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Abstract: High-resolution synthetic aperture radar (SAR) operating with a large bandwidth is
subject to impacts from various kinds of narrowband interference (NBI) in complex electromagnetic
environments. Recently, many radio frequency interference (RFI) suppression approaches for SAR
based on sparse recovery have been proposed and demonstrated to outperform traditional ones in
preserving the signal of interest (SOI) while suppressing the interference by exploiting their intrinsic
structures. In particular, the joint recovery strategy of SOI and NBI with a cascaded dictionary,
which eliminates the steps of NBI reconstruction and time-domain cancellation, can further reduce
unnecessary system complexity. However, these sparsity-based approaches hardly work effectively
for signals from an extended target or NBI with a certain bandwidth, since neither of them is sparse
in a prescient domain. Moreover, sub-dictionaries corresponding to different components in the
cascaded matrix are not strictly independent, which severely limits the performance of separated
reconstruction. In this paper, we present an enhanced NBI separation algorithm for SAR via sensing
matrix optimization-based block sparse Bayesian learning (SMO-BSBL) to solve these problems above.
First, we extend the block sparse Bayesian learning framework to a complex-valued domain for the
convenience of radar signal processing with lower computation complexity and modify it to deal with
the separation problem of NBI in the contaminated echo. For the sake of improving the separated
reconstruction performance, we propose a new block coherence measure by defining the external
and internal block structure, which is used for optimizing the observation matrix. The optimized
observation matrix is then employed to reconstruct SOI and NBI simultaneously under the modified
BSBL framework, given a known and fixed cascaded dictionary. Numerical simulation experiments
and comparison results demonstrate that the proposed SMO-BSBL is effective and superior to other
advanced algorithms in NBI suppression for SAR.

Keywords: synthetic aperture radar; narrowband interference separation; block sparse Bayesian
learning; sensing matrix optimization; block coherence measure

1. Introduction

High-resolution synthetic aperture radar (SAR) is an active remote sensing modality for real-time
information acquisition. It plays a significant role in the field of civil exploration and military
reconnaissance owing to its capability of all-weather, all-time, and high-resolution imaging. A SAR
system usually operates at a wide range of microwave frequencies and it is inevitably subject to various
kinds of electromagnetic interference. These kinds of interference with the characteristics of high
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power and narrowband may seriously degrade the quality of SAR images and cause trouble for the
subsequent interpretation.

Multi-channel technology and signal processing are two typical methods of interference
suppression for SAR. A multi-channel processing method [1,2] uses the space information and
extracts the signal of interest (SOI) from the contaminated echo by zeroing the interference direction,
and this method outperforms that of a single channel. However, this special multiplex architecture
increases the complexity of the radar system and cannot be directly applied to existing devices.

From the perspective of pure signal processing, narrowband interference suppression can be mainly
divided into parametric, non-parametric, and semi-parametric methods. The parametric methods such
as high-order ambiguity function [3] and complex empirical mode decomposition [4] are based on
interference modeling with multi-order terms. However, it is heavily dependent on model accuracy
and has a large amount of calculation in the process of parameter searching. A non-parametric method
such as notched filtering (NF) [5,6], least mean square (LMS) filtering [7], eigen-subspace filtering
(ESF) [8], independent component analysis (ICA) [9], independent subspace analysis (ISA) [10,11], and
robust principal component analysis (RPCA) [12] can suppress the interference from raw data without
any prior knowledge or parametric model. Notched filtering and LMS filtering are actually equivalent
to adding a band-stop filter where the interference is located, regardless of whether there is a signal
component in this frequency range. The basic idea of ESF, ICA, ISA, and RPCA is the singular value
decomposition (SVD) of the data matrix, and the signal or interference is reconstructed by inverse
transform after extracting the dominant components. The main problem of the non-parametric method
is the signal distortion, since the SOI is also suppressed when the interference is eliminated.

Sparse recovery, as a typical semi-parametric method for interference suppression, is
state-of-the-art, especially in terms of reducing signal distortion. It can be considered as an optimization
problem of reconstructing few coefficients with a given dictionary. The sparsity-based method is
mainly used for suppressing RFI that appears in the form of spikes in a large frequency range.
Considering the sparse property in the range-frequency domain and the low-rank property in the
azimuth, in References [13,14], RFI was extracted and suppressed based on a sparse and low-rank
model. In Reference [15], the matrix factorization technique was introduced into the sparse and
low-rank model to avoid large residuals after SVD and further reduce the computational complexity at
the same time. In our previous work [16], we proposed an RFI suppression method for SAR based on
morphological component analysis (MCA), in which a stepwise reconstruction algorithm was adopted
to the reconstruction. Given that the steps of interference reconstruction and cancellation may limit
the suppression performance and increase the system complexity, the alternating direction multiplier
method (ADMM) [17] was adopted to reconstruct the signal and the interference simultaneously in
Reference [18]. The premise of this method is that both the SOI and interference are sparse in their
respective domains.

The observed scene in most SAR images is not sparse and it is difficult to find a proper dictionary
to represent the echo signal with few nonzero coefficients. Moreover, the narrowband interference
(NBI) of a noise-modulated type with a certain bandwidth is not sparse either in the frequency domain.
Classical recovery algorithms [19,20] such as basis pursuit (BP), matching pursuit (MP), and orthogonal
matching pursuit (OMP) fail to recover the signal accurately. The block MP (BMP) and block OMP
(BOMP) algorithm proposed in Reference [21] can improve the reconstruction probability with a slight
requirement for sparsity by exploiting the block sparse structure. Still, with the increase in scene
complexity and interference bandwidth, the reconstruction probability decreases, since the block sparse
feature gradually weakens. The global minimum of the above algorithm is not really the sparsest
solution, unless strict conditions are satisfied. Hence, sparse Bayesian learning (SBL) [22], which
considers all unknown parameters as random variables and adds appropriate prior distributions
according to the sparse structure, is no doubt a better choice. Derived from the SBL framework, block
sparse Bayesian learning (BSBL) [23,24] is a robust recovery algorithm for both sparse and non-sparse
signals from a low-dimensional space by exploiting the temporal correlation of intra-block data. In
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Reference [25], the BSBL framework is first used and modified for RFI suppression where the target
or observed scene is not strictly sparse but block sparse, and the S-BSBL and A-BSBL algorithms are,
respectively, proposed to improve reconstruction performance and reduce the amount of computation.
Judging from the results of interference suppression, the BSBL-based approach is indeed superior to
other advanced ones and can be used more widely.

Nevertheless, there remain several problems to be solved. As is known, radar signals are
complex-valued in most processing steps, so the BSBL algorithm cannot be directly applied. A widely
accepted trade-off approach is to concatenate the real and imaginary parts of the signal into a new
vector. There are two main shortcomings in this scheme. One is that the length of the new real-valued
vector is twice as long as the original complex-valued vector and the corresponding sensing matrix will
expand in square with the signal length increasing, which will result in a huge amount of computational
burden. The other is that the reconstruction performance may be degraded due to the loss of structural
information, since the real and imaginary part of the signal are processed separately. In addition, while
the BSBL framework is robust to the interatomic coherence in the sensing matrix for the reconstruction
of a clean signal, the block coherence of sub-dictionaries corresponding to different components in the
contaminated echo has a great impact on the separated reconstruction performance, since the diagonal
block of the covariance matrix cannot be effectively distinguished.

To solve these problems above, our goal is to reduce the amount of calculation with a modified
BSBL algorithm, which can be applied to the complex-valued signal directly and further improve the
performance of NBI separation by optimizing the cascaded sensing matrix.

