methyl chloride. In addition,
Thalassiosira weisflogii and Phaeodactylum tricornutum also produced C2H5I, CH2IBr, CH2ICl, CH2I2,
and CH3I [92].

Finally, the production of cyanogen bromide (CNBr) in the headspace of the marine
benthic diatom Nitzschia cf pellucida, provided a clue regarding the importance of halocarbons to
microalgae [93]. CNBr was an allelochemical, a potent inhibitor of this diatom’s competitors in the
environment. Exposure of the diatom’s competitors—Cylindotheca closterium (unialgal phytoplankton),
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Navicula arenaria, and Entomoneis paludosa (diatom)—to CNBr caused chloroplast bleaching, decreased
photosynthetic efficiency, growth inhibition, and cell death after 24 h. It appeared that Nitzschia cf
pellucida does a self-cleaning of its surroundings by producing CNBr, thereby clearing a space around
itself for growth and development, as part of the organism’s daily housekeeping activities. In addition
to CNBr, the head space of Nitzschia cf pellucida contained a diverse mixture of VHC metabolites [93]
whose identities and biological functions remain to be elucidated.

3.5. Other VOCs

Marine VOCs, like terrestrial VOCs, are ubiquitous in the oceans, and these emissions are
influenced by biological, photochemical, meteorological, and anthropogenic factors, leading to
spatio-temporal variations [94]. Oxygenated VOCs (OVOCs) play a role in atmospheric processes.
Methanol is an important OVOC with an important role in O3 formation in the troposphere [95].
Given that the Earth’s surface is covered by ~70% water, and the oceans hold about 97% of all Earth’s
water, marine aerosols and their associated VOCs have received increasing attention [96]. Thus, it is
important to not view VOCs as a threat to ecology, but to understand their multifaceted appearances
and functions, biotic and abiotic. This will provide a better foundation for productively tasking
VOCs for practical applications. Although several VOCs are odorous (VOSCs, VHCs), two are
of concern since these appear in potable water [97]. The two secondary terpenoid compounds
are geosmin ((4S,4aS,8aR)-4,8a-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-4a-ol; C12H22O) and
2-methylisoborneol (2-MIB) ((1R-exo)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol; C11H20O) [98]
(Figure 7).
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Humans are sensitive to the presence of these two malodorous aquatic pollutants since the odor
threshold concentration (OTC) for geosmin and 2-MIB are in the range of 4 to 10 ng/L. Thus, the human
nose can be a ‘biosensor’ for the ‘earthy/muddy/moldy’ odor of these VOCs. Cyanobacteria are
probably exclusive to microalgae generating these VOCs [36,97–99], either through cell leakage or cell
lysis during mechanical wounding or predator grazing. These two stable VOCs resist conventional
water treatment techniques and are capable of being transported through the environment in which
they are produced as well as affecting water quality distant to their origin. Eutrophication exacerbates
the situation by encouraging algal blooms, further impacting ecology and water quality. A 2007
microalgal infestation of Lake Taihu (China), led to a shutdown of water supply to over two million
residents for five days [98], highlighting the importance of early detection and remediation of T&O
VOCs such as geosmin and 2-MIB. In the cyanobacterium Synechocystis sp., geosmin was shown
to be biosynthesized by the isoprenoid route involving the methyl-D-erythritol-4-phosphate (MEP)
pathway [100,101] and not by the more common mevalonate pathway [101] (Figure 8).
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Cyanobacteria can be free-living organisms in the water column (i.e., plankton existence) or grow
attached to sediments (i.e., benthic populations). A report documented 41 different species/types
of microorganisms capable of excreting geosmin and 2-MIB in diverse aquatic sources across the
United States over a 22-year period [102]. This work could be broadened to survey similar aquatic
systems across all states in the US. Chen et al. [103] measured these malodorous metabolites in benthic
cyanobacterial mats using headspace SPME-GC-MS. To collect the headspace gas, a unique two
column system was employed, one inserted head-down over the benthic algal mat and the other
column over an area without the microalgae, to serve as the negative control. Although the types of
cyanobacteria populating these mats are not known, the two column method provides a fairly simple
and inexpensive technique for measuring the emission rates of these malodorants and other VOCs
as well [103]. A SPME-GC-MS approach was employed for monitoring geosmin and 2-MIB in the
waters of Glenmore reservoir (Calgary, AB, Canada), which had experienced periodic outbreaks of
T&O issues [104]. Chrysophytes (golden-brown/golden microalgae) and diatoms (Uroglena Americana,
Dinobryon spp., Synura petersenii, and Asterionella formosa) were responsible for these VOCs.

Isoprene (2-methyl-1,3-butadiene; C5H8; CH2=C(CH3)-CH=CH2) is a colorless, low boiling point
(~34 ◦C) VOC produced by members of the Kingdom Plantae, to which several microalgae also
belong. Isoprene is also an abundant VOC in human breath [105]. Isoprene, a major BVOC (and
AVOC), is biosynthesized by two different pathways: (a) cytosolic mevalonate pathway (Figure 8);
(b) chloroplastic, photosynthetic, 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway [106] (Figure 9).
In algae, carbon partition to isoprene goes through the DOXP pathway. Isoprene is produced during
photosynthesis, in the presence of sunlight, CO2, and H2O, via terpenoid pathways to DOXP [106,107].
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Isoprene can be oxidized by hydroxyl radicals in the atmosphere to generate hydroperoxides
which can then react with nitric oxide (NO) to form nitrogen dioxide (NO2); (NO and NO2 are referred
together as NOx). Sunlight causes the photolysis of NO2 to generate ozone (O3) [109], as shown below.

RH + OH + O2 → RO2 + H2O

RO2 + NO→ RO + NO2

2(NO2 + O2 → NO + O3)

An undesirable effect of isoprene is to increase the residence time of GHGs in the troposphere.
Isoprene also influences SOA generation and thereby impacts global climate changes, similar to
methane. Isoprene is an infochemical (or semiochemical) in that it deters plant predators by attracting
predators of the predator, i.e., herbivores [110]. Given these complex functions of isoprene, it is
important to note that marine isoprene production was estimated to be between 0.1 and 1.9 teragram
(Tg) carbon/year [111], and that it might even be as high as ~12 Tg C/year [112].

Bonsang et al. [113] first presented evidence for a biotic origin of isoprene in a marine environment.
Subsequently, using ocean samples as well as lab cultures, several phytoplankton were inferred or
actually shown, to emit isoprene [114,115]. These emissions could affect cloud properties [116].
Diatoms, Nitzschia sp., Porosira glacialis, and Odontella mobiliensis culture headspace was sampled for
a period of three weeks using the purge and trap (P&T) method, and the non-methane hydrocarbons
(NMHC) were collected and analyzed by GC-MS. A number of NMHCs were produced by all cultures
with isoprene being the major VOC with all the phytoplanktons [115]. It was concluded that since
terrestrial plants and trees are remote from the marine surface atmosphere, and given the relatively
short lifetime of isoprene (~2 h at noon sunlight), terrestrial isoprene emissions were unlikely to impact
the ocean atmosphere. On the other hand, marine sources of isoprene (such as microalgae) could
“significantly influence marine atmospheric chemistry” [115].

Several phytoplanktons (diatoms such as Phaeodactylum tricornutum, Thallassiosira
weissflogii, and Chaetoceros affinis; coccolithophores such as Emiliania huxleyi; dinoflagellates like
Amphidinium operculatum; and other microalgae such as Prymnesium parvum and Synechococcus sp.)
monocultures were found to emit isoprene during the exponential phase of the microalgae’s growth
(1 to 7 pmol/106 cells/day). Isoprene levels declined in senescent cultures [111]. The accumulated
headspace over the actively growing cultures was sampled and analyzed using GC-FID [111].
Since bacterial source for isoprene would be expected to peak during microalgal senescence due
to feeding on dead/dying phytoplankton, the authors excluded biopollutant or contamination as
a source of the measured isoprene, although axenic cultures of the algae would have removed all doubt.
The authors acknowledge this possibility by stating, “While reasonable precaution was made and
appropriate sterile techniques used to ensure their non-contamination with bacterial species during
handling, the possibility of the presence of bacterial cells in these cultures must be allowed” [111].

