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Abstract: The role of metabolic traits in ischemic stroke (IS) has been explored through observational
studies and a few Mendelian randomization (MR) studies employing limited methods in European
populations. This study aimed to investigate the causal effects of metabolic traits on IS in both East
Asian and European populations utilizing multiple MR methods based on genetic insights. Two-
sample and multivariable MR were performed, and MR estimates were calculated as inverse-variance
weighted (IVW), weighted median, and penalized weighted median. Pleiotropy was assessed
by MR–Egger and Mendelian randomization pleiotropy residual sum and outlier tests. Systolic
blood pressure (SBP) was associated with an increased risk of IS by IVW in both European (ORIVW:
1.032, 95% CI: 1.026–1.038, p < 0.001) and Japanese populations (ORIVW: 1.870, 95% CI: 1.122–3.116,
p = 0.016), which was further confirmed by other methods. Unlike the European population, the
evidence for the association of diastolic blood pressure (DBP) with IS in the Japanese population was
not stable. No evidence supported an association between the other traits and IS (all Ps > 0.05) in
both races. A positive association was found between SBP and IS in two races, while the results of
DBP were only robust in Europeans.

Keywords: mendelian randomization; metabolic traits; ischemic stroke; different races; causal inference

1. Introduction

The burden of mortality as well as disability caused by stroke increases over time.
Data from the Global Burden of Disease Study indicate that, in all age groups, stroke ranked
as the fifth leading cause of disability-adjusted life years (DALYs) in 1990, ascending to
the third position by 2019 [1]. Among all types of strokes, ischemic stroke (IS) accounts
for the highest proportion [2]. Given that the majority of IS incidents are preventable [3],
elucidating its etiological factors is of paramount importance. Observational studies have
found that metabolic traits such as blood pressure, blood lipids, and blood glucose are risk
factors for stroke. Moreover, these metabolic traits are mostly components of metabolic
syndrome (MetS), a cluster of abnormal metabolic conditions regarded as an important
risk factor for IS. Due to the diversity of its components, which include central obesity,
dyslipidemia, increased blood pressure, and high blood glucose (BG) levels, the association
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of MetS and the metabolic traits with IS has gradually become a concern [4–8]. However,
the limitations of traditional epidemiology approaches, combined with the substantial
costs associated with conducting randomized controlled trials and comorbidities among
metabolic traits and other risk factors, significantly increase the difficulty of inferring a
causal relationship between metabolic traits and IS [9].

Mendelian randomization (MR) is increasingly utilized to investigate causality be-
tween modifiable risk factors and cardiovascular diseases [10], especially when confound-
ing is a significant concern. MR leverages genetic variants (such as single-nucleotide
polymorphisms (SNPs)) as instrumental variables (IVs) to estimate the effect of exposure
on an outcome. Given that genetic variants are randomly allocated at birth, bias caused by
reverse causation or other potential confounders can be circumvented [11]. Pleiotropy, the
phenomenon wherein genetic variants affect the outcome via multiple independent biologi-
cal pathways, is one of the potential factors that can contribute to bias in MR studies [12].
To guard against the bias caused by unknown shared factors, Morrison J. et al. proposed a
new MR method termed causal analysis using summary effect estimates (CAUSE), which
can distinguish causality from correlated pleiotropy [13].

Several MR studies have investigated the causal associations between specific metabolic
traits and stroke risk. Notably, a two-sample MR study elucidated the significant effects
of metabolic disorders, comprising abdominal obesity, insulin resistance, and so forth, on
the risk of stroke [14]. Another MR demonstrated that both SBP and DBP were causally
associated with the risk of IS [15]. Furthermore, the results of several studies regarding
blood lipids in this regard exhibit heterogeneity [16,17]. However, the majority of the
existing relevant MR studies were carried out in Europeans and mainly focused on central
obesity-related indicators [18–20]. Although it is advocated to apply multiple MR methods
in two-sample MR studies [21], previous studies mainly focused on the results from inverse-
variance weighted (IVW), weighted median (WM), penalized weighted median (PWM), and
MR–Egger methods [15–17,22,23]. Based on this, our study aimed to use summary-level
data from the Japanese population to elucidate the association between metabolic traits
and IS by employing both two-sample and multivariable MR. Additionally, to mitigate bias
arising from pleiotropy, our findings were verified by various MR methods. Beyond that,
we extended our analysis to the European population employing the CAUSE method to
enhance the robustness of the causality evidence.