The main contents of this paper are divided into three parts. In Section 2, the problem of separated
reconstruction for SOI and NBI based on complex-valued block sparse Bayesian learning framework is
formulated. In Section 3, the optimal sensing matrix is designed by minimizing the newly defined
block coherence measure, and the SMO-BSBL algorithm for NBI separation, which is embedded in the
entire procedure of SAR imaging, is presented. In Section 4, numerical experiments with simulated
data are carried out, and results of the proposed algorithm in this paper are compared with existing
BSBL-based algorithms.

2. Problem Formulation

2.1. Sparse Model and Joint Recovery

The raw SAR echo is usually considered as the convolution of the scattering points and the
transmitted signal from radar. The most commonly used signal type is the linear frequency-modulated
(LFM) signal and the ideal echo signal in the analogy domain can be expressed as [26]

sr(τ, t) =
P∑

p=1

σpwr
(
t− 2Rp(τ)/c

)
exp

(
− j4πRp(τ)/λ

)
exp

[
jπKr

(
t− 2Rp(τ)/c

)2
]

(1)

where t is the fast time in range direction; τ is the slow time in azimuth direction; P is the number of
scattering points in observed scene; σp is the backscatter coefficient of the p-th point; c is the speed of
light; λ is the electromagnetic wavelength; Rp is the oblique distance between scattering point and
SAR platform; Kr is the frequency modulation slope; wr(·) denotes the rectangular window function
with the length of r.

In real-world environments, SAR may be subjected to various forms of interference, including the
natural radiation and the man-made interference. The former is also subject to RFI and commonly
modeled in the form of multi-tone complex sine, which adds bright stripes to SAR images. This type
of NBI in analog time domain can be expressed as

n1(t) =
L∑

i=1

Ai(t) exp
{
j[2π fi(t)t + ϕi(t)]

}
(2)



Electronics 2019, 8, 458 4 of 24

where A(t), f (t), andφ(t) are, respectively, the amplitude, carrier frequency, and phase varying over time;
L is the number of interference tone. The latter, which is often generated artificially by modulating a
narrowband noise into the frequency band of the signal, will add speckles similar to salt and pepper on
the image. This type of NBI mainly includes the amplitude-modulated type and frequency-modulated
type, and its general mathematical model in the analog time domain can be expressed as

n2(t) = [U0 + Un(t)] exp
{

j
[
2π f t + 2πKFM

∫ 1

0
Un(τ)dτ+ ϕ(t)

]}
(3)

where U0 is the constant amplitude; Un(t) is the band-limited noise whose amplitude may change over
time; KFM is the frequency-modulated slope. The waveform and spectrum diagram of two types of
NBI added to the LFM signal are shown in Figure 1.
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Figure 1. Waveform and spectrum diagram for two types of narrowband interference (NBI): (a) 
complex sine model; (b) noise-modulated model. 

As shown in Figure 1a, the NBI based on the complex sine model is sparse in the frequency 
domain, since there are only a few dominant, scattered interference components with an extremely 
narrow bandwidth. In contrast, the narrowband noise-modulated NBI in Figure 1b is not strictly 
sparse in frequency because it densely occupies a segment of the spectrum. Moreover, the high-power 
characteristic of this kind of NBI is not as outstanding as that of RFI, which indicates that it is more 
difficult to extract and separate from the SOI. Therefore, we mainly focus on this narrowband noise-
modulated NBI and seek effective approaches to suppress it. 

For the convenience of theoretical analysis, the echo contaminated with NBI in each pulse is 
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Figure 1. Waveform and spectrum diagram for two types of narrowband interference (NBI): (a) complex
sine model; (b) noise-modulated model.

As shown in Figure 1a, the NBI based on the complex sine model is sparse in the frequency
domain, since there are only a few dominant, scattered interference components with an extremely
narrow bandwidth. In contrast, the narrowband noise-modulated NBI in Figure 1b is not strictly
sparse in frequency because it densely occupies a segment of the spectrum. Moreover, the high-power
characteristic of this kind of NBI is not as outstanding as that of RFI, which indicates that it is
more difficult to extract and separate from the SOI. Therefore, we mainly focus on this narrowband
noise-modulated NBI and seek effective approaches to suppress it.

For the convenience of theoretical analysis, the echo contaminated with NBI in each pulse is
analyzed in the discrete domain, which is expressed in the form of N-dimensional complex-valued
vectors, i.e.,

x̃ = s̃ + ñ + w̃ (4)

where s̃ ∈ CN is the SOI component; ñ ∈ CN is the NBI component; w̃ ∈ CN is the additional white noise
assumed to satisfy complex Gaussian distribution w̃ ∼ CN(0,σ2Iw), where I is an identity matrix.

If the observed scene is divided into grids, the echo x̃ can be considered as the accumulation of
transmitted signals with a different delay of range. In addition, the SAR system is a collaborative
platform and its signal form and parameters are known. Therefore, the basis dictionary Ψ̃s of the
SOI can be constructed by the reference signal with delays of range, and the SOI can be expressed as
s̃ = Ψ̃sα̃s, where α̃s is the coefficient vector with few nonzero elements in the sparse case. Similarly, the
NBI component in each pulse can be represented with few aggregated atoms on a specific basis Ψ̃n,
since it is sparse or block sparse in the frequency domain, which can be expressed as ñ = Ψ̃nα̃n, where
α̃n is the coefficient vector used for representing the NBI.

Compressed sensing theory has demonstrated that an N-dimensional vector with a sparse structure
can be accurately recovered from M-dimensional (M < N) compressed measurements via nonlinear
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optimization with a high probability. The SAR echo contaminated with NBI after compressed sampling
can be expressed as the following cascaded matrix form:

ỹ = Φ̃
(
Ψ̃sα̃s + Ψ̃nα̃n

)
+ w̃ =

[
Θ̃s Θ̃n

][ α̃s

α̃n

]
+ w̃ (5)

where Φ̃ is the compressed observation matrix; Θ̃s and Θ̃n are the sensing matrix of SOI and
NBI, respectively.

The separated optimization problem in Equation (5) can be expressed as{
α̃∗s, α̃

∗
n
}
= argmin
{α̃s,α̃n}

= ‖α̃s‖0 + ‖α̃n‖0 (6)

where || · ||p denotes the lp-norm. Since minimizing the l0-norm needs to list all possible combinations
of non-zero elements in a sparse vector, which will take an enormous amount of time, a relaxed form
of (6) can be expressed as{

α̃∗s, α̃
∗
n
}
= argmin
{α̃s,α̃n}

= ‖α̃s‖1 + λ‖α̃n‖1 s.t. ‖̃y− Ψ̃sα̃s − Ψ̃nα̃n‖2 < ε (7)

where λ is a constant regularization parameter.
The ADMM algorithm [17] is widely used for this joint optimization problem as long as components

are sparse in their respective domain. However, when the target is not sparse in the observed scene
or the spectrum of NBI occupies a certain amount of bandwidth, the simultaneous reconstruction
performance of components via ADMM degrades or even fails. The BSBL performs better for highly
underdetermined problems compared to existing algorithms, which can obtain the sparsest solution
by modeling the temporal correlation, even in non-sparse cases. In Reference [25], it was verified that
BSBL is superior to ADMM in terms of joint reconstruction when the target is not sparse. It is worth
noting that the BSBL-based NBI suppression is still implemented in real-valued signals formed by
splicing the real and imaginary part of the complex signals. This approach not only destroys the phase
structure, which is significant for SAR, but also increases the computational cost. Next, we modify the
original BSBL framework to enable it to deal with the complex-valued signal directly.