Isoprene production rates were reported for ~30 strains of microalgae from seven different
algal classes: Bacillariophyceae, Prymnesiophyceae, Dinophyceae, Cyanophyceae, Chlorophyceae,
Cryptophyceae, and Prasinophyceae [112]. A total of 21 strains from across the seven microalgal
classes were incubated without shaking, for a consistent period of 4 h light cycle, and then subjected
to a purge of low-hydrocarbon containing compressed air. Gas from this purge was concentrated
in a cryotrap kept at −160 ◦C. Isoprene in the concentrate was quantified using GC-FID. It was
observed that isoprene production rates varied by nearly 2 orders of magnitude between the strains
(0.03 to 1.3 µmol/h) [112]. In a different approach, Shaw et al. [117] used both axenic and xenic
cultures of cyanobacteria and other phytoplanktons to monitor isoprene and NMHC emissions.
The phytoplankton cultures examined were, Prochlorococcus (axenic and xenic), Synechococcus (axenic),
Emiliania huxleyi, Micromas pusilla (flagellate, photosynthetic, picoeukaryotic cells, <3 µm, belonging
to Prasinophyceae class of green algae), and Pelagomonas calceolate (uniflagellate, photosynthetic,
ultra-planktonic marine alga). Since the cultures were axenic and xenic, bacterial contamination was
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continuously monitored and confirmed that isoprene production was independent of biopollutants.
Culture headspace P&T was used to collect the volatiles which were analyzed by GC-FID. Although
the culture incubation temperature was different (unique to the species), all cultures were under
14 h light (~110 µE/m2/s), and 10 h dark cycle. Isoprene production was related to light intensity
and temperature effects. All species produced isoprene during exponential growth phase at rates
of 1 × 10−21 to 4 × 10−19 mol/cell/day, depending on the species. This short list of phytoplankton
emitting isoprene was enlarged by the authors with an examination of ~30 microalgal cultures, all of
which were found to emit isoprene and monoterpenes. Rates of emission varied as above with species,
chlorophyll concentration, light, temperature, and other parameters [118].

Isoprene emission from microalgae was correlated with light intensity. For example, there
was a rapid increase in isoprene production by three diatom strains at low irradiance levels
(<150 µmol/m2/s), accompanied by a gradual increase at higher irradiances (>250 µmol/m2/s) [119].
The phytoplanktons were Thalassiosira weisflogii, Thalassiosira pseudonana, Chaetoceros neogracile,
and Emiliania huxleyi. All microalgae were grown at 22 ◦C without bacterial contamination by
applying sterile techniques. After 7 to 14 days in culture, headspace was sampled for up to 8 h,
and analyzed by GC-photoionization detector (PID) [119]. These authors also examined six microalgal
monocultures [120]: Thalassiosira weissflogii; Thalassasiosira pseudonana; Pleurochrysis carterae (unicellular
coccolithophore); Karenia brevis (marine dinoflagellate); Prorocentrum minimum; and Rhodomonas salina
(Cryptophyta). Headspace VOCs were concentrated in a wet trap followed by a sorbent trap, and then
analyzed using GC-MS. The microalgae had been subjected to 12 h of light stress (90–900 µmol/m2/s)
followed by 12 h of dark prior to VOCs collection. Temperature stress was by incubation between 18
to 30 ◦C. Diatoms were the largest emitters of isoprene in this study. Other VOCs emitted included
α-pinene, β-pinene, d-limonene, and camphene [120].

Generally, VOC emissions increased rapidly under low light, and gradually increased under
stronger light intensities [119]. Compared to isoprene, the emissions of monoterpene were an order of
magnitude lower at all light and temperature regimens. It was concluded that isoprene emissions from
the various phytoplankton could play a role in SOA formation and thereby modulate marine cloud
properties, eventually influencing the climate [120]. Carbon cost of headspace isoprene emissions
in diatoms (Phaeodactylum tricornutum and Chaetoceros calcitrans) was calculated as being ~2000-fold
lower relative to terrestrial plants as a fraction of photosynthesis. It was therefore concluded that
marine phytoplankton’s contribution to atmospheric carbon levels might be significantly higher than
previously estimated [121] relative to terrestrial plants. Since marine phytoplankton (for most part)
tend to emit either DMS or isoprene, and further since these two volatiles had opposite latitudinal
gradients, it was suggested that DMS emission was dominant in the polar waters whereas isoprene
emissions were higher in tropical (warmer) oceans. Global warming may however “expand the
geographic range of marine isoprene-emitters” [122].

Besides isoprene, diverse classes of other VOCs are also produced by microalgae with biological
and ecological significance. Such VOC classes include alcohols, esters, aldehydes, hydrocarbons,
terpene derivatives, ketones, furans, carboxylic acids, fatty acids, carotenoid derivatives, and sulfur
compounds [36,123]. The biochemical pathways for some of these VOCs show connectivity between
primary and secondary metabolic pathways [123] (Figure 10).
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of metabolism, the biosynthesis of VOCs occurs through the formation of pyruvate.

For example, nor-carotenoids are derived from the oxidative cleavage of carotenes and
xanthophylls. The degradation products of these reactions generate a variety of VOCs such as
α-ionone, β-ionone, α-cyclocitral, and β-cyclocitral (Figure 11) [36,98]. Volatile fatty acids (VFAs) are
direct or indirect products of lipid metabolism. In addition to geosmin and 2-MIB, several ketones and
ionones [99], as well as odorous compounds such as C7–C10 alkenes, 2,4-heptadienal, 2,4,7-octatriene,
2,4-decadienal, and 2,4,7-decatrienal are all emitted by microalgae (e.g., Chrysophytes, golden-brown
or golden microalgae and diatoms) [104]. Despite considerable diversity of microalgae and the
importance of microalgal VOC emissions, there is little quantitative information on VOCs biogeneration
in vivo [86,123]. These observations should prompt quantitative investigations of VOCs biochemistry
and consequent environmental impact.Metabolites 2017, 7, 39 16 of 44 

 

 
Figure 11. Chemical structures of a few prominent microalgal (‘other’) VOCs. 

Microalgae growing in natural marine environments were identified as major producers of 
VOCs including sulfate aerosols, isoprene, and monoterpenes [124]. Unpublished data identified 45 
different VOCs being emitted by marine and freshwater algal cultures, although it was not clear 
whether the emitting species were microalgae or macro [124]. Walsh et al. [125] found Microcystis 
aeruginosa released copious amounts of VOCs including C15–C21 aliphatic hydrocarbons, naphthalene, 
terpenoids, β-cyclocitral, and β-ionone. Exposure to sunlight and varying the iron concentration of 
the culture medium affected both the specific VOCs emitted and their relative concentrations [125]. 
The authors used closed loop stripping analysis (CLSA) for the capture of VOCs. It was not clear 
whether the microalgae survived CLSA treatment. Chlorophyll a, a key component of phototrophic 
microalgae, correlated with the generation of VHCs such as chloroform and dichloromethane [126]. 
Capture and analysis of VOCs was by SPME-GC-MS. Wind speed and water temperature, along with 
seasonal variations, influenced VOCs production. In a rare example of computational analysis [127], 
the authors used partial least squares (PLS) modeling to highlight microalgal VOC emissions in the 
spring, whereas macroalgae emissions dominated at other times [126].  

In the ocean, microalgae cause a rapid turnover of methanol within a timeframe of 1–7 days 
[128]. A P&T method was used to trap headspace gas of different marine phytoplankton in culture, 
including the cyanobacteria, Synechococcus spp., Trichodesmium erythraeum, Prochlorococcus marinus 
and the eukaryotic diatom, Phaeodactylum tricornutum, Emiliania huxleyi, the cryptophyte Rhodomonas 
salina, and the non-diatom heterokont, Nannochloropsis oculata. All microalgae cultures were axenic, 
except (emphasis added) T. erythraeum, which the authors noted was “notoriously difficult to 
maintain pure”. Headspace gas was analyzed by GC-MS. All microalgae produced methanol in 
concentrations ranging from 0.8 to 13.7 μM in culture. Methanol production was maximal near the 
early stationary phase [128]. In a similar study, methanol production was examined in the headspace 
of microalgae cultures including coccolithophore, dinoflagellates, a haptophyte, and a 
cyanobacterium. Production of micromolar quantities of methanol were estimated from these 
phytoplanktons during exponential and stationary growth phases. Certain similarities were observed 
between the production profiles of methanol and isoprene in the headspace from the eukaryotic 
dinoflagellate, Amphidinium operculatum [129]. The conclusions from these studies were that the 
phytoplanktons have the potential to contribute significant amounts of methanol to ocean waters and 
then to the atmosphere. Since marine phytoplankton are the most abundant organisms, their 
methanol production could rival those of terrestrial biotic sources of methanol [128], since even small 
amounts of methanol produced could turn into a large reservoir due to the sheer population density 
of the phytoplankton [129]. 

Five marine phytoplankton species—Calcidiscus leptoporous (coccolithophore), Emiliania huxleyi, 
Phaeodactylum tricornutum, Chaetoceros neogracilis, and Dunaliella tertiolecta—belonging to three 
different microalgal classes and occurring in coastal and open ocean waters, were studied using 
headspace gas analysis by GC-MS [130]. All cultures were axenic except C. leptoporous. The cultures 
were grown at 20–25 °C (depending on species) in an even split cycle of 12 h of light (~250 μE/s/m2) 
and 12 h dark. VOC samplings were performed in the middle of the light cycle, over 3–4 days. The 
strongest emitters of methyl bromide were C. neogracilis and P. tricornutum; C. neogracilis was also the 

Figure 11. Chemical structures of a few prominent microalgal (‘other’) VOCs.