2. Materials and Methods
2.1. Data Source
2.1.1. Japanese Population

The outcome data of the Japanese population utilized in this study were sourced from
the genome-wide association study (GWAS) provided by the Japanese ENcyclopedia of
GEnetic associations by the Riken (JENGER) site. This GWAS encompassed 42 diseases
based on 212,453 Japanese individuals and detected 383 independent signals in 331 loci for
30 diseases [24]. The database of IS included 17,671 case samples as well as 192,383 control
samples, of which the cases were collected in the BioBank Japan Project (BBJ) and the
control samples were from population-based prospective cohorts. The case group consisted
of 11,081 males with an average age of 69.8 years. The control group included 97,455 male
participants with a mean age of 61.3 years, and those with cerebral aneurysms were
excluded. Ethical approval for the study was granted by the relevant ethics committee, and
informed consent was obtained from all participants.

Exposure data were also extracted from GWAS on the JENGER site. This study
identified 1407 trait–associated loci for 53 quantitative traits in 162,255 Japanese individuals,
of which 679 loci were discovered for the first time [25]. A few MR studies have explored the
relationship between obesity-related indicators and IS; the GWAS referenced in our research
did not include summary-level data pertaining to waist circumference. Consequently, based
on available data, we included BG (n = 93,146), systolic blood pressure (SBP, n = 136,597),
diastolic blood pressure (DBP, n = 136,615), triglycerides (TG, n = 105,597), total cholesterol
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(TC, n = 128,305), low-density lipoprotein cholesterol (LDL–C, n = 72,866), and high-
density lipoprotein cholesterol (HDL–C, n = 70,657) as exposures. Written, informed
consent was obtained from all participants, and the study was approved by the relevant
ethics committees.

2.1.2. European Population

Summary data for IS were obtained from the Multiancestry genome-wide association
study (MEGASTROKE), a fixed-effects meta-analysis restricted to Europeans (including
40,585 cases and 406,111 controls) [26]. A total of 446,696 individuals, including 34,217 cases
of IS, were included in the pooled data of IS in the European population only.

Data on BP, BG, and blood lipids were obtained from the Genome-Wide Repository of
Associations between SNPs and Phenotypes (GRASP, n = 757,601) [27], the Meta-Analyses
of Glucose and Insulin-related traits Consortium (MAGIC, n = 151,188) [28], and Global
Lipids Genetics Consortium (GLGC, n = 188,578) [29], respectively. GRASP pooled data
from the UK Biobank (UKB) and the International Consortium of Blood Pressure Genome-
Wide Association Studies (ICBP). After excluding subjects with significant missing data,
a total of 757,601 participants were finally included in the study. MEGASTROKE was
conducted in a European population after excluding individuals diagnosed with diabetes
who were receiving treatment for diabetes and whose fasting plasma glucose was greater
than or equal to 7 mmol/L. The genetic effects on glucose and insulin were analyzed
under sex-dimorphic and sex-combined conditions. In this study, we utilized sex-specific
pooled GWAS data, which included 151,188 individuals. GLGC investigated the genetic
determinants of LDL–C, HDL–C, and TG in the blood to understand the genetic causes
associated with lipid quantitative traits. Participants in the pooled data were also drawn
entirely from the European population, which included 188,578 participants post-exclusion
of individuals who were taking lipid-lowering drugs. Ultimately, 157 lipid-level–related
sites were identified that met the genome-wide significance threshold (p < 5 × 10−8), of
which 62 were found for the first time. The TC, TG, LDL–C, and HDL–C data used in this
study were derived exclusively from this study.

2.2. SNP Selection

All SNPs associated with BG, SBP, DBP, TC, TG, LDL–C, and HDL–C at the genome-
wide significance level (p < 5 × 10−8) were selected. By using the 1000 Genomes East Asian
or European ancestry reference panel, linkage disequilibrium (LD) was clumped (distance
threshold = 10 000 kb; r2 = 0.001) to ensure the independence of SNPs. Table S1 shows the
SNP information after filtering. However, to mitigate potential confounding due to the
correlation among selected exposures, SNPs that overlapped across traits were system-
atically excluded. To assess the effect of overlapping SNPs, MR analysis was performed
on the data prior to exclusion. In addition, the R2 of each SNP was calculated based on
the values provided and formula R2 = 2 × MAF × (1 − MAF)× Beta2; the F-statistic of
each exposure was then obtained according to the formula F = R2

1−R2 × N−K−1
K , where K

represents the number of IVs. The bias caused by weak IVs was controlled according to the
rule of thumb (F < 10 is regarded as a weak instrumental variable). The characteristics of
the SNPs post-exclusion are summarized in Table S2.