2.2. Complex BSBL Framework

The initial BSBL framework is generally applicable to real-valued signal processing. The most
common way to deal with the complex-valued radar signal is to process the real and imaginary part
separately, and this bi-channel signal observation model can be expressed as

[
Re(̃y)
Im(̃y)

]
=

 Re
(
Θ̃s

)
Re

(
Θ̃n

)
−Im

(
Θ̃s

)
−Im

(
Θ̃n

)
Im

(
Θ̃s

)
Im

(
Θ̃n

)
Re

(
Θ̃s

)
Re

(
Θ̃n

) 


Re(α̃s)

Re(α̃n)

Im(α̃s)

Im(α̃n)

+
[

Re(̃n)
Im(̃n)

]
(8)

where Re(·) and Im(·) denote the real part and imaginary part of the complex vector. Here, we attempt to
modify the BSBL so that it can be directly adopted to complex signal processing with less computation
instead of the above approach.

To solve the optimization problem in Equation (6) via a complex BSBL framework, the
2N-dimensional cascaded coefficient vector to be reconstructed is divided into cascaded blocks
of the same length, i.e.,

α̃ = [
α̃1

s , . . . , α̃d1
s︸      ︷︷      ︸

d1s

, . . . , α̃
dgs−1+1
s , . . . , α̃N

s︸             ︷︷             ︸
dgs

α̃1
n, . . . , α̃d1

n︸      ︷︷      ︸
d1n

, . . . , α̃
dgn−1+1
s , . . . , α̃N

s︸              ︷︷              ︸
dgn

]

T

(9)
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where di is the length of the i-th block; gs and gn are the number of blocks for SOI and NBI. Similarly,
the sensing matrix is divided into blocks corresponding to the coefficient vector, i.e.,

Θ̃ = [
Θ̃s1 , . . . , Θ̃sgs︸          ︷︷          ︸

gs

Θ̃n1 , . . . , Θ̃ngn︸           ︷︷           ︸
gn

]. (10)

Given that the covariance matrix is a semi-positive Hermitian matrix and the imaginary part of
each diagonal element is zero, we assume that blocks are independent of each other and α̃i in each block
satisfies a multivariate complex Gaussian distribution α̃i ∼ CN(0, C0,i), where C0,i = γiB̃i ∈ Cdi×di

is the prior covariance matrix of α̃i; B̃ is a Hermitian matrix used for characterizing the correlation
structure of α̃i; γi is a real non-negative correlation coefficient. Most γi will approach zero in the
process of Bayesian learning owing to automatic relevance determination [22]. In other words, a sparse
solution is obtained by changing α̃i into an irrelevant zero-valued vector or complex Gaussian noise
with low variance. Thus, the prior covariance of α̃ can be expressed as

C0 = γ⊗ B̃ (11)

where γ = diag(γ1, . . . ,γgs+gn); B̃ = diag(B̃i, . . . , B̃gs+gn); ⊗ denotes the Kronecker product. Under the
parameters γ and B̃, the prior probability density function of α̃ can be expressed as [27] (p. 504)

p
(
α̃;γ, B̃

)
=

1
πN |C0|

exp
(
−α̃HC−1

0 α̃
)

(12)

where |·| denotes the determinant value; (·)H denotes the conjugate transposition. The Gaussian
likelihood function of compressed observation ỹ is

p(̃y
∣∣∣α̃ ; σ2) =

1
πMσ2M

exp
[
−

1
σ2

(̃
y− Θ̃α̃

)H (̃
y− Θ̃α̃

)]
. (13)

According to the Bayesian criterion, under the parameters γ, B̃, and σ2, the posterior probability density
function of α̃ is

p
(
α̃
∣∣∣̃y ;γ, B̃, σ2

)
=

p
(̃
y
∣∣∣α̃;γ, B̃, σ2

)
p
(
α̃;γ, B̃, σ2

)
p(̃y)

(14)

where p(̃y) =
∫

p
(̃
y
∣∣∣α̃;γ, B̃, σ2

)
p
(
α̃;γ, B̃, σ2

)
dα̃dγdB̃dσ2.

Considering that it is difficult to give an analytical expression of the above integral formula, we
decompose it into another form based on Bayesian rule and Gaussian identity [28], i.e.,

p
(
α̃
∣∣∣̃y ;γ, B̃, σ2

)
=

p
(̃
y
∣∣∣α̃; σ2

)
p
(
α̃;γ, B̃

)
p
(̃
y;γ, B̃, σ2

) (15)

where p
(̃
y;γ, B̃, σ2

)
=

∫
p
(̃
y
∣∣∣α̃; σ2

)
p
(
α̃;γ, B̃

)
dα̃. The likelihood function of ỹ is then

p
(̃
y;γ, B̃, σ2

)
=

1

πM
∣∣∣∣σ2Iñ + Θ̃C0Θ̃

H∣∣∣∣ exp
[
−ỹH

(
σ2Iñ + Θ̃C0Θ̃

H
)−1

ỹ
]
. (16)

Thus, the posterior probability density function of α̃ can be expressed as

p
(
α̃
∣∣∣̃y ;γ, B̃, σ2

)
=

1

πN
∣∣∣Cα̃∣∣∣ exp

[
−(α̃− µα̃)

HC−1
α̃
(α̃− µα̃)

]
(17)
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where Cα̃ =
(
C−1

0 + σ−2Θ̃
H

Θ̃

)−1
; µα̃ = σ−2Cα̃Θ̃

H
ỹ. Here, the maximum posterior estimation of the

complex coefficient vector α̃ is

α̃∗ = µα̃ = σ−2
(
C−1

0 + σ−2Θ̃
H

Θ̃

)−1
Θ̃

H
ỹ. (18)

Expectation maximum (EM) is a typical optimization algorithm for BSBL, according to which
the parameters γ, B̃, and σ2 of each block can be updated as described in Reference [23,24]. In the
EM algorithm, the goal is to maximize the likelihood function of p

(̃
y;γ, B̃, σ2

)
, which is equivalent

to minimizing the following cost function, which can be expanded according to the matrix inverse
operation, i.e.,

L

(
γ, B̃, σ2

)
, −2 log

∫
p(̃y

∣∣∣α̃ ; σ2)p(α̃;γ, B̃)dα̃

= log
∣∣∣γ⊗ B̃

∣∣∣+ N log σ2 + log
∣∣∣C−1
α̃

∣∣∣+ σ−2
‖̃y− Θ̃µα̃‖

2
2 + µ

H
α̃

C0µα̃
(19)

What needs to be noticed here is that both the correlation matrix B̃ and the prior covariance matrix
Cα̃ are defined as a complex-valued matrix, but their diagonal elements are real. In order to ensure that
all γi are real-valued as we initially defined, we set an absolute constraint on them. We then calculate
these parameters by calculating the partial derivative of the cost function. The noise variance was
deduced in Reference [23], and here we focus on the other two parameters, which can be deduced by
employing the complex-valued matrix derivation rules. Based on Proposition 3.14 in Reference [29],
we can update σ2, γi, and B̃i, which are located in a complex variable function as follows:

σ2 =
‖y− Θ̃µα̃‖

2
2 + tr

(
Cα̃,iΘ̃

H
Θ̃

)
N

(20)