Microalgae growing in natural marine environments were identified as major producers of VOCs
including sulfate aerosols, isoprene, and monoterpenes [124]. Unpublished data identified 45 different
VOCs being emitted by marine and freshwater algal cultures, although it was not clear whether
the emitting species were microalgae or macro [124]. Walsh et al. [125] found Microcystis aeruginosa
released copious amounts of VOCs including C15–C21 aliphatic hydrocarbons, naphthalene, terpenoids,
β-cyclocitral, and β-ionone. Exposure to sunlight and varying the iron concentration of the culture
medium affected both the specific VOCs emitted and their relative concentrations [125]. The authors
used closed loop stripping analysis (CLSA) for the capture of VOCs. It was not clear whether the
microalgae survived CLSA treatment. Chlorophyll a, a key component of phototrophic microalgae,
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correlated with the generation of VHCs such as chloroform and dichloromethane [126]. Capture and
analysis of VOCs was by SPME-GC-MS. Wind speed and water temperature, along with seasonal
variations, influenced VOCs production. In a rare example of computational analysis [127], the authors
used partial least squares (PLS) modeling to highlight microalgal VOC emissions in the spring, whereas
macroalgae emissions dominated at other times [126].

In the ocean, microalgae cause a rapid turnover of methanol within a timeframe of 1–7 days [128].
A P&T method was used to trap headspace gas of different marine phytoplankton in culture, including
the cyanobacteria, Synechococcus spp., Trichodesmium erythraeum, Prochlorococcus marinus and the
eukaryotic diatom, Phaeodactylum tricornutum, Emiliania huxleyi, the cryptophyte Rhodomonas salina,
and the non-diatom heterokont, Nannochloropsis oculata. All microalgae cultures were axenic,
except (emphasis added) T. erythraeum, which the authors noted was “notoriously difficult to
maintain pure”. Headspace gas was analyzed by GC-MS. All microalgae produced methanol
in concentrations ranging from 0.8 to 13.7 µM in culture. Methanol production was maximal
near the early stationary phase [128]. In a similar study, methanol production was examined
in the headspace of microalgae cultures including coccolithophore, dinoflagellates, a haptophyte,
and a cyanobacterium. Production of micromolar quantities of methanol were estimated from these
phytoplanktons during exponential and stationary growth phases. Certain similarities were observed
between the production profiles of methanol and isoprene in the headspace from the eukaryotic
dinoflagellate, Amphidinium operculatum [129]. The conclusions from these studies were that the
phytoplanktons have the potential to contribute significant amounts of methanol to ocean waters and
then to the atmosphere. Since marine phytoplankton are the most abundant organisms, their methanol
production could rival those of terrestrial biotic sources of methanol [128], since even small amounts
of methanol produced could turn into a large reservoir due to the sheer population density of the
phytoplankton [129].

Five marine phytoplankton species—Calcidiscus leptoporous (coccolithophore), Emiliania huxleyi,
Phaeodactylum tricornutum, Chaetoceros neogracilis, and Dunaliella tertiolecta—belonging to three different
microalgal classes and occurring in coastal and open ocean waters, were studied using headspace
gas analysis by GC-MS [130]. All cultures were axenic except C. leptoporous. The cultures were
grown at 20–25 ◦C (depending on species) in an even split cycle of 12 h of light (~250 µE/s/m2)
and 12 h dark. VOC samplings were performed in the middle of the light cycle, over 3–4 days.
The strongest emitters of methyl bromide were C. neogracilis and P. tricornutum; C. neogracilis was
also the strongest emitter of isoprene. Other VOCs emitted by all phytoplanktons were chloroform,
dichloromethane, trichloroethylene, chlorobenzene, tetrachloroethylene, and dichlorobenzene, along
with 1,1-dichloroethane and 1,2-dichloroethane. With all species, trichloroethene production was more
significant than tetrachloroethene. The volatile bouquet included VHCs and NMHCs [130].

VOC profiles of the heterotrophic cyanobacterium, Phormidium autumnale, were studied using
axenic cultures in a bubble column growth bioreactor at 25 ◦C, pH 7.6 [131]. As above, light and dark
cycles were evenly split in 12 h portions and the light intensity was 15 µmol/s/m2. Headspace gas
was sampled using SPME and the VOCs were analyzed by GC-MS. A total of 68 VOCs were identified
during this study, with 3-methyl-butanol being the major volatile, at a concentration of ~142 µg/mg
dry weight of culture [131]. Several VOCs belonged to the terpenoid class of volatiles and included
β-ionone, β-cyclocitral (Figure 11) and 5,6-epoxy-β-ionone, hexanol, and hexanal, along with VOCs
from the 2-keto acid pathway such as 3-methyl-butanol, propanol, and butanol (Figure 12).
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Amongst the most abundant VOCs were ketones, such as 2,3-butanedione and dehydro-2-
methyl-furanone. Aldehydes were fewer in the VOC profile and were mostly C2 and C4 compounds.
Only linear short chain (C3–C5) alcohols appeared in the headspace gas and such alcohols are
characteristic biomarkers for the cyanobacteria. With acidic volatiles, acetic acid dominated followed
by butanoic acid, isobutyric acid, and isovaleric acid. This analysis of the volatile profile, while not
entirely comprehensive, is nevertheless a good start to VOC metabolome of in vivo microalgae.

Methane is one of the most potent GHGs and second in importance only to CO2. Consequently,
methane plays an important role in atmospheric chemistry [132]. The GWP of methane is 28 since
it absorbs more energy than CO2 and biogenic emissions of methane play an important role in this
phenomenon vis-à-vis even fossil-fuel industry [133]. Therefore, methane emissions from monoclonal
cultures of Emiliania huxleyi were a significant finding [134]. The microalgae were grown at 20 ◦C
inside a closed flask with ~500 mL headspace. Cells were grown on a day–night cycle (~450 µE over
10 days) of 16 h and 8 h, respectively. Headspace was sampled between days 4 and 10 of growth
and GC/isotope ratio-MS was used to quantify methane [134]. Methane production was too low to
quantitate during exponential growth (day 7). It was estimated that thereafter methane production rate
ranged anywhere between 1/10 to 10-fold greater, relative to methane production by terrestrial plants.
Due to its widespread distribution in the marine environment, Emiliania huxleyi might contribute
significantly to methane oversaturation of ocean surface waters [134]. Some researchers have proposed
increasing algae growth for cattle feed, as inclusion of algae in the feed may decrease the animal’s
methane emissions. However, it is important that any decrease in methane emission from cattle is not
offset by the VOCs generated from large-scale cultivation of algae.

In another rarity amongst in vivo microalgae VOC profile characterization, Durme et al. [135]
used computational algorithms and pattern recognition software to segregate microalgae on the
basis of their VOC profiles. Five species of microalgae were investigated: Botryococcus braunii (green,
pyramid-shaped planktonic microalgae), Rhodomonas Sp., Tetraselmis sp., Nannochloropsis oculata, and
Chlorella vulgaris. A variety of VOC classes were identified in the headspace gas which was analyzed
using SPME-GC-MS. The VOC classes included VOSCs, linear, branched, and aromatic aldehydes,
alcohols, ketones, terpenes, norisoprenoids, esters, acids, and furans [135]. All microorganisms emitted
high levels of sulfur compounds such as DMDS, DMTS, and methanethiol, along with diketones,
α-ionone, β-ionone, and aldehydes such as 2,4-alkadienals and 2,4,6-alkatrienals. Principal component
analysis (PCA) of the VOC bouquet segregated the microalgae according to species [135]. In another
study, headspace VOCs from the cyanobacteria, Spirulina platensis, Nostoc spp., and Anabaena spp.
(filamentous, planktonic, cyanobacterium) were analyzed using GC-MS. Geosmin was not detected
in any the three cyanobacteria, although 2-MIB was present in all emissions. Amongst a total of
17 VOCs identified, the main VOCs were medium chain length alkanes, 2-pentyl-furan, β-cyclocitral,
and β-ionone [136]. These authors also performed PCA, along with hierarchical cluster analysis (HCA),
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to segregate microalgal species based on VOC profiles [136]. Such pattern recognition tools must play
a key role in the analysis of microalgal VOCs and microalgal metobolome.

4. Functions of Microalgal VOCs

Thus far, several VOCs were identified along with pathways for the production of microalgal
VOCs, and theories regarding their roles in ecology, atmospheric chemistry, and global climate.
But what of the microalgae itself? What is the purpose behind the production of VOCs by the
microalgae? VOC emissions reduce carbon availability for the microalgae’s growth, survival,
development, and reproduction. So, how does the loss of crucial carbon reservoir benefit the organism?
Why should microalgae undertake energy-expensive processes such as the production and release of
these VOCs? There are no easy answers to these questions. In some cases, VOCs may be produced
as a detoxification mechanism, as with the formation of Se-VOCs. Elsewhere, Se-VOCs might have
a beneficial effect on microalgae’s growth and development. For example, with Emiliania huxleyi [137],
it was found that the microalgae converted Se to Se-VOCs, and utilized the latter for the synthesis of
selenoproteins. The production of N2O might involve nitrate assimilation, regulated through NO.