2.3. MR Analyses

MR was based on the following three assumptions: (1) Genetic variants are associated
with exposure, which ensures that genetic variants can effectively proxy for exposure. A
strong genetic association increases the instrument’s validity and the precision of causal
estimates. (2) Genetic variants are not associated with confounding factors that bias the
associations between exposure and outcome. It is essential to avoid confounding in MR
studies as any link between the genetic variant and other factors that affect both the expo-
sure and the outcome could bias the results. We ensured this by selecting variants identified
through rigorous GWAS that are specific to the exposure. (3) Genetic variants influence
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outcomes only via their association with exposure. The exclusivity of this path is crucial
for direct causal inference. If it is violated, it could suggest alternative pathways affect-
ing the outcome, potentially confounding the causal estimate. We assessed this through
sensitivity analyses to ensure the integrity of our causal interpretation. The IVW method,
commonly regarded as the conventional MR method, rigorously adheres to these assump-
tions and gives accurate estimates when genetic variants have no pleiotropic effects [30].
Heterogeneity among SNPs was estimated by the Cochran Q statistic. Random effects IVW
models were employed if heterogeneity existed, whereas a fixed effects IVW model was
utilized otherwise. To mitigate potential pleiotropy, we also performed complementary
MR analyses using WM, PWM, MR–Egger, Mendelian randomization pleiotropy residual
sum and outlier (MR–PRESSO), and the CAUSE method. MR–Egger can be used to detect
and adjust the bias caused by directional pleiotropy under a weaker set of assumptions but
is less efficient than IVW and WM [31]. WM ensures consistency when 50% of the weight
contributed by genetic variants is valid, while PWM behaves akin to weighted median
when there is no causal effect heterogeneity [32]. To minimize false positives as much as
possible, two MR methods were further performed for the exposure that was statistically
significant in the IVW results. MR–PRESSO was additionally utilized to identify and
rectify horizontal pleiotropy through the removal of outliers [33]. Furthermore, CAUSE
incorporates information from all variants, instead of only those most strongly associated
with exposure to differentiate causal effects from correlated pleiotropy, thus avoiding more
false positives [13]. Low power caused by insufficient inclusion of IVs is a pervasive issue
encountered in MR. To avoid false-negative results related to insufficient power, the MR–
robust adjusted profile score (MR–RAPS) method, which can increase the statistical power
when some IVs exhibit substantial strength while many remain weak, was deployed for
exposures with p values greater than 0.05 [34]. Furthermore, three thresholds of 5 × 10−6,
1 × 10−6, and 5 × 10−8 were set for selecting exposure-related SNPs in MR–RAPS analyses
to ensure the reliability of negative results. In consideration of the potential association
among metabolic traits, we included multiple exposures through multivariable Mendelian
randomization (MVMR) to discern their independent effects on IS [35].

In terms of sensitivity analyses, MR–Egger was used to assess directional pleiotropy.
Under a power of 80%, the minimally (for Beta > 0) or maximally (for Beta < 0) de-
tectable effect size for MR of each exposure with IS was estimated by an online platform
(https://shiny.cnsgenomics.com/mRnd/, accessed on 15th February 2022) [36]. For posi-
tive results, the type I error rate was calculated through an online platform (https://sb4
52.shinyapps.io/overlap, accessed on 15th February 2022) to evaluate the possible bias
caused by sample overlap [37]. A flow chart for genetic variant selection and two-sample
MR analyses is shown in Figure 1.

Statistical tests were all two–tailed. For the CAUSE and MVMR methods, p < 0.05 was
used as the significance threshold, while for the other methods, the significance threshold
(p < 0.05/7 = 0.007) after Bonferroni correction was considered statistically significant, and
results with p values between 0.007 and 0.05 were considered suggestive evidence. The
analyses were performed in R version 4.1.0.

https://shiny.cnsgenomics.com/mRnd/
https://sb452.shinyapps.io/overlap
https://sb452.shinyapps.io/overlap
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Figure 1. Flow chart for genetic variant selection and two-sample MR analyses. MR, Mendelian
randomization; BG, blood glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC,
total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol; IS, ischemic stroke; SNP, single-nucleotide polymorphism; IVW, inverse-
variance weighted method; WM, weighted median method; PWM, penalized weighted median
method; MR–Egger, Egger regression method; MR-PRESSO, Mendelian randomization pleiotropy
residual sum and outlier test; CAUSE, causal analysis using summary effect estimates; MR-RAPS,
MR-robust adjusted profile score.

3. Results
3.1. Results Description
3.1.1. Japanese Population

Following the exclusion of overlapping SNPs, 11 BG–associated SNPs, 12 SBP–associated
SNPs, 7 DBP–associated SNPs, 30 TC–associated SNPs, 18 TG–associated SNPs, 19 LDL–C–
associated SNPs, and 37 HDL–C–associated SNPs were included in MR analyses, and the F
statistic of each component was greater than 30, indicating that the results were not affected
by the bias of weak IVs. Under 80% power, the detectable effect size for each exposure is
presented in Table S3.