γi =

∣∣∣∣∣∣∣∣∣∣
tr
[
B̃
−1
i

(
µα̃,iµ

H
α̃,i

+ Cα̃,i

)]
di

∣∣∣∣∣∣∣∣∣∣ (21)

B̃i =

(
µα̃,iµ

H
α̃,i

+ Cα̃,i

)
γi

(22)

where tr(·) denotes the trace operation.
Given that B̃ can be modeled as a first-order auto-regressive (AR) process and constrained in a

Toeplitz form to avoid over-fitting [24], we assign different AR coefficients for the correlation matrix
corresponding to each component. In other words, B̃ii(i = 1, . . . , gs) and B̃ii(i = gs + 1, . . . , gs + gn)

are updated, respectively, in order to reconstruct SOI and NBI simultaneously from the contaminated
echo, since the intra-block correlation of the two components are not similar. The Toeplitz form of the
correlation matrix can be expressed uniformly as

B̃i ∼ Toeplitz
(
1, r̃, . . . , r̃d−1

)
(23)

where r̃ denotes the average AR coefficient. Generally, r̃ is obtained by empirical formula, which can
be defined as the mean value ratio of all minor and principal diagonal elements [24], i.e.,

r̃ =
1
g

g∑
i=1

tr
(
B̃i,sub,1

)
/(di − 1)

tr
(
B̃i,main

)
/di

,
∣∣∣̃r∣∣∣ ≤ 0.9 (24)

where B̃i,main and B̃i,sub,1 denote the principle and the first minor diagonal elements.
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3. NBI Separation Based on SMO-BSBL

As stated above, the final coefficients of SOI and NBI were reconstructed simultaneously with the
cascaded dictionary via the complex BSBL framework. However, the effectiveness of actual separation
was not satisfactory. In this section, we analyze the problem and put forward an effective approach to
suppress these adverse effects.

There are two main reasons why the separation performance was not as good as expected. First,
the cascaded dictionary was directly built by splicing the SOI and the NBI dictionary, the coherence
of which is not taken into account. The coherence of these two sub-dictionaries has great impact on
reconstruction, especially on separated reconstruction. It was demonstrated in References [30,31]
that a well-designed observation matrix or optimized dictionary used for reducing the coherence can
improve reconstruction performance. The sub-dictionaries were predefined and fixed according to
the signal model, so the only approach is to carefully design the observation matrix. Second, the
correlation characteristic of noise-modulated NBI was generally far weaker than that of the SOI. If the
threshold for pruning out the blocks of each component were assigned with the same value, the global
convergence rate of the algorithm would decrease. Therefore, the pruning threshold for the correlation
coefficient should be adaptively adjusted.

3.1. Block Coherence Measure

Setting the AR coefficients in B̃ corresponding to SOI and NBI to different values is equivalent to
dividing the cascaded sensing matrix with its corresponding coefficient vector into two parts. We call
each part an external block. Blocks in each external part are internal blocks. The noise-modulated NBI
model is not sparse but block sparse in the frequency domain. Therefore, more general conclusions can
be obtained by analyzing the block coherence, since the traditional coherence is a special case when the
block size is 1. The diagram of the structural relationship between the external block and the internal
block is shown in Figure 2. The hierarchical block structure shown in Figure 2a can be extended to
cases of more interference components rather than just limited to one type of NBI.
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Figure 2. Diagram of the structure relationship between external block and internal block. (a) The 
hierarchical block structure with gex external blocks and gin internal blocks with the size of d. The solid 
wireframe represents the external block, the dashed wireframe represents the internal block, and 
different components are in different colors. (b) The Gram form of the sensing matrix with two 
external blocks and two internal blocks of size four in each external block. Entries belonging to 
different external blocks are in green. Entries belonging to the same external block, but different 

Figure 2. Diagram of the structure relationship between external block and internal block. (a) The
hierarchical block structure with gex external blocks and gin internal blocks with the size of d. The
solid wireframe represents the external block, the dashed wireframe represents the internal block, and
different components are in different colors. (b) The Gram form of the sensing matrix with two external
blocks and two internal blocks of size four in each external block. Entries belonging to different external
blocks are in green. Entries belonging to the same external block, but different internal blocks, are in
yellow. Entries belonging to the same internal block are in red, and diagonal entries are in blue.

In Reference [32], the dictionary coherence, which is used for measuring the similarity of atoms is
defined as

µ = max
u,v,u

∣∣∣ψH
u ψv

∣∣∣ (25)
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where ψu is the u-th column of dictionary Ψ; | · | denotes the absolute operation. The sensing matrix
coherence is extended to a block structure in Reference [21]. The inter-block coherence is mainly used
for quantifying the global property, which is defined as

µB = max
i, j,i

1
d
ρ
(
Gi, j

)
= max

i, j,i

1
d
ρ
(
ΨH

i Ψ j
)

(26)

where Ψi is the i-th block of Ψ with d normalized columns; Gi, j denotes the (i,j)-th Gram matrix with
the dimension of d × d (yellow entries in Figure 2b); ρ denotes the spectral norm expressed as

ρ(G) =
√
λmax

(
GHG

)
(27)

where λmax is the maximum eigen-value of a positive-semidefinite matrix. Correspondingly, the
intra-block coherence used for quantifying the local property is defined as

νB = max
i

max
u,v,u

∣∣∣∣Gu,v
i,i

∣∣∣∣ (28)

where Gu,v
i,i is the (u,v)-th block in the i-th Gram matrix with the dimension of d × d (the red entries in

Figure 2b).
For the purpose of improving the average performance of reconstruction as well as separation, all

pairs of external blocks and all pairs of internal blocks should be as orthogonal as possible. Therefore,
we further generalize the block structure and redefine the block coherence measure.

Assume that there are gex external blocks and gin internal blocks in each external block. Meanwhile,
the number of elements in each internal block is d. The cascaded sensing matrix and the corresponding
coefficient vector should then be divided into gex parts. Similar to the definitions above, we define the
total external block coherence to measure their orthogonality, which can be expressed as

µtotal
B,ex =

gex∑
p=1

∑
q,p

∥∥∥Gp,q
∥∥∥2

F (29)

where Gp,q is the (p,q)-th external Gram matrix with the dimension of dgin × dgin (green entries in
Figure 2b); ||·

∣∣∣|2F denotes the Frobenius norm, which is calculated by the sum of the square of all
elements in the matrix. For each internal block, we define the total internal coherence measure as

µtotal
B,in =

gex∑
p=1

gin∑
i=1

∑
j,i

∥∥∥∥Gi, j
p

∥∥∥∥2

F
=

gex∑
p=1

∥∥∥Gp
∥∥∥2

F −

gex∑
p=1

gin∑
i=1

∥∥∥Gi
p

∥∥∥2

F
(30)

where Gi, j
p is the (i,j)-th block in the p-th external Gram matrix (the yellow entries in Figure 2b).