Throughout this review, several references were made regarding one or more VOC levels changing
due to the microalgae’s growth status (log phase, stationary phase, senescence). Whether such
fluctuations in VOC levels are causally related to growth or serendipitous is unclear. Some metabolites
were identified with osmolytic function, though even this idea is not unequivocally accepted [138].
In the marine environment, there is an excess of sulfur and a relative shortage of N2, which is critical
for phytoplankton growth. Therefore, it has been argued that DMSP production may be regarded
as an ‘overflow mechanism’ whereby the microalgae balances its nutrients and adapts to shifting
environmental situations. Thus, DMSP lyase activity is a regulatory mechanism and the release of
DMS might be incidental toward maintaining the DMSP equilibrium [138].

Metabolites excreted by cyanobacteria (geosmin, 2-MIB, β-ionone, β-cyclocitral), purchased
as purified compounds inhibited the growth of the eukaryotic green alga, Chlorella pyrenoidosa.
Other VOCs showing similar growth inhibitory properties included monoterpene alcohols, straight
chain fatty acids (C7–C12), and straight chain alcohols and aldehydes, leading to the conclusion
that these VOCs might act as allelopathic agents towards the phytoplankton [139]. However,
the concentrations (10 mg/mL) at which these VOCs displayed growth inhibitory properties were high,
leaving the physiological relevance ambiguous. In conclusion, VOC emissions of microalgae have
included postulates of defense mechanism, stress response, intra- and inter-species communication,
and regulating prey–predator interactions. As noted earlier, CNBr emission was part of a daily
“housekeeping” activity by the microalgae that kept the environment free of competitors [93].

Do Microalgae Communicate?

Due to paucity of data on the physiological significance of microalgal VOC emissions, there is
a need to focus on VOC emissions from plants for drawing parallels and “lessons learned” [140].
Plants are relevant since several photosynthetic microalgae belong to the Kingdom Plantae. Plants
respond to neighbor’s arrival, mechanical wounding, herbivore feeding, or to pathogen infections,
by releasing VOCs, leading to the characterization of such events as “plant–plant communication”
or “talking trees” and “plant’s cry for help” [141,142]. The term “plant volatilome” was proposed
by Maffei et al. [143], and has since been widely used [144,145]. The photosynthetic behavior of
microalgae resembles that of plants. As such, plant and microalgae VOC emissions might occur under
the influence of similar factors (Figure 2) [146,147]. Furthermore, VOC chemical structures and even
functions in the plants might be replicated in the microalgae [148]. Thus, VOCs may play the role of
infochemicals in the microalgae, constituting a unique ‘vocabulary’ for communicating within and
across species. Such a scenario is plausible, since VOCs can travel far from the point of source with the
capacity to traverse subterranean, land, water, and air due to their low-to-moderate hydrophilicity,
ability to dissolve in water, or disperse at the air–water interphase [149].
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Infochemicals are non-verbal (non-acoustic) communications involving chemicals containing
actual information (‘cues’) or precursors to information (‘signal’). Infochemicals are classified as
‘pheromones’ (generally, intra-species communication) and allelochemicals (generally, inter-species
communication) [150]. Semiochemicals are communication cues which may be inter-species or
intra-species. For example, microalgal kairomones act as chemical cues to predators, enabling
them to seek out prey and thus are not beneficial to the microalgae. Allelochemicals are secondary
metabolites (such as VOCs) which may have a detrimental effect on a species different from
the emitting organism (negative allelopathy) or a beneficial effect (positive allelopathy). Certain
kairomones exemplify negative allelopathy. Such VOC-mediated communications are not limited
to microalgae, and have been known to occur in a number of different organisms, ranging
from bacteria [148,151,152], fungi [149,152], to higher organisms such as plants [141,142,153,154],
insects [155–158], and animals [159].

Intra-species communication via VOCs was demonstrated by exposing ‘normal’ Chlamydomonas
reinhardtii cells to gases collected from the headspace of ‘salt-stressed’ (NaCl, 300 mM; Na2CO3,
150 mM) cells which resulted in growth inhibition of the normal cells. Besides headspace volatiles, there
was no other means of contact between the two types of cells [160]. This ‘non-contact inhibition’ was
accomplished by growing the salt-stressed cells in a flask that was connected to a second flask such that
only VOCs from the former flask were introduced into the latter (Figure 13). A total of 33 VOCs were
identified from the headspace using thermal desorption (TD)-GC-MS, including 1-octene, 3,4-dimethyl
hexane, octanal, hexanal, nonane, 1-decene, undecane, nonanal, dodecane, with hexanal being the
most abundant VOC from NaCl stressed cells, whereas 3,4-dimethyl hexane and 5-methyl-2-heptene
were released in copious amounts from Na2CO3-stressed Chlamydomonas reinhardtii [160]. A caveat to
the system is the gas-tight connection between the two flasks with the potential for anaerobic processes
setting in. Consequently, growth needs to be monitored carefully.
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The authors expanded these observations to inter-species non-contact communication as
well [160]. Microcystis flos-aquae (freshwater cyanobacteria) cells were grown in medium and kept
in a light (16 h, 50 µmol/m2/s, illumination intensity) and dark (8 h) cycle at 23 ◦C. Cells were in
mid-logarithmic growth phase when VOCs were collected by dynamic headspace air-circulation
method [160]. Numerous VOCs were identified under various classes such as furans, sulfur
compounds, terpenoids, benzenes, aldehydes, esters, and hydrocarbons. When Chlorella vulgaris cells
were exposed to VOCs emitted by M. flos-aquae under non-nitrogen growth conditions, cell propagation
and photosynthetic pigment declined in the former, indicating a negative allelochemical (toxic) effect
of the M. flos-aquae VOCs [162]. An interesting example of inter-species communication with the
opposite effect, i.e., whereby VOCs emitted by bacteria had a positive effect upon microalgae was
reported [161]. Nearly 45 VOCs including 2,3-butanediol, acetoin (3-hydroxy-2-butanone) were emitted
by Azospirillum brasilense (nitrogen fixing Gram-negative bacteria) and Bacillus pumilus (aerobic, spore
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forming Gram-positive bacteria). These bacterial headspace VOCs were exposed to a microalgal
culture of Chlorella sorokiniana (freshwater green microalgae) in a non-contact fashion, after taking the
precaution to scrub the headspace VOCs free of CO2. Exposing the microalgae to bacterial VOCs led to
a six-fold increase in growth and an increase in the cell volume by approximately three-fold. This was
an example of beneficial (positive allelochemical) effects of the bacterial VOCs upon microalgae,
by promoting growth [161].

Certain polyunsaturated fatty acids (PUFA) were identified as allelopathic agents in
microalgae [36]. The production of several different volatile products from PUFAs—including
hydrocarbons, aldehydes, and ketones—are shown in Figure 14. As with any other metabolite,
production of volatile short chain fatty acids (SCFAs) and PUFA depend on the various factors
influencing the growth and development of the microalgae (Figure 2). In a different example, this one
involving a pheromone-like property, fatty acid derived cyclic and acyclic hydrocarbons were proposed
as sex pheromones for sperm attraction in marine microalgae. Similar or same VOCs were also
identified in freshwater diatoms; however, their functions in diatoms are unknown [97]. The chemistry
of a particular VOC, timing of its release, persistence, and diffusivity in the environment, are all
critical to semiochemical activity [36]. Thus, VOC allelopathy (positive or negative) sheds light on
microalgal community structure, population dynamics, defense mechanism, and might provide the
microalgae with a competitive advantage [32], or sometimes act to the disadvantage of the organism
by promoting predator attack, aiding the enemy. Finally, abundant production of PUFA by microalgae
is of commercial interest due to their potential health benefits and non-nutritional applications such as
in the manufacture of paints and varnishes.
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5. Presymptomatic Diagnostics—A Potential VOC Application?

5.1. Presymptomatic Diagnostics

Presymptomatic diagnostics is an important goal in human health [163]. It is important
to distinguish between asymptomatic individuals from uninfected individuals (healthy cohorts).
Is an individual uninfected, or infected by a pathogen but the disease has not progressed to the
extent that symptoms appear, or infected but not displaying symptoms? Extrapolating to microalgal
cultivation, an intriguing application of VOC technology is in the early detection of algal “pond crash”
due to predator attack [33–35]. The VOC technology platform could thus be used to distinguish
individuals, whether microalgae or humans, who are uninfected or infected but not displaying
symptoms, or infected but infection progression is insufficient to display symptoms. It is estimated
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that pond crash is responsible for the failure of nearly one-third of all annualized algae production.
The situation is exacerbated by the fact that current diagnostic tests for algal pond crashes involve
laborious techniques such as flow cytometry or molecular biotechnology, which require complex
procedures that are expensive, not-portable, posing difficulties for handling multiple specimens, not
amenable to automation, unsuited for rapid field tests, offering poor overall algal pond coverage,
and requiring bench-top equipment and trained personnel to run the tests and correctly interpret the
results [33]. Could VOCs be reliable biomarkers for microalgae’s SoH?