As the conventional MR method, IVW was first applied to our analyses. Among the
results of IVW, evidence for causal association was not found in the analyses of BG (odds
ratio (OR): 1.036, 95% confidence interval (CI): 0.848–1.265, p = 0.731), DBP (OR: 1.966, 95%
CI: 0.829–4.663, p = 0.125), TC (OR: 1.044, 95% CI: 0.914–1.193, p = 0.523), TG (OR: 0.992, 95%
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CI: 0.915–1.074, p = 0.840), LDL–C (OR: 1.038, 95% CI: 0.907–1.189, p = 0.585), or HDL–C
(OR: 0.961, 95% CI: 0.893–1.034, p = 0.285); only the p value of SBP (OR: 1.870, 95% CI:
1.122–3.116, p = 0.016) was less than 0.05 but still did not meet the significance threshold
after Bonferroni corrections (Table 1). However, prior to the exclusion of overlapping SNPs,
both IVW and PWM found a statistical association of SBP and DBP with IS (Table S4).
For BG, TG, TC, HDL, and LDL, after raising the inclusion threshold and including more
SNPs, all the p values in the MR–RAPS analyses were still greater than 0.05, suggesting that
the results of these traits were unlikely to be false negatives caused by insufficient power
(Table S5).

Table 1. IVW results for seven metabolic traits on IS among the Japanese population.

Exposure SNP (N) OR (95% CI) Beta (SE) p

BG 11 1.036 (0.848–1.265) 0.035 (0.102) 0.731
SBP 12 1.870 (1.122–3.116) 0.626 (0.261) 0.016 *
DBP 7 1.966 (0.829–4.663) 0.676 (0.441) 0.125
TC 30 1.044 (0.914–1.193) 0.043 (0.068) 0.523
TG 18 0.992 (0.915–1.074) 0.008 (0.041) 0.840

LDL–C 18 1.038 (0.907–1.189) 0.038 (0.069) 0.585
HDL–C 37 0.961 (0.893–1.034) 0.040 (0.038) 0.285

Beta is the estimated effect size. IVW, inverse-variance weighted; IS, ischemic stroke; BG, blood glucose; SBP,
systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; LDL–C, low-density
lipoprotein cholesterol; HDL–C, high-density lipoprotein cholesterol; SNP, single-nucleotide polymorphism; OR,
odds ratio; CI, confidence interval; SE, standard error; * p < 0.05, the result is statistically significant.

Taking into account the heterogeneity, other MR methods were then performed. In
the PWM analyses, not only SBP was shown to be associated with a higher risk for IS (OR:
2.446, 95% CI: 1.575–3.799, p < 0.001) but DBP was also identified as a contributing factor to
the risk of IS (OR: 3.597, 95% CI: 1.832–7.062, p < 0.001), while the p values of other traits
were still greater than 0.05 (Table 2).

Table 2. Other MR results for seven metabolic traits on IS among the Japanese population.

Exposure Method SNP (N) OR (95% CI) Beta (SE) p

BG WM 11 1.029 (0.815–1.300) 0.029 (0.117) 0.806
PWM 11 1.026 (0.815–1.293) 0.026 (0.118) 0.825

MR–Egger 11 0.667 (0.252–1.763) −0.404 (0.496) 0.436
SBP WM 12 1.871 (1.234–2.836) 0.626 (0.212) 3.187 × 10−3 *

PWM 12 2.446 (1.575–3.799) 0.894 (0.225) 6.854 × 10−5 *
MR–Egger 12 0.732 (0.050–10.661) −0.311 (1.366) 0.824

DBP WM 7 2.182 (1.139–4.178) 0.780 (0.332) 0.019 *
PWM 7 3.597 (1.832–7.062) 1.280 (0.344) 2.000 × 10−4 *

MR–Egger 7 12.610 (0.506–313.959) 2.534 (1.640) 0.183
TC WM 30 1.006 (0.835–1.213) 0.006 (0.095) 0.947

PWM 30 1.005 (0.832–1.214) 0.005 (0.096) 0.961
MR–Egger 30 1.109 (0.763–1.611) 0.104 (0.191) 0.591

TG WM 18 0.969 (0.878–1.070) −0.031 (0.050) 0.534
PWM 18 0.969 (0.877–1.071) −0.031 (0.051) 0.542

MR–Egger 18 0.934 (0.828–1.049) −0.070 (0.060) 0.263
LDL−C WM 18 1.019 (0.858–1.210) 0.0189 (0.088) 0.829

PWM 18 1.019 (0.848–1.225) 0.0189 (0.094) 0.840
MR–Egger 18 1.036 (0.730–1.471) 0.035 (0.179) 0.846