3.2. Sensing Matrix Optimization

The optimization of sensing matrix Θ̃ in this paper can be defined as the design of an optimal
observation matrix Φ̃ that improves the performance of NBI separation with a given cascaded block
dictionary Ψ̃, where Θ̃ = Φ̃Ψ̃. The total block coherence measure is

µtotal
B,ex + µtotal

B,in =

gex∑
p=1

∑
q,p

∥∥∥Gp,q
∥∥∥2

F +

gex∑
p=1

∥∥∥Gp
∥∥∥2

F−

gex∑
p=1

gin∑
i=1

∥∥∥Gi
p

∥∥∥2

F
= ‖G− I‖2F − ξ (31)

where ξ =
gex∑

p=1

gin∑
i=1

∥∥∥Gi
p − I

∥∥∥2

F
denotes the penalty for each internal block to measure the normalization

error. If the penalty is also taken into account, the problem becomes one of finding an optimal
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observation matrix Φ̃
∗

to minimize
∣∣∣∣∣∣G− I

∣∣∣|2F . Of course, we expect both the internal and external
block coherence to be as small as possible so that the reconstruction and separation performance are
synchronously optimal. However, it was demonstrated in Reference [33] that there is a lower bound in
the process of minimizing the equivalent objective function. Inspired by Reference [30], we define a
total block coherence measure by weighting µtotal

B,in and µtotal
B,ex , and build an objective function with the

weighted block coherence measure as well as the block normalization penalty, i.e.,

Φ̃
∗

= argmin
Φ̃

(1− η)µtotal
B,ex (Φ̃) + ηµtotal

B,in (Φ̃) +
1
2
ξ (Φ̃) (32)

where η(0 < η < 1) is the parameter controlling the weight of the external and internal block coherence.
To obtain the optimal solution of Equation (32), we first initialize the observation matrix by minimizing∣∣∣∣∣∣G− I

∣∣∣|2F , which can be implemented by the eigen-value decomposition of Ψ̃Ψ̃
H

, i.e.,

Ψ̃Ψ̃
H
= ŨΛŨ

H
(33)

where Λ is a real diagonal matrix composed of eigen-values; the columns of Ũ are the eigen-vectors
corresponding to the eigen-values. The initial observation matrix is

Φ̃
(0)

= IM,0Λ1/2Ũ
H

(34)

where IM,0 denotes the augmentation matrix of IM with zero-valued column vectors.
We define the objective function in the form of Gram matrix as

f (G) = (1− η)‖G− gB,ex(G)‖2
F
+ η‖G− gB,in(G)‖2

F
+

1
2
‖G− gξ(G)‖2

F
(35)

where

gξ
(
Gi, j

p,q

)
=

 I, p = q, i = j
Gi, j

p,q, else

gB,ex

(
Gi, j

p,q

)
=

 0, p , q
Gi, j

p,q, else

gB,in

(
Gi, j

p,q

)
=

 0, p = q, i , j
Gi, j

p,q, else

(36)

Then, according to Proposition 1 in Reference [30], the updated observation matrix at the n-th
iteration can be obtained by

Φ̃
(n)

= Λ′M1/2Ṽ
H
MΛ1/2Ũ

H
(37)

where Λ′M and ṼM are the top M eigen-values and the corresponding eigen-vectors of P̃HP̃
H

;
P̃ = Λ−1/2UHΨ̃; H = 2

3

[
(1− η)gB,ex(G) + ηgB,in(G) + 1

2 gξ(G)
]
.

3.3. SMO-BSBL Algorithm

Based on the above analysis and derivation, we provide the detailed sensing matrix
optimization-based block sparse Bayesian learning (SMO-BSBL) algorithm for NBI separation and SOI
reconstruction in Table 1. Given that the correlation coefficients of NBI are much smaller than that of
SOI and that they are calculated separately, we employ the cell-averaging constant false-alarm rate
(CA-CFAR) [34] to update the pruning threshold of correlation coefficients of SOI adaptively to avoid
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low convergence rate when the fixed threshold is initially set too low. The adaptive threshold can be
calculated by

γT = Th ·
1

Nc

Nc∑
i=1

γi (38)

where Th = Nc ·
(
P f a
−1/Nc − 1

)
denotes the threshold product factor; Nc is the number of detection cells;

P f a is the false-alarm rate. From Equation (38), the pruning threshold is affected by the product factor
determined by false-alarm rate as well as the number of detection cells. The product factor values under
different false-alarm rates are shown in Table 2. If the factor were set too high, over-pruning would
occur, which led to serious distortion of the reconstructed SOI. If it was set too low, the convergence
rate would not be guaranteed. In this paper, we choose Pfa = 10-2 as a trade-off value to determine the
pruning threshold according to empirical results of tentative experiments without interference.

Table 1. NBI separation algorithm based on sensing matrix optimization-based block sparse Bayesian
learning (SMO-BSBL).

Task: Find an Optimal Observation Matrix to Improve NBI Separation and SOI Reconstruction Based on
Block Sparse Bayesian Learning.

Inputs:
1. Random observation matrix Φ̃;
2. Compressed measurement ỹ;
3. Cascaded dictionary Ψ̃ =

[
Ψ̃s Ψ̃n

]
;

4. Block size di(i = 1, . . . , g);
5. Number of external and internal blocks gex, gin;
6. Coherence weight η;

Outputs:
1. Optimal observation matrix Φ̃

∗

;
2. Reconstructed NBI-free signal s̃∗;

Initialization:
1. Initialize Φ̃ as an M×N Gaussian random matrix;
2. Initialize the maximum number of optimizing iterations as Nmax = 500;
3. Initialize the public parameters to be estimated as σ2 = 10−3;
4. Initialize the parameters for separation as B = [Bs Bn] = diag[eye(d1), . . . , eye(dg)], γ = [γsγn] = 1;
5. Initialize the threshold for pruning out γ as γTs = γTn = 10−2;
6. Initialize the iteration stop condition as ∆γstop = 10−5;
7. Initialize the maximum number of reconstructive iterations as Kmax = 1000;

A. Sensing matrix optimizing stage
1. Calculate the total block coherence by Equations (29)–(31);
2. Build objective function for optimizing by Equation (32);

3. Calculate a new initialized observation matrix Φ̃
(0)

by Equations (33)–(34);
Repeat from n = 0 until n = Nmax − 1

(1) Calculate the Gram matrix by G(n) =
(
Φ̃

(n)
Ψ̃

)H
Φ̃

(n)
Ψ̃;

(2) Build the equivalent objective function by Equations (35)–(36);

(3) Update the optimal Φ̃
(n)

by Equation (37);
(4) n = n + 1;

4. Set Φ̃
∗

= Φ̃
(n)

;
B. Separation and reconstruction stage:

1. Reset the sensing matrix by Θ̃
∗

= Φ̃
∗

Ψ̃;
Repeat from k = 1 until Kmax or

∣∣∣∣∣∣γk
− γk−1

∣∣∣∣∣∣∞ < ∆γstop ;
(1) Update the prior covariance matrix C0 by Equation (11);

(2) Update the covariance matrix by Cα̃ =
(
C−1

0 + σ−2Θ̃
H

Θ̃

)−1
;

(3) Update the expectation by µα̃ = σ−2Cα̃Θ̃
H

ỹ;

(4) Update the parameters σ2,γ(k)s , B̃
(k)
s ,γ(k)n , B̃

(k)
n by Equations (20)–(24);

(5) Update the threshold of γTs by Equation (38)
(6) k = k + 1

2. Calculate coefficient by α̃∗ = [α̃∗s; α̃∗n] = µ∗α̃;
3. Reconstruct the NBI-free signal by s̃∗ = Ψ̃α̃∗s.
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Table 2. Product factor values under different false-alarm rates.