5.2. VOCs for Presymptomatic Diagnostics

A revolutionary approach could be to utilize VOCs to predict healthy microalgal ponds
and presymptomatically detect predator attack in ORPs or PBRs. There are several advantages
to presymptomatic diagnostics including time for instituting remedial measures, containment of
outbreak, forecasting pond crashes, and decreasing cost. Successful demonstration of VOC-based
presymptomatic diagnostics could also broaden the scope to macroalgal cultivation. There are
tantalizing publications in the literature for promptly initiating this approach. For example, breath VOC
analysis using Monte Carlo simulation identified influenza-virus specific biomarkers in individuals
who had previously been vaccinated with live attenuated influenza virus (LAIV) [164]. The study
authors concluded that “a breath test for these VOCs could potentially identify humans who are
acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease”
(emphasis added) [164]. The VOC signatures could be used as ‘stand alone’ biomarkers of pond crash,
or in combination with other tools/techniques for improving prediction capabilities. For example,
conventional tools for predicting asthma in children yielded poor positive predictive values (~60%).
Adding exhaled breath VOCs detection and gene expression biomarkers, classified 89% of the children
accurately, a significant improvement in disease predictability [165].

5.3. VOC Metabolomics (Volatilomics)

Several different types of VOCs might be expected from microalgae in vivo. These include VOCs
produced by the microalgae, VOCs from interactions between microalgae and a specific growth
medium; background VOCs from the marine environment, growth medium, or ambient air; and VOCs
due to the presence of biological pollutants/predators. Absence of an analyte or a group of analytes
in the VOC profile might be just as distinctive and discriminatory. A combined strategy of specific
and general VOC emission analyses can dramatically increase diagnostic specificity and sensitivity.
The goal is to establish a definitive link between a particular VOC, groups of VOCs, absence of
certain VOCs, and/or emission patterns of VOCs, either individually or in some combination, to the
microalgae’s SoH.

The approach towards using VOC technology for presymptomatic algal pond crash prediction
and early pond crash forensics could include VOCs specific to the microalgae that is being cultivated,
qualitative and/or quantitative deviations from such VOC levels, VOCs specific to the predator
suspected of invading the algal pond, qualitative and/or quantitative deviations from such predator
VOCs levels, and pattern recognition [127] for the analysis of the microalgae and/or the predator
VOC profiles. This “volatilome” [12–17,143–145] could be a ‘stand alone’ resource for making robust
predictions of presymptomatic pond crashes, or complement/supplement one or more traditional
‘omics’ technologies [166]. Algal pond crash-causing predators include microorganisms such as
bacteria. It is therefore especially relevant that VOCs have already been used for bacterial identification,
even in mixed/co-cultures, down to species and serovar levels [167–171]. There are also publications
on VOC-mediated interspecies communications (vide supra) including predator–prey interactions
involving protists [172] (phytoplankton predators). These studies have been enlarged by the availability
of metabolomic and volatilomic databases of humans, bacteria, and algae. Specific to VOCs,
there are metabolomic/volatilomic databases and resources such as “VocBinBase” [173], flavornet,
http://www.flavornet.org/, “mVOC”, database of microbial volatiles [174], “ABA-Cloud” [175],
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“MetaboLights” (http://www.ebi.ac.uk/metabolights/) [176], “DOVE-MO” (Kalderas, J. “DOVE-MO”
database of volatiles emitted by microorganisms. Diploma Thesis, University of Rostock, Germany, 2011;
cited in [149]), databases and software packages [30,144,177–179], and National Institute of Standards
and Technology (NIST), Standard Reference Database, https://www.nist.gov/srd/nist-standard-
reference-database-1a-v14, all of which may be consulted for VOC identification, matching metabolites
to specific metabolic pathways [180], and building a volatilome unique to microalgae and/or predator,
to facilitate presymptomatic pond crash forensics. Such studies will be enabled by a knowledge of
VOCs linked to metabolic processes (Table 2).

Table 2. Biochemistry of certain VOCs.

VOC Metabolic Basis

H2, CH4 (Hydrogen, Methane) Carbohydrate
C2H6CO (Acetone) Acetoacetate decarboxylation

NH3, CH3NH2 (Ammonia, Methylamine) Protein
H/Cs, C5H12, C2H6, C2H4 (Hydrocarbons) Lipid peroxidation

NO (Nitric oxide) Nitric oxide synthase
C2H5OH, CS2, COS (Carbonyl sulfide) Intestinal bacteria

CO (Carbon monoxide) Heme catabolism
CH3SH, C2H6S (Methane/Ethane thiols) Methionine metabolism

CH3CHO (Acetaldehyde) Ethanol metabolism
C5H10 (Cyclopentane) Cholesterol metabolism

5.4. VOCs during Growth/Senescence

In order to realize presymptomatic pond crash forensics, it is essential to establish a definitive
role for VOCs in microalgae physiology, growth, and development. In other words, is there a link
between VOC secondary metabolites emission that is correlated with growth, senescence, or death of
the microorganism? Throughout this review, several papers were summarized that were suggestive of
a positive relationship between the microalgae’s SoH and specific VOC emissions. These observations
are briefly revisited here along with new data not discussed previously.

Haas [52] was perhaps the first to scientifically document a relationship between decomposing
seaweed and VOSCs, albeit in macroalgae. Similar correlations between VOSC and microalgae’s
death or decay were published later. For example, when microalgae aged or were consumed by
predators, DMS was released into the water column environment [59]. Decomposing blue-green algal
mats released copious amounts of VOSCs such as methylmercaptan and H2S [69]. Other odorous
volatiles like geosmin and 2-MIB were shown to be released by phytoplankton during cell lysis [104],
perhaps under predator attack. Indeed, DMS was released in order to deter predators [64,65].
Florez-Leiva et al. [42] demonstrated high emissions of N2O in the headspace of Nannochloris
when the microalgae were undergoing senescence. On the other hand, they also noted that
methane emission increased steadily between 2 to 10 µmol/m3 during the growth phase of this
phytoplankton [42]. Isoprene was proposed as a biomarker for senescence due to a decrease in its
levels in senescent cultures of several microalgae [111]. Methanol production was maximal during early
stationary phase for a range of phytoplankton including coccolithophore, dinoflagellate, haptophyte,
and cyanobacteria [128], whilst chloroform levels were similarly maximal during logarithmic growth
phase of the unicellular red alga, Porphyridium purpurem [90]. Abundant acetic acid production was
observed from cyanobacterium Phormidium autumnale [131] and this was linked to programmed
cell death (PCD) of the microalgae. Thus, Chlamydomonas reinhardtii, a unicellular green microalga,
underwent PCD in the presence of acetic acid along with the emission of abundant quantities of
>30 different VOCs released into the headspace [181]. Interestingly, VOCs released during PCD also
inhibited the growth of normal microalga, acting as infochemicals (negative allelochemicals) [181].

Under normal, healthy operating conditions, algal ponds will be aerobic and low emissions of
VOCs are expected. During catastrophic failure of the culture, algal ponds undergo a transition
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to an anaerobic condition, and a variety of nitrogen and sulfur VOCs are emitted along with
methane [124]; however, the anaerobic requirement has been challenged [182]. As noted above,
T&O compounds may be released during senescence or cell lysis [36]. Heightened release of
terpenoid VOCs, like 2-methyl-1,3-butadiene, may occur during the stationary or senescence phases;
however, little research has been conducted on these biological activities [36]. Contrary to an earlier
report [104], geosmin was suggested as an indicator of live cells of Nostoc flagelliforme (cyanobacterium).
Headspace samples were collected from this microalgae at defined intervals over 1 to 20 days
and analyzed using SPME-GC-MS [183]. Eleven different VOCs were detected, amongst which
geosmin levels declined, correlating with decreased cell viability, whereas indole levels increased
simultaneously [183]. In agreement with previous reports, sulfur compounds such as DMS and DMTS
(along with β-cyclocitral and β-ionone) were dominant during the decomposition phase, whereas
2-MIB was elevated during the growth phase [184]. Finally, Durme et al. [135] were able to segregate
four different microalgae species using PCA of VOC profiles. Likewise, Milovanovic et al. [136] were
able to separate different cyanobacterial species using PCA and HCA of VOC emissions. Furthermore,
these authors were also able to correctly segregate two different samples of Spirulina using unique
VOC emissions and pattern recognition algorithms [136].

