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Abstract: In this work, the system performance analysis of cooperative networks with power
splitting protocol-based energy harvesting (EH) over Nakagami-m/Rayleigh channels is proposed.
The exact-form expressions of the outage probability (OP) and ergodic capacity (EC) is demonstrated
and derived. Using the proposed probabilistic models for wireless channels, we derive OP and EC
as a research result. Finally, we conduct Monte Carlo simulations to verify a system performance
analysis of the proposed system. The research results demonstrate the effectiveness of EH in the
network over Nakagami-m/Rayleigh channels.

Keywords: amplify-and-forward (AF); outage probability; ergodic capacity; energy harvesting (EH);
user selection

1. Introduction

Internet of Things (IoT) is considered a critical research area worldwide and has a significant
impact on all activities in daily lives and industry [1–3]. However, because of numerous disadvantages,
some industrial and civil aspects of IoT are difficult to achieve. Energy limitations are the most
significant problem in the long-term operation of wireless networks. Prolonging lifetimes and battery
recharging/replacement are not practical solution for wireless networks. Wireless energy harvesting
(EH) using radio frequency (RF) is considered a promising solution for prolonging the operating time
of devices in wireless, energy-constrained cooperative networks [4–6]. RF signals in EH wireless
networks can transfer energy and information simultaneously. Cooperative networks are considered
in connection with power sharing by helping the relay (R) between the source (S) and the destination
(D) [6]. In EH cooperative networks, an energy-constrained R, by simultaneously harvesting energy and
transferring information, helps maintain constant operation and connection without the use of external
energy sources. The authors in [7] considered a dual-hop cognitive, inter-vehicular, relay-assisted
communication system where all communication links are not line of sight, and their fading is modeled
by the binary Rayleigh fading distribution. An analytic performance evaluation of the bit error
rate (BER) of underlay decode-and-forward cognitive networks with the best relay selection over
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Rayleigh multipath fading channels was introduced in [8]. The authors in [9,10] presented a general
framework for modeling and evaluating the performance of dual-hop, decode-and-forward (DF)
relaying schemes over independent and not necessarily identically distributed (INID) Nakagami-m
fading channels. The performance of dual-hop MIMO OSTBC transmission with multiple antennas
employed at the transceiver and CSI-assisted AF relay over Nakagami-m fading is proposed in [11],
and the performance of dual-hop, decode-and-forward relaying with relay selection (RS), analyzed
over Nakagami fading channels, was studied in [12]. In our previous papers, we consider the EH
over Rician fading channels. The titles of these papers are as follows: A Performance Analysis for
Half-Duplex Bidirectional Sensor Networks under Hardware Impairments [12], Adaptive EH Relaying
Protocol for a Two-Way Half Duplex System Network over Rician Fading Channels [13], Energy
Harvesting-based Spectrum Access with Incremental Cooperation, Relay Selection, and Hardware
Noises [14], and Performance Enhancement for EH Based Two-way Relay Protocols in Wireless Ad-Hoc
Networks with Partial and Full Relay Selection Methods [15].

The problem of a two-hop EH cooperative relaying network was studied in [16]. In [17],
a harvest-then-cooperate (HTC) protocol with AP points for S and R EH was investigated. The authors
in [18] maximized the end-to-end achievable information transmission rate by assuming perfect
channel state information (CSI) of the cooperative network with time switching (TS) and power
splitting (PS) protocols. The authors in [19] investigated two-way relay beamforming optimization to
maximize the achievable sum rate of simultaneous wireless information and power transfer (SWIPT)
system with a full-duplex (FD) multiple-input multiple-output (MIMO), amplify-and-forward (AF)
relay. To extend [19], the authors in [20] studied the joint optimization of two-way relay beamforming.
Furthermore, the authors in [21] investigated SWIPT mechanisms in a relaying network with finite block
length (FBL) codes. Moreover, the authors in [22] derived the theoretical symbol error probability (SEP)
of cooperative systems with the best relay selection for Nakagami-m fading channels, and the authors
in [23] proposed a novel DSTBC scheme with embedded adaptive DAF/amplify-and-forward (AAF)
elements for data retransmission in multihop PLC networks with existing opportunistic listening (OL)
protocols. The authors in [24] proposed a simple adaptive relaying protocol (ARP) for general relay
networks, and in [25] we proposed a full rate DQOSTBC matrix with embedded adaptive DAF/AAF
elements for four single-antenna relays. In spite of this research, cooperative relaying networks still
need to be studied. This is the main aim of this paper.