Pfa = 10−1 Pfa = 10−2 Pfa = 10−3 Pfa = 10−4

Nc = 4 3.11 8.65 18.49 36.00
Nc = 8 2.69 6.23 10.97 17.30
Nc = 16 2.48 5.34 8.64 12.45
Nc = 32 2.39 4.95 7.71 10.67

3.4. SAR Imaging Procedure with NBI Separation

The flowchart of SAR imaging with NBI separation based on SMO-BSBL is shown in Figure 3.
It is obvious that the proposed algorithm can be embedded in the imaging process with excellent
compatibility. As indicated by the omissible procedure in the dashed wireframe in Figure 3, the steps
of NBI reconstruction and cancellation that increase the system complexity are not necessary in the
presented procedure, and the reconstructed coefficients corresponding to the SOI can be directly used
for clean image formation. Furthermore, the echo data in each pulse can be processed in parallel,
and the formed two-dimensional matrix will then be used for range-azimuth imaging with range cell
migration correction (RCMC). The two-dimensional imaging process with compressed measurements
is explained in Reference [35], so we will not discuss it in detail in this paper.
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4. Experiments

4.1. Experiment Setup

4.1.1. Simulation Specification

In order to demonstrate the effectiveness and superiority of the proposed algorithm, we carried
out multiple numerical experiments with simulated data. We started with a simple case where the
proposed SMO-BSBL was adopted to one-dimensional range profile imaging of a multi-points target
that is non-sparse in range cells. We then extended the case to the range-azimuth imaging of an aircraft
target. At the same time, we analyzed the performance under different parameters and compared it
with that of other advanced algorithms. Simulations were carried out in window7(64bit) system on the
computer with 3.4GHz Intel Core i7-4770 CPU and 16GB memory.

4.1.2. Performance Indicators

To benchmark the performance of NBI suppression via different methods comprehensively, we
employed multiple indicators in both the signal and image domains. In the signal domain, the following
indicators can be used for evaluating the performance of SOI reconstruction and NBI separation.

(1) Normalized mean square error (NMSE).
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The mean square error (MSE) is widely used to measure how much the reconstructed signal
deviates from the original. Considering that the MSE may be affected by signal type and power, we
normalize it as

NMSE =
‖x−

^
x‖

2

2

‖x‖22
(39)

where x and
^
x are, respectively, the original and reconstructed signal; ||·||2 denotes the l2-norm. In this

paper, when x represents the SOI, the NMSE, which reflects the degree of signal distortion, can also be
considered as the ratio of the constructed residual error to the real signal.

(2) Interference suppression degree (ISD).
We also employ the ISD to check the NBI suppression effectiveness, which is defined as

ISD= 20 log10
‖x− s‖2

‖
^
s − s‖2

(40)

where x is the contaminated signal; s and
^
s are the original and reconstructed SOI, respectively. The

ISD reflects the ratio of undesirable components in the SOI before and after interference suppression.
It is a comprehensive indicator in which both the interference suppression performance and signal
distortion are considered. A larger ISD indicates a better performance of NBI separation.

As mentioned at the beginning of this paper, NBI may cause serious damage to SAR images.
Therefore, the performance can also be evaluated from the perspective of image quality. In Reference [36],
we proposed several performance indicators for quality evaluation of SAR image. In this paper, we
select the peak signal-to-noise ratio (PSNR), the equivalent number of looks (ENL), and the image
entropy as the main indicators for the image quality evaluation.

(1) Peak signal-to-noise ratio (PSNR).
The PSNR is a common indicator for evaluating the reconstructed image quality, which is often

defined by the MSE. Given that SAR images are more discrete than optical ones, here we redefine part
of the physical meaning and apply it to the reconstructed SAR image evaluation. The PSNR for a SAR
image can be defined as

PSNR = 10 log10


P∑

p=1
maxP

∣∣∣Ai, j
∣∣∣2

1
NaNr−P

 Na∑
i=1

Nr∑
j=1

∣∣∣Ai, j
∣∣∣2 − P∑

p=1
maxP

∣∣∣Ai, j
∣∣∣2

 (41)

where Na and Nr are the number of azimuth and range cells of a SAR image; P is the number of
scattering points; Ai,j denotes the complex value of the point at the (i,j)-th position; | · | denotes the
modulus value; maxP represents picking out P largest values. The PSNR reflects the extent to which
the SAR image is affected by noise or interference, and a larger value of PSNR indicates better image
quality. It is worth noting that the PSNR specifically redefined for SAR can evaluate the quality of a
reconstructed SAR image without any prior information of the original one as long as the number of
target points is known or probably known.

(2) Equivalent number of looks (ENL).
The ENL is often used for measuring the relative intensity of speckle noise for SAR. Considering

that SAR data is complex-valued, it is necessary to convert it to a grayscale one in advance. The ENL
of a SAR image is defined as

ENL= 10 log10
µ2

σ2 (42)
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where µ and σ are the mean and standard deviation of SAR image grayscale. The ENL can reflect the
contrast ratio of the image, and a larger ENL indicates that there is more noise or interference in the
SAR image, which leads to substantial blurring.

(3) Image entropy.
The image entropy is a statistical form used for representing the aggregation characteristic of the

grayscale distribution and for measuring the average amount of information in an image. It can be
expressed as

E= −
NG∑

i

pi log2 pi (43)

where pi is the probability of the i-th grayscale level; NG is the total number of all grayscale levels in
the image. For traditional images, a larger entropy indicates that the image contains more information
and is of higher quality. However, the principle of SAR imaging is different from that of conventional
optical imaging, and a non-uniform grayscale histogram distribution can highlight the texture or the
contour in the observation scene. Therefore, we would rather obtain a SAR image with a smaller
entropy after the noise-modulated NBI suppression.

4.2. Simulation and Analysis

4.2.1. Range Profile Imaging

Given that the BSBL framework is capable of reconstructing signals in non-sparse cases, it is
obviously a better option for recovering the extended target or signal with a certain bandwidth. To
verify the effectiveness and superiority of our proposed algorithm, we simulated range profile imaging
for an extended target.

First, we modeled an extended target by generating 30 scattering points with random normalized
backscattering coefficients from 0 to 1 and random locations within the range of 256 m. The signal
transmitted from a 3-km-high radar was modeled as an LFM waveform, and the signal bandwidth
and pulse width were 100 MHz and 1 µs, respectively. Since the number of valid range cells was 265
and the theoretical range resolution was 1.5 m according to the above parameters, we considered a
target with more than 20 scattering points as an extended target. Here, the number of range cell was
set to 512.

We then generated the NBI data by modulating a band-limited noise signal with Rayleigh
distribution to the carrier frequency of SAR and aligning it with the central band of transmitted signal,
and added the NBI to the raw echo. The interference-to-signal ratio (ISR) was set to 15 dB and the
additive signal-to-noise ratio (SNR) was set to 30 dB. The bandwidth of NBI was successively set to
10 MHz and 20 MHz. The waveform in the time domain and the spectrum in the frequency domain of
SOI and NBI as well as the range distribution of the extended target are shown in Figure 4.
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Figure 4. Characteristic of the signal of interest (SOI) and NBI in different domains. (a) Waveform in
time domain, Bn = 10 MHz; (b) spectrum in the frequency domain, Bn = 10 MHz; (c) range distribution,
Bn = 10 MHz; (d) waveform in time domain, Bn = 20 MHz; (e) spectrum in frequency domain, Bn =

20 MHz; (f) range distribution, Bn = 20 MHz.

It is obvious that the SOI and NBI is non-sparse in both the time and frequency domains.
The distribution of the extended target in range cells is not sparse either. In other words, it is
almost impossible to represent the signal and NBI with a small number of non-zero coefficients
via traditional sparsity-based methods such as BP, MP, and OMP. Therefore, we attempted to
compare the NBI separation performance of our proposed algorithm only with other advanced
BSBL framework-based algorithms.