Considered together, the foregoing implies that certain VOCs might be biomarkers of algal growth
and/or death or senescence, or that some VOCs are produced in response to predators whilst others are
indicative of healthy, exponential growth of the microalgae. There is also evidence that VOC profiles
might be useful in identifying specific species of microalgae. Supporting this claim is the observation
that C3–C5 alcohols might be characteristic biomarkers of cyanobacteria. Chance et al. [91] showed
that iodide production was sensitive to strain level differences amongst the microalgae. It is perhaps
important to note that not only specific VOCs, but also quantitative differences in VOC levels and
VOC patterns, along with the absence of certain VOCs, will be collectively relevant for prognosticating
regarding microalgae, predator, or pond health.

5.5. VOCs in Predator–Prey Interactions

The final consideration for presymptomatic diagnostics of microalgal pond crash after predator
attack concerns the role of VOCs emission as a consequence of predator–prey interactions. Here too,
there are intriguing publications suggesting a role for VOCs as infochemicals, either favoring or
detrimental to the microalgae (kairomones). For instance, release of DMS under predator attack
has been attributed to cell damage by grazing, leading to a mixing of the intracellularly-segregated
DMSP and DMSP lyase, resulting in the release of volatile DMS [64,65,97]. Grazing might indeed
be an important factor in the release of VOCs from microalgae which serve as deterrent to the
grazer or as food finding cues to the predator. In a variation of this theme, short chain unsaturated
aldehydes derived from oxylipin chemistry produced by marine diatoms, a major class of planktonic
microalgae, were shown to induce reproductive failures in their natural predator, the copepod
crustaceans. These failures included abortions, congenital malformation of offspring, and decreased
larval growth, collectively contributing to securing the prey [185]. In a role reversal, VOCs produced by
Pseudonitzschia delicatissima (planktonic diatom) and Prorocentrum minimum (dinoflagellate) attracted
their predator, a zooplankton grazer, Centropages typicus, an example of negative allelopathy [186].
On the other hand, VOCs emitted by Skeletonema marinoi (another planktonic diatom) was favorable to
the survival of the emitter by repelling the grazer and protecting the diatom [186]. It was concluded
that these VOCs prompt chemokinesis according to the particular type of microalgal species and the
concentration of the VOCs being produced [186].

Moelzner, Fink, and colleagues [1,187–189] demonstrated the role of VOCs in modulating
prey-predator interactions. Since the chemical nature of the VOCs emitted as well as their abundance,
depended upon a number of factors (Figure 2), it was interesting to note that the predator (freshwater
snail) was attracted to VOCs released from nutrient-rich cultures of the microalgae, Uronema
(formerly Ulothrix) fimbriata [187]. It was concluded that microalgal VOCs served as kairomones
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for aquatic herbivores. Release of VOCs upon mechanical wounding or predator grazing yielded
a bouquet of volatiles that either attracted or repelled the predator. During grazing by gastropods,
the radula (“rasping tongue”) of these animals scrapes over the microalgal mat which causes cell
disruption, resulting in the release of volatiles. A VOC threshold concentration from Uronema fimbriata,
was necessary to direct the foraging activity of the freshwater gastropod snail, Lymnaea stagnalis,
towards the prey [188]. These data were expanded by using a synthetic mixture of specific VOCs that
were commercially purchased to replicate the naturally observed infochemical activity. A mixture of
1-penten-3-one, 1-penten-3-ol, trans-2-pentenal, and 2,4-heptadienal, which were part of the VOCs
emitted by the benthic green microalgae Uronema fimbriata, was able to attract the snails as foraging
infochemicals [189]. Not only that, the grazers were able to distinguish between high and low quality
food resources based on the odor quality of the VOCs [189]. The VOCs from axenic cultures of Uronema
were extracted using CLSA and were sorbed onto a Tenax TA substrate. The VOCs were then thermally
desorbed and analyzed by GC-MS. Thirteen different VOCs were identified in the desorbed mixture.
Out of these, a synthetic VOC mixture was prepared using 1-penten-3-one, 1-penten-3-ol, 2-pentenal,
and 2,4-heptadienal. This VOCs mixture acted as kairomones, benefitting the grazing, freshwater
snail, Radix ovata [1]. The negative controls were a VOC mixture that omitted 2,4-heptadienal or
used 2,4-heptadienal alone, both of which were ineffective in attracting the snail [1]. Despite these
fascinating studies, to the best of our knowledge, there are no microalgal publications mirroring
the plant’s “cry for help” [141], where VOCs released by the microalgae attracted predators of the
microalgal predators.

5.6. Caveats to VOC-Based Presymptomatic Diagnostics

Admittedly, the results summarized above are not applicable for using VOCs to deter predator
invasion in microalgal ponds. Rather these are biosignatures of prey under attack, signaling predator
presence and enabling remedial actions to be implemented. There are several concerns that need to be
addressed before volatilome-mediated pond crash forensics becomes a reality. First, successful launch
of any diagnostic test depends on its sensitivity and specificity [190]. There may be a situation where
the sensitivity of VOCs emitted by the microalgae or the emission patterns are not sufficiently specific to
a microalgae or to a predator. This in turn depends at minimum upon the VOCs extraction capabilities
from the matrix, concentration of the VOCs, resolution power of the GC system, and sensitivity of the
VOC detector (vide infra). Specificity of detection could be impacted by environmental and ambient
air VOC confounders [191]. There is the possibility that microalgal and/or predator-emitted VOCs,
especially in ORPs, could get diluted quickly in ambient air and either dissipate entirely or become
transformed into different VOC species due to abiotic reactions, resulting in misleading conclusions.
With ORP culture, environmental factors such as wind, rain, and snow also need to be considered
which can disperse the microalgal VOCs or interfere with sample collection. Other difficulties include
an overlap, or lack thereof, of VOC signatures between microalgal species and the growth rate of
microalgae which will affect VOCs production, collection, and analyses. Highly sensitive analytical
solutions with parts-per-trillion (ppt) sensitivity might compensate for these shortcomings. Adequate
positive and negative controls are critical not only during VOCs collection, but also during analysis,
including standards for quantitation of emissions. Likewise, VOCs production by microalgae must be
standardized based on biomass quantification, cell count, ash-free weight, lipids content, chlorophyll
content, photosynthetic efficiency, etc.

6. Tools and Techniques for VOCs Collection and Detection

6.1. Microalgal Cultivation

For commercial applications, microalgal biology, which in turn determines its productivity,
is a key determinant. For a detailed discussion on the various microalgal cultivation methods
an excellent guide is recommended [192]. Briefly, strains chosen for commercial cultivation should
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exhibit fast growth; be predator-, stress-, and disease-resistant; be seasonally tolerant especially in
ORPs; produce adequate value-added byproducts; and perform these functions in an environmentally,
socially, and economically compliant manner. These are stringent preconditions. Cultivation
requirements need to be taken into consideration, which include the availability of C, N, P, trace
metals, and vitamins in the nutrients, CO2 availability, growth temperature, pH, salinity, light intensity,
light availability, and light exposure duration (an ORP concern during cloudy, snowy, stormy, rainy
periods), stirring/aeration/turbulence/mixing motion, optimum growth period at which either VOCs
or value-added products can be harvested, and so on. A schematic of lab culture of microalgae for
harvesting VOCs is shown in Figure 15.
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6.2. Microalgal VOCs Analysis

Destructive techniques, such as steam distillation as a VOC acquisition method are widely used.
Such methods are not considered here since the focus is on VOCs emitted by microalgae in vivo which
requires non-invasive and non-destructive technologies such as headspace sampling [193]. It should be
noted that microalgal headspace VOC sampling techniques can be adapted from techniques described
for plant VOCs collection [194–198]. VOCs from in vivo microalgae may be collected from either
microalga cultivated in the lab or from microalgae growing in the marine environment. Once collected,
VOCs may be analyzed in the field or transported to an offsite testing lab. Depending upon how VOCs
are analyzed, various types of instrumentation are available from lab based equipment to hand-held,
field-deployable, gas sensors. Some of these options are discussed below.

6.3. VOC Sample Collection

For in vivo collection, headspace VOCs have been most widely used [193,199,200]. There are
several methods for headspace VOC sampling (Figure 16) such as solvent microextraction (SME),
where a drop of solvent is suspended from the tip of a syringe needle above the sample from which
VOCs need to be collected. The solvent drop traps and pre-concentrates the VOCs [201]. Non-volatile
compounds may be rendered volatile by chemical derivatization (CD) [202]. In solid phase extraction
(SPE), VOCs are passed over an adsorbent and then eluted using solvents. An advancement over SPE
is SPME [203] which involves the partitioning of analytes between the extraction phase and the sample
matrix. The analytes are desorbed from the SPME fiber inside the GC inlet port for analysis [204,205].
SPME is a widely used technique including VOC analyses of marine phytoplankton species [206].
An alternative to SPME is thermal desorption (TD) where the sample is collected onto an adsorbent
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matrix packed inside a glass or stainless steel tube (TD tube). The tube is heated to release the VOCs
into the carrier gas (desorption), from where the volatiles are swept into the GC column for analysis.Metabolites 2017, 7, 39 26 of 44 
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Figure 16. VOC sampling techniques: (A) Sampling of headspace by gas flow or collection by liquid
impingement or grab sampling; (B) SME; (C) SPME by adsorption of VOCs from headspace or from
both the gas and liquid phase (direct immersion), followed by desorption of VOCs for GC analyses.