There is very little research focus on both user selection protocol and EH with different
Nakagami-m/Rayleigh channels. For this purpose, we analyzed the performance of user selection
protocol cooperative networks with PS protocol-based EH over Nakagami-m/Rayleigh channels. Our
article provides the following contributions. (i) We derive closed-form expressions of Outage probability
(OP) and ergodic capacity (EC), (ii) propose user selection for choosing the best-received destination,
(iii) investigate and compare the OP and EC with maximum and non-maximum capacity, and (iv) verify
all analytical expressions by Monte Carlo simulations. The structure of the rest of the paper is as follows.
Section 2 illustrates the system model, and Section 3 investigates the system performance. Section 4
proposes and discusses the research results, and conclusions are proposed in Section 5.

2. System Model

We consider an EH relay network with one S, multiple Ds, and one R as shown in Figure 1 [13,14].
In this system model, S, R, and D are working in a half-duplex (HD) mode with one antenna. The channel
gain between node S and the relay R (hRD) is a Nakagami-m fading channel, so between the relay R and
the destinations, Di as hRDi is represented by Rayleigh fading channels. In this model, the direct link
between S and D nodes is too weak without the help of a relay. The EH and information transmission
(IT) for this proposed model system is presented in Figure 2. In this model, the transmission length
time T is divided into two slots. In the time slot T/2, R harvests energy in ρPs and receives information
in (1−ρ)Ps from S. The remaining half-time slot T/2 is used for information transferring from R to D as
in [15,16].
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In the first transmission phase, the received signal at R in period T/2 time can be formulated by
the following:

yr =
1√
dm

sr

√
(1− ρ)hsrxs + nr. (1)

In this equation, hsr is S to R channel gain, dsr is the distance between S and R, and m denotes
the path loss exponent. Here, xs is the transmitted signal at S, nr is the additive white Gaussian noise
(AWGN) with variance N0, and 0 < ρ < 1 is the PS ratio at the relay R. Moreover, E

{
|xs|

2
}
= Ps, E{•} is

the expectation operator, and Ps is the average transmit power at S.
After the first-time slot T/2, the harvested power at R could be obtained by

Pr =
Eh

dm
sr(T/2)

=
ηρPs|hsr|

2(T/2)
dm

sr(T/2)
=
ηρPs|hsr|

2

dm
sr

(2)

where 0 < η ≤ 1 is the energy conversion efficiency.
In the second time slot T/2, R retransmits the information from S to Di. The received signal at the

nth destination at the second slot time can be expressed as

ydi =
1√
dm

i

hrdixr + ndi (3)

where i ∈ (1, 2, . . . , K), hrdi is the R to the ith D channel gain, di is the R to the D distance, ndi is the
additive white Gaussian noise (AWGN) with variance N0, and E

{
|xr|

2
}
= Pr.

Here, the AF protocol is considered, and the amplifying factor can be given by

β =
xr

yr
=

√√√ Pr

(1−ρ)Ps |hsr |
2

dm
sr

+ N0

. (4)
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From Equations (1), (3) and (4), the received signal can be rewritten as

ydi = 1√
dm

rdn

hrdiβyr + ndi =
1√
dm

rdi

hrdiβ

[
1√
dm

sr

√
(1− ρ)hsrxs + nr

]
+ ndi

=

√
(1− ρ)hsrxshrdiβ√

dm
i

√
dm

sr︸                  ︷︷                  ︸
signal

+
1√
dm

i

hrdiβnr + ndi

︸                 ︷︷                 ︸
noise

(5)

Therefore, the overall signal to noise ratio (SNR) from S to D can be given by

SNR =
E
{∣∣∣signal

∣∣∣2}
E
{
|noise|2

} =

(1−ρ)Ps |hsr |
2
∣∣∣∣hrdi

∣∣∣∣2β2

dm
i dm

sr∣∣∣∣hrdi

∣∣∣∣2β2N0

dm
i

+ N0

=
(1− ρ)Ps|hsr|

2
∣∣∣hrdi

∣∣∣2∣∣∣hrdi

∣∣∣2dm
srN0 +

N0dm
i dm

sr

β2

. (6)