HDL−C WM 37 0.973 (0.882–1.074) −0.027 (0.050) 0.586
PWM 37 0.976 (0.883–1.077) −0.024 (0.051) 0.625

MR–Egger 37 1.026 (0.895–1.175) 0.026 (0.069) 0.715

Beta is the estimated effect size. MR, Mendelian randomization; IS, ischemic stroke; BG, blood glucose; SBP,
systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; LDL–C, low-density
lipoprotein cholesterol; HDL–C, high-density lipoprotein cholesterol; SNP, single-nucleotide polymorphism; OR,
odds ratio; CI, confidence interval; SE, standard error; WM, weighted median method; PWM, penalized weighted
median method; MR–Egger, Egger regression method; * p < 0.05, the result is statistically significant.
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After the exclusion of outliers, the MR–PRESSO results no longer supported the causal
association between DBP and IS (p = 0.230). Nevertheless, the association between SBP and
IS was still robust (OR: 2.168, 95% CI: 1.470–3.198, p = 0.004). Additionally, the distortion
test showed that there was no significant difference in causal estimates before and after
outlier correction (Table 3).

Table 3. MR–PRESSO results for BP components on IS among the Japanese population.

Exposure MR–Analysis SNP (N) OR (95% CI) Beta (SE) Pa Pb Pc

SBP Outlier-corrected 10 2.168 (1.470–3.198) 0.774 (0.198) <0.001 * 0.004 * 0.503
DBP Outlier-corrected 4 1.963 (0.771–4.994) 0.674 (0.477) <0.001 * 0.230 0.956

Pa is the value of p for the global test performed by the MR–PRESSO method to detect potential horizontal
pleiotropy. Pb is the value of p for MR–PRESSO analysis after outlier correction. Pc is the value of p for the
distortion test performed by the MR–PRESSO to test the significant differences in causal estimates before and
after outlier correction. * p < 0.05, the result is statistically significant. MR–PRESSO, Mendelian randomization
pleiotropy residual sum and outlier; BP, blood pressure; IS, ischemic stroke; SBP, systolic blood pressure; DBP,
diastolic blood pressure; LDL–C, low-density lipoprotein cholesterol; SNP, single-nucleotide polymorphism; OR,
odds ratio; CI, confidence interval; SE, standard error.

In the CAUSE analysis, the causal model of both SBP and DBP demonstrated superior
performance compared to the shared model, but only the p value of SBP was less than 0.05
(p = 0.042, Table 4). MVMR methods, after controlling the exposures with overlapping SNPs,
further substantiated the association between SBP and IS (all Ps < 0.05), while evidence for
DBP was observed only in the MVMR–median method (p = 0.041, Table S6). Nonetheless,
when lipid exposures were included in the model, no evidence for an association with IS
was observed across both MVMR methods (Table S7).

Table 4. CAUSE results for BP on IS among the Japanese population.

Exposure SNP (N) Model 1 Model 2 ∆ELPD SE of ∆ELPD Z p

SBP 1076 Null Sharing −5.854 2.772 −2.111 0.017 *
1076 Null Causal −8.805 4.311 −2.042 0.021 *
1076 Sharing Causal −2.950 1.708 −1.726 0.042 *

DBP 977 Null Sharing −8.479 3.631 −2.335 0.001 *
977 Null Causal −10.830 4.894 −2.213 0.013 *
977 Sharing Causal −2.351 1.605 −1.465 0.071

N is the number of variants used for estimating CAUSE posteriors. ∆ELPD = ELPDC − ELPDS. When ∆ELPD is
negative, model 2 is a better fit. CAUSE, causal analysis using summary effect; ELPD, expected log pointwise
posterior density; SE, standard error; SBP, systolic blood pressure; DBP, diastolic blood pressure. * p < 0.05, the
result is statistically significant.

In the sensitivity analyses (Table S3), horizontal pleiotropy was not detected in any
analyses between each exposure and IS (all Ps > 0.05). However, heterogeneity was found
in SBP, DBP, and LDL–C (p < 0.05). Consequently, a random effect model was adopted in
IVW, and PWM results rather than WM results were considered.

3.1.2. European Population

Before eliminating overlapping SNPs, analyses in the European population revealed
that the p values of SBP (OR: 1.036, 95% CI: 1.030–1.041), DBP (OR: 1.052, 95% CI: 1.043–1.061),
TC (OR: 1.118, 95% CI: 1.032–1.211), and LDL–C (OR: 1.101, 95% CI: 1.026–1.181) with IS
were all less than 0.05 by IVW, which was also consistent with the results obtained from
other methods (Table S8).

A total of 38 SNPs for BG, 324 SNPs for SBP, 319 SNPs for DBP, 34 SNPs for TC,
45 SNPs for TG, 33 SNPs for LDL–C, and 68 SNPs for HDL–C were left after SNP control.
Despite the reduction in IVs included, in the results of the IVW method as well as the
other three methods, SBP (ORIVW= 1.032, 95% CI: 1.026–1.038) and DBP (ORIVW= 1.044,
95% CI: 1.033–1.054) remained statistically significant with IS (Table 5). Furthermore, IVW
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only identified evidence of an association with HDL–C; however, the association was not
further verified by other methods, while the association with SBP and DBP was further
demonstrated in the other three MR methods, including WM, PWM, and MR–Egger.