Often, it may be necessary to transport the microalgae headspace VOC mixture to an analytical
laboratory for GC analysis. In these situations, the gas samples may be collected using SPME fibers,
TD tubes, bags made from polymers, or canisters [207]. A variety of factors must be considered in
selecting the proper type of container for offsite VOC analysis including sample volume, chemical
composition and stability of analytes, storage time and temperature, transportation time, potential
contamination or artifacts contributed by the collection container, and the interval between sample
collection and analysis. Both SPME and Tenax TA yielded sample recoveries ranging between 95 and
98% following sample storage at room temperature for 24 h [207]. Sample recoveries for bags and
canisters were significantly lower, and some bag materials contributed contaminants [207] (due to
“outgassing”). If sample volume requirements make collection bags inevitable, then care must be taken
to avoid sample loss and/or gratuitous contaminants from the bag material. Nalophan™ and/or PTFE
bags may be used to collect VOC emanations from microalgae [208]. Double bagging will minimize
VOC losses and minimize ambient confounders [209]. A thicker (~70 µm) wall reduces diffusion
losses [209,210]. During storage and shipping, test bags need to be isolated from each other, to avoid
cross-contamination due to diffusion from one bag into a neighboring bag. Aseptic techniques are
critical during sample collection and handling for reducing bacterial-transformation of microalgal
VOCs. Thicker wall bags can store complex VOCs mixtures for up to 24 h at 37 ◦C and refrigerated
samples are stable up to 14 days [211]. Additional stability may be obtained by freezing the bag [212],
allowing stability for up to six months with no differences between fresh and frozen VOC samples [213].
Recovery must be monitored using a calibration standard [214].
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6.4. VOC Analysis

Once VOCs have been collected, the next step is the separation of the volatiles and identifying
specific molecules in the sample using a variety of techniques (Figure 17).Metabolites 2017, 7, 39 27 of 44 
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GC-MS is the most widely used technique for VOC analysis (Figure 18). Briefly, GC involves
a mobile phase consisting of an inert carrier gas, such as helium (He), and a stationary phase with
varying affinity for the volatiles. The stationary phase is deposited inside a long, narrow tube
(GC column). The volatiles interact with the stationary phase as they pass through the column,
causing each volatile to emerge (elute) at a different time (retention time) due to different degrees of
partitioning of the VOC between the mobile phase and the stationary phase. To separate analytes with
a wide range of boiling points, GC column temperature may be increased monotonically (temperature
ramping). Depending on the detector used, GC has a linear dynamic range of 4 to 6 orders of
magnitude, with sensitivity in parts-per-trillion (ppt). Output signal is converted into a chart (gas
chromatogram).

Detectors cited in this review were MS, TCD, FID, FPD, PID, and ECD. In MS, the sample is
bombarded by high energy electrons which collide with atoms of the volatile chemical resulting
in electrons being ejected, thereby generating a positively charged particle. The charged particles
are separated most often magnetically and detected based on their position and relative abundance,
yielding a mass spectrum (mass/charge, m/z). Other detectors employ a variety of physicochemical
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principles such as thermal conductivity (TCD), flame ionization (FID), photoionization (PID), electron
capture (ECD), flame photometric (FPD), pulsed discharge helium ionization (PDHID), and so on.
The availability of mass spectral libraries (NIST, for example) enables identification.

A variety of software programs are available for VOC data analysis [215]. Several different data
processing techniques are also available such as Principal Component Analysis (PCA). PCA projects
the data in two or more dimensions. A plot of PC scores against samples reveals their relationships,
identifying principal component(s) with a linear signal. Discriminant Factorial Analysis (DFA) is
used for discrimination and identification and may be applied to unknown VOCs. In DFA, variance
between different classes is maximized, and the variance within individual classes is minimized.
Soft Independent Analysis of Class Analogy (SIMCA) is used to model ‘good/bad’ behavior and is
applied as a quality control (QC) against reference (‘good’) compounds. Partial least square analysis
(PLSA) and partial least square discriminant analysis (PLSDA) are used for quantitative purposes.
Artificial neural network (ANN) back propagation analysis identifies samples accurately [127,216–218].
Supplying the biochemical basis via metabolic pathways (vide supra) for the VOCs is an inclusion
criterion for microalgae-specific and/or predator-specific volatiles. Pattern recognition and metabolic
pathways are facilitated by online databases, repositories of metabolomics/volatilomics, and NIST.
In vivo microalgae VOC testing should involve at least three biological replicates with three technical
replicates for each biological replicate. Data quality will improve as the sensitivity of VOC analysis
increases, since trace VOCs may be detected for improved pattern recognition. Design considerations
for assay development were reviewed previously [190].
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Conventional GCs are large, heavy, benchtop, expensive, and high power instruments, ill-suited
for field VOC monitoring. Onsite, real-time VOC analysis is superior to offsite analysis since sample
storage and transportation might limit the sensitivity of reactive or thermally labile VOCs. A systems
approach is needed for rapid, specific, sensitive, point-of-use detection of microalgae’s SoH, which
may have applications beyond microalgae to other civilian, medical, and military operations. In this
low cost, reliable, and portable technology platform, the technical/scientific complexities will be
transparent to the end user.
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The first challenge for field VOC analysis is sample collection. Sample acquisition will
benefit from low cost, small size/weight/power microsystems. Capturing efficiency will critically
impact system performance. The capture-container must be gas-tight to allow transport in case
of analysis at a centralized lab. Capture and containment of VOCs is crucial, since VOCs are
volatile (Table 1), tending to escape confinement, unless secured hermetically. Commercial SUMMA®

canisters are less efficacious when compared to µSamplers [219], the latter yielding a 6000-fold
volume reduction. Commercial canisters due to their size and cost, require cleaning prior to re-use.
By contrast, mass-microfabricated µSamplers and µValves are inexpensive and may be discarded
after a single use, eliminating cross-contamination [219]. Helium leak-tests of µSamplers revealed
excellent hermiticity (4.9 × 10−12 atm-cc/s) meeting and exceeding military specifications (mil-spec)
of <1 × 10−9 atm-cc/s [219]. Phase-change microvalves (Figure 19) employed eutectic alloys which
could be actuated at relatively low temperatures of ~72 ◦C [219].
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Terry and Herman [220] first reported in 1979 a micro-GC (µGC) that was fabricated on a silicon
(Si) wafer. Since then, several µGC systems have been described for field use with rapid response,
small footprint, low-cost, low-power, light weight, battery powered, possessing high resolution
with narrow columns having low dead volume and improved sensitivity even with small sample
volumes [221,222]. Monolithic integration in Si has enabled system-level miniaturization, low-cost
fabrication and assembly, with simpler and smaller fluidic connections [223] (Figure 20). Such systems
were developed by Sandia National Laboratories for the detection of chemical warfare agents
(CWA). Advancements in µGC systems have been facilitated by similar miniaturization of the
VOC detectors [224,225], enabling an integrated microsystem becoming available for AVOC/BVOC
analyses [226].
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Figure 20. Schematic representation of the operating principles of a portable GC-µSystem.

The power of miniaturized, integrated GC µsystems for in vivo microalgae SVOC/VOC analysis
is illustrated by Sandia’s MicroChemLab (Figure 21). The MicroChemLab is a handheld chemical
analysis system that uses microfabricated components with monolithic integration for combined
sample handling (micro-pre-concentrator, µPC), separation (µGC), and detection of VOCs (Figure 21).
By tailoring the µPC’s (Figure 21A) chemically-selective film, VOCs are selectively and reversibly
adsorbed, while interferents escape. The second stage is the µGC which uses a chemically-selective
film to separate the VOC mixture. The column is over 1 m in length, but is formed as a spiral to
occupy only 1 cm2 of chip area. Heater and temperature probes are affixed to the back of the µGC for
controlling the temperature ramp to separate the VOCs. Due to its small footprint and low power
requirements, the MicroChemLab has been employed for field detection of VOCs.
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As an alternative to surface acoustic wave (SAW) sensor array, an ion mobility spectrometer (IMS)
or a Pulsed Discharge Helium Ionization Detector (PDHID) may be substituted [224–227]. The PDHID
uses helium plasma to produce high-energy photons which ionize the VOCs as they elute from the
column [228]. This produces free electrons that are collected by a series of electrodes which are in turn
connected to conventional charge amplification circuitry. The sensor can detect nearly every compound
except Ne, and is capable of detecting sub-parts per billion (sub-ppb) VOC concentrations [228].
Thus, PDHID has almost the sensitivity of MS, but with the size, weight, power usage, and cost factors
that allow its field use for in vivo microalgae VOCs analyses. It would also be beneficial to have
a suite of other sensors integrated into the VOC microsystem. For example, with in vivo microalgae
VOC analyses, it would be helpful to include sensors for non-volatile measurements such as pH,
salinity, humidity, light intensity, and perhaps a dedicated CO2 sensor for enabling overall systems
level investigations to be conducted successfully on a single platform.