After doing some algebra, using the fact that N0 << Pr and denote γ1 = |hsr|
2,γi =

∣∣∣hrdi

∣∣∣2,
Equation (6) can be rewritten as

SNR =
(1− ρ)PsPr|hsr|

2
∣∣∣hrdi

∣∣∣2∣∣∣hrdi

∣∣∣2dm
srPrN0 + (1− ρ)Ps|hsr|

2N0dm
i

. (7)

Combined with Equation (2), we have the SNR:

SNR =
ηρ(1− ρ)ψ|hsr|

2
∣∣∣hrdi

∣∣∣2
ηρ

∣∣∣hrdi

∣∣∣2dm
sr + (1− ρ)dm

i

(8)

where ψ = Ps/N0.
In our proposed model, we assume that the S-R link belongs to a Nakagami-m fading channel

and the R-Di link belongs to a Rayleigh fading channel. In the next section, we derive the analytical
expression of OP and EC as in [26–31].

3. The System Performance

As in previous work [12,13,28,30], the closed-form expressions of OP and EC of this system model
are derived in this section. At first, we will determine the probability density function (PDF) and the

cumulative density function (CDF) of a random variable (RV) |hsr|
2,

∣∣∣hrdi

∣∣∣2. As shown in [29], the PDF
of RV γ1 can be calculated by

f
|hsr |

2(x) =
xm
|hsr |2
−1

(m
|hsr |

2 − 1)!(Ω
|hsr |

2)
m
|hsr |2

exp(−
x

Ω
|hsr |

2
). (9)

From Equation (9), the CDF of RV |hsr|
2 can be obtained with the help of Equation (8.353.4) in [32].

F
|hsr |

2(x) = 1− exp(−
x

Ω
|hsr |

2
)

m
|hsr |2
−1∑

t=0

xt

t!(Ω
|hsr |

2)
t (10)

where Ω
|hsr |

2 = λsr
m
|hsr |2

; m
|hsr |

2 is the Nakagami-m parameter and note that the case of m
|hsr |

2 = 1

corresponds to Rayleigh fading; λsr =
E
{
|hsr |

2
}

dm
sr

is the mean of RV |hsr|
2.
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Furthermore, we have the PDF and CDF of RV
∣∣∣hrdi

∣∣∣2 as shown in [28] as follows:

f
|hrdi
|
2(x) =

1
λrdi

e−x/λrdi (11)

F
|hrdi
|
2(x) = 1− e−x/λrdi (12)

where λrdi =
E
{∣∣∣∣hrdi

∣∣∣∣2}
dm

i
is the mean of RV

∣∣∣hrdi

∣∣∣2.
In this system model, the best selection user USq is analyzed as follows:

|hrd|
2 = max

i=1,2,...,K
(
∣∣∣hrdi

∣∣∣2). (13)

According to [19], the CDF of |hrd|
2 can be given by

F
|hrd |

2(y) =
K∑

p=0

(−1)pCp
K × e−py/λrd , (14)

where we denote Cp
K = K!

p!(K−p)! , and λrd is the mean of RV |hrd|
2.

Finally, the PDF of random variable can be determined by

f
|hrd |

2(y) =
1
λrd

K−1∑
p=0

(−1)pCp
K−1K × e−(p+1)y/λrd . (15)

From Equation (19), we have

SNR =
ηρ(1− ρ)ψ|hsr|

2
|hrd|

2

ηρ|hrd|
2dm

sr + (1− ρ)dm
i

. (16)

3.1. The Outage Probability (OP)

Theorem 1 (OP—Closed Form). The closed-form expression of the OP of the proposed model system can be
formulated as

Pout = 1− 2 exp
[
−

zdm
sr

Ω
|hsr |2

(1−ρ)ψ

]mγ1−1∑
t=0

t∑
n=0

K−1∑
p=0

(−1)pK×Cp
K−1z

n+t+1
2 (λrd)

n−t−1
2

(t−n)!n!
(
Ω
|hsr |2

ψ
) n+t+1

2
(p+1)

n−t+1
2(

dm
i
ηρ

) t−n+1
2

[
dm

sr
(1−ρ)