Table 5. IVW results for seven metabolic traits on IS among the European population.

Exposure SNP (N) OR (95% CI) Beta (SE) p

BG 38 1.077 (0.957–1.213) 0.075 (0.060) 0.217
SBP 324 1.032 (1.026–1.038) 0.032 (0.003) 1.748 × 10−27 *
DBP 319 1.044 (1.033–1.054) 0.043 (0.005) 2.623 × 10−17 *
TC 34 1.045 (0.917–1.192) 0.045 (0.067) 0.506
TG 45 1.015 (0.943–1.093) 0.015 (0.038) 0.687

LDL–C 33 1.070 (0.937–1.222) 0.068 (0.069) 0.319
HDL–C 68 0.880 (0.798–0.971) −0.127 (0.050) 0.011 *

Beta is the estimated effect size. IVW, inverse–variance weighted; IS, ischemic stroke; BG, blood glucose; SBP,
systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; LDL–C, low-density
lipoprotein cholesterol; HDL–C, high-density lipoprotein cholesterol; SNP, single-nucleotide polymorphism; OR,
odds ratio; CI, confidence interval; SE, standard error; * p < 0.05, the result is statistically significant.

Given the limited genetic variations in BG and TG indexes in the European population
and that the results are always negative, we opted to relax the inclusion criteria for genetic
variations and use the MR–RAPS method to determine whether the negative results were
attributable to insufficient test efficiency. Upon adjusting the inclusion threshold to encom-
pass more SNPs, no association between BG or TG and IS was observed by the MR–RAPS
method (p > 0.05, Table S9).

In consideration of heterogeneity, other MR methods were then performed. In the
PWM analyses, both SBP (OR: 1.033, 95% CI: 1.025–1.041, p < 0.001) and DBP (OR: 1.046,
95% CI: 1.032–1.061, p < 0.001) were shown to be significantly associated with a higher risk
for IS. Furthermore, TC was also identified to play a role in the risk of IS (OR: 1.220, 95% CI:
1.017–1.463, p = 0.032), while the p values of other traits were still greater than 0.05 (Table 6).

Table 6. Other MR results for seven metabolic traits on IS among the European population.

Exposure Method SNP (N) OR (95% CI) Beta (SE) p

BG WM 38 0.966 (0.866–1.077) −0.035 (0.055) 0.533
PWM 38 0.966 (0.863–1.081) −0.035 (0.058) 0.548

MR–Egger 38 0.925 (0.801–1.068) −0.078 (0.073) 0.295
SBP WM 324 1.033 (1.025–1.040) 0.032 (0.004) 1.141 × 10−17 *

PWM 324 1.033 (1.025–1.041) 0.033 (0.004) 9.354 × 10−16 *
MR–Egger 324 1.043 (1.026–1.060) 0.042 (0.008) 8.903 × 10−7 *

DBP WM 319 1.046 (1.033–1.060) 0.045 (0.007) 1.331 × 10−11 *
PWM 319 1.046 (1.032–1.061) 0.045 (0.007) 8.600 × 10−11 *

MR–Egger 319 1.062 (1.034–1.091) 0.060 (0.014) 1.837 × 10−5 *
TC WM 34 1.215 (1.025–1.441) 0.195 (0.087) 0.025 *

PWM 34 1.220 (1.017–1.463) 0.199 (0.093) 0.032 *
MR–Egger 34 1.102 (0.799–1.520) 0.097 (0.164) 0.559

TG WM 45 1.008 (0.914–1.111) 0.007 (0.050) 0.880
PWM 45 1.009 (0.916–1.110) 0.009 (0.049) 0.861

MR–Egger 45 0.951 (0.844–1.071) −0.051 (0.061) 0.411
LDL−C WM 33 0.980 (0.837–1.146) −0.021 (0.080) 0.796

PWM 33 0.980 (0.830–1.156) −0.021 (0.084) 0.804
MR–Egger 33 1.094 (0.822–1.456) 0.090 (0.146) 0.543

HDL−C WM 68 0.893 (0.794–1.004) −0.113 (0.060) 0.059
PWM 68 0.890 (0.789–1.003) −0.116 (0.061) 0.058

MR–Egger 68 1.145 (0.916–1.430) 0.135 (0.113) 0.238

Beta is the estimated effect size. MR, Mendelian randomization; IS, ischemic stroke; BG, blood glucose; SBP,
systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; LDL–C, low-density
lipoprotein cholesterol; HDL–C, high-density lipoprotein cholesterol; SNP, single-nucleotide polymorphism; OR,
odds ratio; CI, confidence interval; SE, standard error; WM, weighted median method; PWM, penalized weighted
median method; MR–Egger, Egger regression method; * p < 0.05, the result is statistically significant.
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After correcting for outliers, MR–PRESSO results showed that SBP, DBP, and HDL–C
were still statistically significant in relation to IS (p < 0.05). The distortion test revealed
no significant difference between the results before and after outlier correction (p > 0.05,
Table 7).