Next, we performed the separated reconstruction of SOI and NBI from the contaminated echo
with the proposed SMO-BSBL algorithm in this paper. The initial dictionary used for representing
SOI was composed of a reference signal with delays, and the Fourier basis was used as the initial
dictionary for NBI. The number of external blocks was 2, and each external block contained 16 internal
blocks. The internal block size was set to 16, and the maximum iteration was set to 500 to guarantee
convergence. In order to find a better weight for sensing matrix optimization, we set η from 0.1 to 0.9
and carried out the reconstruction simulation 100 times. The Gram matrices optimized with different
weights and signal reconstruction performance are shown in Figures 5 and 6.
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There is an irreconcilable contradiction between the external and internal block coherence. When 
the weight controlling parameter η is set to a small value, as shown in Figure 5a,d, we attempted to 
minimize the coherence measure between external blocks as far as possible, ignoring the internal 
block coherence. On the contrary, in Figure 5c,f, η with a larger value indicates that minimizing the 
internal block coherence measure is more dominant, regardless of which component the internal 
block belongs to. Therefore, a trade-off weight value is set in Figure 5b,e to take both the two block 
structures into account. From the statistical result of reconstruction simulation in Figure 6a,b, we 
obtained the minimum reconstruction error for both SOI and NBI when η is close to 0.5. In Figure 6c, 
however, when η reaches 0.5, the convergence time increases dramatically. Thus, we set η to 0.4 as a 
trade-off value for subsequent experiments. 

In addition, we adopted the basic BSBL combined with a cascaded dictionary in our previous 
work [16], which makes no distinction when updating the covariance matrix of different components, 
and the S-BSBL [25], which takes this distinction into account but ignores the block coherence of the 
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Figure 5. Gram matrices optimized with different weights. (a) η= 0.1; (b) η= 0.5; (c) η= 0.9; (d) enlarged
view of η= 0.1 in the dashed wireframe; (e) enlarged view of η= 0.5 in the dashed wireframe; (f) enlarged
view of η = 0.5 in the dashed wireframe.
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Figure 6. Histogram of reconstruction performance under different weights. (a) Reconstruction error
with Bn = 10 MHz; (b) reconstruction error with Bn = 20 MHz; (c) SMO convergence time.

There is an irreconcilable contradiction between the external and internal block coherence. When
the weight controlling parameter η is set to a small value, as shown in Figure 5a,d, we attempted
to minimize the coherence measure between external blocks as far as possible, ignoring the internal
block coherence. On the contrary, in Figure 5c,f, η with a larger value indicates that minimizing the
internal block coherence measure is more dominant, regardless of which component the internal block
belongs to. Therefore, a trade-off weight value is set in Figure 5b,e to take both the two block structures
into account. From the statistical result of reconstruction simulation in Figure 6a,b, we obtained the
minimum reconstruction error for both SOI and NBI when η is close to 0.5. In Figure 6c, however,
when η reaches 0.5, the convergence time increases dramatically. Thus, we set η to 0.4 as a trade-off

value for subsequent experiments.
In addition, we adopted the basic BSBL combined with a cascaded dictionary in our previous

work [16], which makes no distinction when updating the covariance matrix of different components,
and the S-BSBL [25], which takes this distinction into account but ignores the block coherence of the
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cascade dictionary, to make a comparison under the same parameters. The spectrum of reconstructed
NBI and the range profile of the extended target via different algorithms are shown in Figures 7 and 8.
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Figure 7. Spectrum of the reconstructed NBI. (a) BSBL, Bn = 10 MHz; (b) S-BSBL, Bn = 10 MHz;
(c) SMO-BSBL, Bn = 10 MHz; (d) BSBL, Bn = 20 MHz; (e) S-BSBL, Bn = 20 MHz; (f) SMO-BSBL,
Bn = 20 MHz.

In Figure 7a–c, the NBI with a bandwidth of 10 MHz is successively reconstructed via BSBL,
S-BSBL, and SMO-BSBL. It can be seen from the spectra that the proposed SMO-BSBL algorithm
performs better than the other two. In Figure 7d–e, with the NBI bandwidth increasing, performance
degradation occurs for each algorithm, which is due to the expansion of overlap between NBI and
SOI in the frequency domain. Nevertheless, the proposed algorithm is still superior to the other
two algorithms.

As shown in Figure 8, the proposed algorithm outperforms the others with a smaller error from
range profile imaging through pulse compression of the reconstructed SOI. Specifically, it is obvious
that the distortion of the range profile after NBI suppression with BSBL is substantial. The comparison
shows the significance of block coherence to separated reconstruction.

We then calculate the interference suppression degree (ISD) with 500 numerical simulations for
each value of ISR ranged from 0 to 30 dB. The statistical results are shown in Figure 9.
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In addition, we analyzed the influence of compressed ratio (CR), which is defined as the ratio of 
the actual sampling rate to the Nyquist rate, and the influence of block parameters on the separated 
reconstruction performance of our proposed SMO-BSBL algorithm. We set 1 and 0.5, respectively, for 
CR to check signal reconstruction robustness with compressed measurement and calculated the 
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Figure 8. Range profile of the reconstructed SOI. (a) BSBL, Bn = 10 MHz; (b) S-BSBL, Bn = 10 MHz;
(c) SMO-BSBL, Bn = 10 MHz; (d) BSBL, Bn = 20 MHz; (e) S-BSBL, Bn = 20 MHz; (f) SMO-BSBL,
Bn = 20 MHz.
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Figure 9. Interference suppression degree under different interference-to-signal ratio (ISR).
(a) Bn = 10 MHz; (b) Bn = 20 MHz.

As shown in Figure 9, the ISD increases with ISR, and the average ISD of the proposed SMO-BSBL
is nearly 5 dB higher than that of S-BSBL and 10 dB higher than that of BSBL. The SMO-BSBL and the
S-BSBL are less affected by the bandwidth of NBI than is BSBL.

In addition, we analyzed the influence of compressed ratio (CR), which is defined as the ratio of
the actual sampling rate to the Nyquist rate, and the influence of block parameters on the separated
reconstruction performance of our proposed SMO-BSBL algorithm. We set 1 and 0.5, respectively,
for CR to check signal reconstruction robustness with compressed measurement and calculated the
average NMSE under different ISRs. To benchmark the algorithm complexity, we set the block size
from 8 to 64 empirically according to signal length, and calculated the average iteration time under
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different block size. We also compared the time performance of the widely used Bi-channel BSBL,
the complex BSBL in this paper, and the case of compressed sampling. The statistical results of 100
simulation experiments are shown in Figure 10. 19 of 24 
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Figure 10. Reconstruction and time performance under different compressed ratio (CR) and block
length. (a) Signal reconstruction error, Bn = 10 MHz; (b) signal reconstruction error, Bn = 20 MHz;
(c) average iteration time under different CR; (d) average iteration time under different methods.

As shown in Figure 10a,b, when CR is set to 0.5, which indicates that only half of all the data were
used to reconstruct the SOI and NBI, it is inevitable that the performance will degrade relative to full
sampling. However, the degradation of performance is acceptable, especially when the bandwidth
of NBI increases. Another benefit of compressed sampling is the reduction of the data dimension;
as can be seen in Figure 10c, the average iteration time using compressed data is significantly lower
than that using full data. We admit that it takes a certain amount of time in the process of sensing
matrix optimization to improve reconstruction performance; nevertheless, our algorithm, as shown
in Figure 10d, is more time-efficient than the widely used bi-channel approach in the process of
signal reconstruction.