The microsystems approach enables several orders of magnitude improvement to sensitivity,
with detection limits of parts ppb to ppt using the PDHID [229,230]. In the electron capture mode,
PDHID has femtogram (10−15) detection limit. These values are orders of magnitude better than
e-Nose. Although PDHID sensitivity is not as low as the parts-per-quadrillion (500 ppq; femtomol, fmol)
that can be achieved by MS [231], the combinatorial systems approach of specific VOC identification
and pattern recognition is likely to offset the lower detection limit of the PDHID (Table 3).

Table 3. Comparison of portable e-Nose and microsystems with GC-MS.

Property Electronic Nose µGC/µPC/µPDHID GC-MS

Specific VOC identified? No Yes Yes
Instruments comparable? No Yes No

Signals comparable? No Yes No
Onboard pattern analysis Yes Yes No

Sensitivity limits ppm-to-ppb ppb-to-ppt ppt-ppq
Sensor drifts? Yes No No

Sensor poisoning? Yes No No
Responses are variable? Yes No No

Individual VOC quantifiable? No Yes Yes
Power requirements Low-to-moderate Low-to-moderate High

Skill/training of operator Moderate Moderate High
Portability? Yes Yes No

Rapid field detection of VOCs has also been achieved using electronic nose (e-Nose) [232,233]
(Figure 17D). These portable devices consist of an array of conducting polymers, metal oxides,
or piezoelectric type sensors that are broadly tuned for detecting various classes of gases.
Thus, the e-Nose is a non-specific detector unlike GC-MS. There are a few other portable VOC analysis
systems that merit mention. The first of these is the so-called z-Nose [234,235]. This type of analyzer is
based on an uncoated quartz-based SAW, and an uncoated piezoelectric quartz crystal that vibrates
at a certain frequency. When a volatile molecule alights the sensor, the frequency of SAW changes
in a way that is proportional to the concentration of the adsorbing molecule. Since the crystal is in
contact with a thermoelectric element, a signal is produced. A library of VOC retention times allows
for molecular identification. The z-Nose performs in real-time with ppt-sensitivity and data analysis
done is by onboard computational programs [234,235]. The second VOC technology that is portable is
the proton transfer reaction-mass spectrometry (PTR-MS). Here, water vapor is ionized in a hollow
cathode electrical discharge to produce a stream of pure hydronium ions (H3O+). The ions enter a drift
tube where the ionization of the VOC samples takes place by a protonation reaction as shown below.

H2O+ + H2O→ H3O+ + OH

H3O+ + VOC→ VOCH+ + H2O
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At the end of the drift tube, the protonated VOCs are analyzed for mass using a quadrupole mass
analyzer or a time-of-flight (TOF) MS [236]. The PTR-ToF-MS is one of a few analytical techniques
that is suitable for online VOCs monitoring. Since PTR-ToF-MS can be carried out without sample
preparation [237], it could potentially simplify the process for realtime analysis of VOCs emissions
from marine samples [238] and microalgae [239]. Apropos to in vivo marine microalgae VOC analysis
in the field, PTR-MS has been used for field measurements of atmospheric VOCs from a variety
of air, sea, and ground-based platforms [240]. Finally, Exton et al. [241] demonstrated the use of
a dedicated “Fast Isoprene Sensor” (FIS, Hills-Scientific, Boulder, CO, USA) for quantitative analysis
of isoprene from the microalgae Thalassiosira weisflogii and Emiliania huxleyi. The FIS operates on
formaldehyde (HCHO) and glyoxal (HCOCHO) generation following a reaction between isoprene and
O3. Both products are in the excited state. Upon relaxation, they emit light at ~490 nm and ~550 nm,
respectively, detected by a chemiluminescence detector. The limit of detection (LOD) was 0.02 nM
(0.5 ppbv) isoprene with production rates that were detectable even at a low 0.59 nmol/h from these
two microalgae [241]. Interestingly, the reaction product formaldehyde (between isoprene and ozone)
can also be detected using PDHID with nM sensitivity [242–244], and is thus suitable for field analysis,
unlike the FIS, which due to size/power considerations, requires lab operations [241].

7. Future Perspectives

If successful, such portable test beds for marine in vivo microalgae VOCs could be amenable
to manned or unmanned, remotely controlled operations. Satellite technology has supplied ocean
maps of phytoplankton distributions [245] and BVOC emissions over vast areas [246]. However,
satellite sensors can be costly and unsuited for routine use. Small unmanned aerial vehicles (UAV)
have been used for taking air quality and aerosol distribution measurements [246,247] (Figure 22A,B).
Due to their small size and low cost, UAVs or drones will be restricted in terms of size, weight,
power, and portability (SWAPP) factors relating to payload, flight speed, and endurance (flight time).
Consequently, lightweight, small, low power VOC sensors such as the microsystems discussed above
will be critical for placing aboard UAVs. Although the potential of UAVs for VOC monitoring has
passed the technological feasibility test [246,247], the real challenge might well be country-specific
policies and regulations governing the deployment of UAVs [247].
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There are other options for VOCs monitoring in an underwater marine environment
(Figure 22C,D). These include remote operated vehicles (ROV), human occupied vehicles (HOV),
autonomous underwater vehicles (AUV), manned submersibles, submarines, human divers, tethered
buoys, towfish, and so on [248]. The availability of MS that can take measurements underwater
(membrane inlet mass spectrometer, MIMS) has made underwater VOC analysis routine [248].
AUVs have been used to measure phytoplankton VOC emissions for monitoring marine pollution and
surveilling the emergence of harmful algal blooms (HAB) [249–251]. There is a priori no reason to not
be able to mount microsystems (vide supra) aboard AUVs/UAVs to expand autonomous investigations
into in vivo microalgal VOC emanations. It is hoped that this review will stimulate further research
and development (R&D) activities in the exciting VOC frontiers in vivo microalgae, and beyond.

8. Conclusions

Herein the reports of VOC emissions from in vivo (living, growing, and naturally dying)
microalgae were reviewed. Much of the literature addressing microalgae VOC production focuses
on the implication of these biogenic emissions towards atmospheric and marine geochemical content
(e.g., biogenic sulfur, halocarbons, etc.). Due to the significant prevalence of microalgae, these emissions
may influence the global environment and ecology. Where known, biosynthetic/metabolic pathways
associated with the production and emission of microalgae VOCs were presented [100,101,106–108,123].
These pathways are susceptible to abiotic (for example, light stress [252] and ionic strength [253]),
and biotic influences (for example, growth phase [254]). Such pathways provide context regarding the
biological and biochemical roles of VOCs in the microorganism. Thus, understanding VOC profiles
and the volatilome/volatome of microalgae in vivo may provide a non-invasive means to evaluate
their physiology, pathology, and ecology in real-time and predict/prevent algal pond crashes. To date,
only a few direct studies of the physiological significance of VOC emissions from microalgae have
been published. These studies do show VOC-based intra-species communication between microalgae,
and inter-species communication between microalgae and bacteria [255,256], for example by the release
of aldehydes [257] due to wounding [258]. Still, many questions regarding the purpose and impact of
emitted VOCs on microalgae physiology remain unanswered.

Major challenges remain for studying in vivo microalgae VOCs. Controlling the many factors
that contribute to changes in metabolic behaviors that influence VOC production and emission is
challenging even under laboratory conditions where small cultures can be grown under carefully
defined and known/measurable parameters. This becomes increasingly difficult during commercial,
large scale production, and nearly impossible to manage in the natural marine habitat. The use of
axenic cultures and strains is important to correctly attribute measured VOCs to a specific alga,
and not a pollutant or contaminate species. Despite these challenges, advancements in culture
techniques and careful design of experiments, including statistically meaningful replicates and the
use of pattern-analysis techniques, can provide critical information that will contribute towards the
understanding of the microalgae volatilome.

Finally, this review offered various tools and techniques for the collection, storage, transport,
and analysis of VOCs from microalgae. Recent advances have been reported in portable technologies
for in field sample collection and storage, allowing gold standard lab analysis of VOCs captured far
outside the laboratory. Also, exciting advances in microsystems for in vivo VOC identification and
analysis outside the laboratory have enabled the real-time detection of trace levels of VOCs using
hand-held devices. These advances will accelerate efforts into identifying and understanding the
in vivo microalgae volatilome and open other opportunities that go beyond point-of-use detection of
microalgae’s SoH for a variety of societal benefits and commercial opportunities.
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