Table 7. MR–PRESSO results for BP components and HDL–C on IS among the European population.

Exposure MR–Analysis SNP (N) OR (95% CI) Beta (SE) Pa Pb Pc

SBP Outlier-corrected 318 1.033 (1.026–1.039) 0.032 (0.003) <0.001 * 2.558 × 10−26 * 0.977
DBP Outlier-corrected 314 1.044 (1.034–1.054) 0.043 (0.005) <0.001 * 2.167 × 10−17 * 0.986

HDL–C Outlier-corrected 67 0.899 (0.833–0.971) −0.106 (0.039) 0.001 * 0.008 0.517

Pa is the value of p for the global test performed by the MR–PRESSO method to detect potential horizontal
pleiotropy. Pb is the value of p for MR–PRESSO analysis after outlier correction. Pc is the value of p for the
distortion test performed by the MR–PRESSO to test the significant differences in causal estimates before and
after outlier correction. * p < 0.05, the result is statistically significant. MR–PRESSO, Mendelian randomization
pleiotropy residual sum and outlier; BP, blood pressure; IS, ischemic stroke; SBP, systolic blood pressure; DBP,
diastolic blood pressure; HDL–C, high-density lipoprotein cholesterol; SNP, single-nucleotide polymorphism; OR,
odds ratio; CI, confidence interval; SE, standard error.

In the CAUSE analysis, the causal model of both SBP and DBP was superior to the
shared model, and the difference was statistically significant (p < 0.05, Table S10). For the
MVMR methods after controlling the exposures with overlapping SNPs, consistent with
the results from the MVMR analysis in the Japanese population, the results in the European
population further corroborated the association between SBP and IS (all Ps < 0.05) while
evidence for DBP was observed only in the MVMR–Median method (p = 0.021, Table S11).
However, when lipid exposures were included in the model, no evidence supporting an
association with IS was found for either MVMR method (Table S12). In the sensitivity
analysis (Table S13), heterogeneity was still observed in SBP, DBP, TC, LDL–C, and HDL–C
(p < 0.05), but PWM did not lend support to causality.

4. Discussion

This study explored the causal relationships of seven metabolic traits with IS based
on Japanese and European populations using multiple MR methods. SBP was identified
to be causally associated with an increased risk of IS, and a similar result was observed in
DBP analyses of Europeans, while it was not robust in Japanese analyses. In addition, no
evidence was found to support the causal role of other metabolic traits in IS.

BP plays an important role in vascular function and organ perfusion and is also
the most common clinical symptom recorded at stroke presentation [38]. Observational
studies have underscored the critical importance of BP in the pathogenesis, development,
and prognosis of stroke [39–41]. In a two-sample MR analyses carried out in a European
population (over 400 SNPs included), both SBP and DBP were identified as causal factors
in the risk of IS [15]. A bidirectional MR study in a European population showed that
hypertension was associated with an increased risk of IS [8]. Further, another MR study on a
European population, incorporating in excess of 300 SNPs for analyses, further corroborated
its causal association [22]. Even after exclusion, the association was still observed in the
PWM results. Beyond that, results from randomized controlled trials (RCTs) showed that
BP lowering can reduce the risk of stroke [42,43]. Similar results were also observed in our
study. For Europeans, both before and after SNP control, SBP and DBP were statistically
associated with IS; for Japanese individuals, the association between SBP and IS risk was
found to be robust, while DBP was only supported by WM and PWM methods, and the
results were no longer positive when pleiotropy was further controlled by the CAUSE
method, which seemed inconsistent with the results from RCTs. This inconsistency results
between MR and RCTs also appeared in other previous studies [44,45]. In addition to the
multitarget effect of the intervention in RCTs, pleiotropy may account for the difference
between RCTs and MR, which poses a threat to the robustness as well as reliability of
MR [46]. It is noteworthy that the SNPs included in our study were far outnumbered by
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those in European MR analyses, which led to a higher proportion of variance in BP being
explained by the IV in European compared to ours, and this may account for the lack of
observed association between BP and IS that was not observed in our MVMR analyses.
Although the CAUSE method further controls the issue of false positive, the power of
CAUSE is lower than that of other MR methods (especially IVW and WM) in many settings
presented in its simulation analyses [13]. Due to the limited number of SNPs and the issue
of CAUSE, our results need to be further verified by a larger East Asian sample as well as
CAUSE results based on Europeans.