4.2.2. Range-Azimuth Imaging

To further verify the performance of NBI separation in range-azimuth imaging, we modeled
an aircraft target with multiple scattering points and carried out simulation experiments with the
proposed algorithm. For the convenience of analysis and verification, we assumed that the SAR
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platform operates in airborne strip-map mode. Referring to the parameters in our previous work, the
main simulation parameters in this section were set using parameters listed in Table 3.

Table 3. Main simulation parameters of SAR imaging.

Parameter Class Parameter Name Parameter Value

Platform
Platform height 3000 m

Pitch angle 45◦

Squint Angle 0◦

Target
Number of points 1932

Scene vertical range −128 to 128 m
Scene parallel range −128 to 128 m

Signal

Carrier frequency 3 GHz
Bandwidth 100 MHz
Pulse width 1 µs

Pulse repetition frequency 125 Hz
Oversampling coefficient 1.2

Size of Range-Azimuth Cells 512 × 512

The imaging results without NBI via BSBL at different CRs are shown in Figure 11. The CR is set
to 1, 0.5, and 0.25 in turn, and the block size is 16. It can be seen that the BSBL-based imaging algorithm
avoids the sidelobe effect by replacing the matched filtering with sparsity-based reconstructing and
improves the quality of the SAR image. As the CR decreases, the imaging quality degrades slightly;
however, when CR drops to 0.25, the quality is still high enough to distinguish the target.
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On the basis of the above results, we carried out numerical experiments of NBI separation for the
simulated aircraft target. Narrowband noise-modulated interference was added to the raw echo data.
We assumed that the pulse width of the NBI was equal to the entire duration of the signal for each
pulse. The ISR was set to 15 dB, the CR was set to 0.5, and the bandwidth of the NBI was set to 10 MHz
and 20 MHz. Imaging results before and after NBI suppression via our proposed SMO-BSBL as well as
other advanced algorithms are shown in Figure 12.
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S-BSBL (Bn = 10 MHz); (e) SMO-BSBL (Bn = 10 MHz); (f) BSBL (Bn = 20 MHz); (g) S-BSBL (Bn = 20 MHz); 
(h) SMO-BSBL (Bn = 20 MHz). 

In Figure 12a,b, without any suppression approach, NBI completely obscures the target in the 
SAR image when its bandwidth is 10% of the signal bandwidth. In Figure 12c–e, BSBL, S-BSBL, and 
SMO-BSBL are adopted to separate the NBI. The BSBL algorithm, which only builds a cascaded 
dictionary to separate NBI and the SOI, fails to recover the target effectively, since it makes no 
distinction between the two components when updating the covariance matrix and correlation 
coefficients. The S-BSBL algorithm takes this distinction into account and improves the separation 
and reconstruction quality. However, the suppression result is still not satisfactory, since the 
coherence between different sub-dictionaries will seriously disrupt the reconstruction process. In 
contrast, the SMO-BSBL algorithm proposed in this paper shows a superior performance in this kind 
of NBI separation owing to the optimal sensing matrix, which is designed to minimize the total block 
coherence measure. In Figure 12f–h, with the bandwidth of the NBI increasing, the target is more 
substantially covered. It is difficult for BSBL and S-BSBL to extract and separate NBI from the 
contaminated echo. The SMO-BSBL is still capable of separating NBI despite some performance 
degradation. 

Figure 12. Range-azimuth imaging results of the simulated aircraft target. (a) Without NBI suppression
(Bn = 10 MHz); (b) without NBI suppression (Bn = 20 MHz); (c) BSBL (Bn = 10 MHz); (d) S-BSBL
(Bn = 10 MHz); (e) SMO-BSBL (Bn = 10 MHz); (f) BSBL (Bn = 20 MHz); (g) S-BSBL (Bn = 20 MHz);
(h) SMO-BSBL (Bn = 20 MHz).

In Figure 12a,b, without any suppression approach, NBI completely obscures the target in the
SAR image when its bandwidth is 10% of the signal bandwidth. In Figure 12c–e, BSBL, S-BSBL,
and SMO-BSBL are adopted to separate the NBI. The BSBL algorithm, which only builds a cascaded
dictionary to separate NBI and the SOI, fails to recover the target effectively, since it makes no distinction
between the two components when updating the covariance matrix and correlation coefficients. The
S-BSBL algorithm takes this distinction into account and improves the separation and reconstruction
quality. However, the suppression result is still not satisfactory, since the coherence between different
sub-dictionaries will seriously disrupt the reconstruction process. In contrast, the SMO-BSBL algorithm
proposed in this paper shows a superior performance in this kind of NBI separation owing to the optimal
sensing matrix, which is designed to minimize the total block coherence measure. In Figure 12f–h, with
the bandwidth of the NBI increasing, the target is more substantially covered. It is difficult for BSBL
and S-BSBL to extract and separate NBI from the contaminated echo. The SMO-BSBL is still capable of
separating NBI despite some performance degradation.
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To benchmark the NBI separation performance in the image domain, we calculated the PSNR,
ENL, and image entropy of the reconstructed SAR images using Equations (41)–(43). The statistical
results are shown in Table 4.

Table 4. Statistical results of simulated SAR image quality.

Original Bn Contaminated BSBL S-BSBL SMO-BSBL

PSNR (dB) 18.809
10 MHz 10.489 11.441 15.617 16.322
20 MHz 10.479 11.319 12.770 14.915

ENL (dB) 1.537
10 MHz 3.840 2.950 2.366 2.140
20 MHz 3.681 2.941 3.463 2.636

Entropy 3.902
10 MHz 6.006 5.404 4.435 4.292
20 MHz 5.877 5.122 4.950 4.577

As shown in Table 4, the quality of the reconstructed image via the proposed SMO-BSBL is
superior to the other two advanced algorithms according to the statistical results of indicators.

5. Conclusions

In this paper, we present an enhanced NBI separation algorithm for SAR data on the basis of a
sparse Bayesian learning framework. The proposed sensing matrix optimization-based block sparse
Bayesian learning, which is abbreviated as SMO-BSBL, is focused on reducing the block coherence
between the sensing matrix of the SOI and NBI in order to improve the separated reconstruction
performance. First, we review the NBI suppression problem based on the sparse recovery model,
and we then extend the basic BSBL framework to a complex-valued domain for the radar signal to
reduce computational complexity. For the sake of enhancing the separability, we propose a new block
coherence measure that is calculated by the newly defined external and internal block structure. We
obtained an optimal sensing matrix by minimizing the optimization objective function and adopted
it to the modified BSBL framework for sparse reconstruction. Moreover, we described the entire
procedure of NBI separation for SAR imaging where the proposed algorithm can be embedded with
excellent compatibility. Finally, we carried out simulation experiments including range imaging and
range-azimuth imaging of extended targets to verify the effectiveness and superiority of our proposed
algorithm. The statistical results of different indicators demonstrate that the SMO-BSBL in this paper
outperforms other advanced BSBL-based algorithms for NBI separation. It is necessary to note here
that, while the reconstruction time reduces under a complex BSBL framework, the total computational
complexity still increases, since the sensing matrix optimization process requires additional time as a
cost. Therefore, how to accelerate the convergence rate of optimization process to improve the real-time
performance is our future work. In addition, given that the practical SNR condition for SAR system is
not ideal in real environment, and the estimation rules of noise variance are different with different
SNR ranges in basic BSBL framework, analyses of the impact of SNR on the algorithm performance
will also be the focus in the subsequent studies.
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