Traditional epidemiological studies have underscored the association between lipids
and the risk of IS [47–49], and this correlation is also supported by some robust evidence
in MR studies [50]. Although one European-based MR study found evidence for LDL–C,
instead of TG or HDL–C, with an increased risk of IS [16], another MR study only found
suggestive evidence (results with p value below 0.05 but above Bonferroni-corrected p)
for LDL–C and TC with IS after further controlling for LD [17]. The existence of LD will
violate the third assumption of MR and lead to false-positive results, which may account
for the variations observed in the above studies. For our study, r2 < 0.001 was also used
for LD, and different thresholds for IV selection were applied considering insufficient
power. In the European population examined in this study, certain specific MR methods
suggested a relationship between LDL–C and TC with IS. However, other MR methods have
shown heterogeneity in the results, which may be attributed to the different algorithms
employed by these MR methods. Furthermore, no causal association was observed in
the MVMR analysis, possibly due to the presence of horizontal pleiotropy for LDL–C
and heterogeneity for both. Furthermore, it is noteworthy that previous studies [16,17]
incorporated IS subtypes for analyses and found that the association of lipids with large
artery stroke is more obvious than that with all IS. A study of an African population
provides evidence of a causal effect of lipid traits on the risk of IS in individuals of African
descent [7]. Considering the differences among stroke subtypes, further studies covering
more IS types should be carried out in East Asians.

Contrary to a previous MR study [23], no association between BG and IS risk was
found in this study. Although previous research suggested that glucose control is widely
regarded as beneficial in IS prevention [51,52], RCTs found that intensive therapy targeting
normal glycated hemoglobin levels did not significantly reduce cardiovascular events but
increased mortality [53–55]. Combined with current MR studies, the effect of glucose
control in IS prevention may stem more from the effect of the treatment regimen on other
body indicators rather than a causal relationship between the two. Moreover, further
study on the association between HbA1c levels and IS in East Asians is imperative to
better explore the difference in the role of HbA1c in different races and understand the
relationship between T2D and IS.

Strengths and Limitations

This study is the first to explore the causal association between the seven metabolic
traits and IS in a large East Asian population from genetic insights; various MR methods
were utilized to control for possible bias caused by pleiotropy, and we included more
comprehensive metabolic traits. The study acknowledges certain limitations, particularly
concerning the limited number of available SNPs: (1) Given that participants of the exposed
group also came from the BBJ database, a certain degree of overlap with the case participants
in the outcome group is possible. However, the sample size of the control group is large
enough, which makes the overlap ratio low. Moreover, given the negative MR results
of this study, the potential type I error inflated by sample overlap does not change our
conclusion. (2) The stringent criteria applied during SNP selection led to the inclusion of a
limited number of SNPs, which resulted in a low proportion of each component’s variation
explained by SNPs, representing a significant challenge in MR research. (3) Pleiotropy
is another challenge encountered in MR analyses. Currently, MR methods for detecting
and correcting pleiotropy are limited, and new methods are required to further validate
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our results. (4) This study relied on summary-level data from public databases, so limited
data are available to further analyze the association of metabolic traits with IS subtypes.
Additionally, the results of this study also need to be further verified by data from other
East Asian populations.

5. Conclusions

Based on large-scale Japanese and European summary data, this study explored the
causal association between seven metabolic traits and IS by employing various two-sample
MR methods from genetic insights. Our study found robust evidence for the association
between SBP and IS in two races. However, contrasting with the results in Europeans, the
evidence of DBP and IS in Japanese individuals was not robust enough. Moreover, no
evidence was found to support the causal association of other traits and IS.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/metabo14050255/s1: Table S1. The characteristics of SNPs
used for MR analyses in Japanese (before exclusion); Table S2. The characteristics of SNPs used
for MR analyses in Japanese (after exclusion); Table S3. Horizontal pleiotropy and heterogeneity
tests of seven metabolic traits and IS in Japanese; Table S4. MR results for seven metabolic traits
on IS in Japanese (before exclusion); Table S5. MR–RAPS results for seven metabolic traits on IS
in Japanese (before exclusion); Table S6. Multivariable results for five metabolic traits on risk of IS;
Table S7. Multivariable results for four metabolic traits on risk of IS; Table S8. MR results for seven
metabolic traits on IS in Europeans; Table S9. MR–RAPS results for seven metabolic traits on IS
in Europeans (before exclusion); Table S10. CAUSE results for metabolic traits on IS in Europeans;
Table S11. Multivariable results for three metabolic traits on risk of IS; Table S12. Multivariable results
for four metabolic traits on risk of IS; Table S13. Horizontal pleiotropy and heterogeneity tests of
seven metabolic traits and IS in Europeans.
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