]n
×Kn−t+1

(
2
√

zdm
i (p+1)

Ω
|hsr |2

ηρψλrd

) (17)

Proof of Theorem 1. See Appendix A. �

3.2. Maximize Capacity

In this section, we will find the PS factor to maximize capacity. The overall capacity from source
to destination can be given by

Cs,d =
1
2

log2(1 + SNR) =
1
2

log2

1 + ηρ(1− ρ)ψ|hsr|
2
|hrd|

2

ηρ|hrd|
2dm

sr + (1− ρ)dm
i

. (18)
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Therefore, to maximize capacity, from Equation (18), we can see that max(Cs,d)⇔ max(SNR) .
From Equation (8), SNR is a concave function of ρ, which, maximizing the SNR, can be given

as follows:
ρ∗ =

1

1 + |hrd|

√
ηdm

sr
dm

i

. (19)

Theorem 2 (EC—Closed Form). The closed-form expression of the EC in the maximize mode of the system
model can be expressed as

CAF =
1

ln 2

Np∑
v=1

ωv
1− FSNRmax(xv)

1 + xv
. (20)

Proof of Theorem 2. See Appendix B. �

4. Numerical Results and Discussion

Like in previous studies [33–36], we conducted Monte Carlo simulations to verify analytical
expressions of the OP and EC of the proposed system in the above section. In addition, we investigated
the effect of the primary system parameter on the system performance in terms of OP and EC. All other
simulation parameters are listed in Table 1.

Table 1. Simulation parameters.

Symbol Name Values

η Energy harvesting efficiency 0.8

λsr Mean of |hsr|
2 0.5

λrd Mean of |hrd|
2 0.5

mγ1 Nakagami m-factor 3

z SNR threshold 1

Ps/N0 Source power to noise ratio 0–20 dB

R Source rate 0.5 bit/s/Hz

K Number of users 1–6

m Pathloss exponent 3

dsr = di
the distance of S-R link and

R-D link, respectively 0.85

Figure 3a,b plots the influence of Ps/N0 on the OP and EC of the proposed system. In Figure 3,
the main parameters are as follows: K = 2, R = 0.5, and ρ = 0.2 and 0.6. In this figure, the OP of the case
ρ = 0.2 and 06 and the maximum capacity are also proposed for comparison. It is observed that the
simulation values of the OP match the values from the mathematical analysis. In connection with the
effect of ρ, the OP decreases, and EC increases as ρ varies from 0.2 to 0.6. When Ps/N0 increases from 0
to 20 dB, the OP decreases and EC significantly increases. Furthermore, the higher the value of ρ is,
the faster the OP decreases and the EC increases. In addition, we can see that the OP and EC of the
model system in the maximum capacity case are better in comparison with the other cases, with other
values of ρ. This can be observed based on the mathematical analysis in Equations (17) and (20).
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Figure 4a,b depicts the effect of Ps/N0 on the OP and the EC. We set R = 0.5 bps, ρ = 0.5, and K = 1,
3, and 6 in Figure 4a and R = 0.5 bps, ρ = 0.5, and K = 1, 3, and 6, respectively. From Figure 4a, the OP
decreases when Ps/N0 increases from 0 to 20 dB, and OP decreases faster with a higher K. On the other
hand, the EC increases significantly, while Ps/N0 rises from 0 to 20 dB. Furthermore, the EC is higher
with the higher K value. In all research results, the simulation and analytical results are the same.
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Moreover, Figure 5a,b plots the influence of the ratio Ps/N0 on the OP and the EC of the model
system. Here, the cases Ray-Ray, Naka-Ray in the non-maximize and maximize modes are compared
with each other in the same system condition. In the simulation, we set the ratio Ps/N0 increased from
0 to 20 dB, ρ = 0.2, and K = 2 for the OP and ρ = 0.4 and K = 3 for the EC, respectively. Figure 5a
shows that the OP decreases faster in the Naka-Ray case with maximum capacity compared with other
cases. In the same way, the EC increases faster in the Ray-Ray case with non-maximum capacity in
Figure 5b. Here we can see that the system performance in the maximum capacity case is better than in
the non-maximum capacity case. Furthermore, the simulation results agreed with the mathematical
analysis of the above section.
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with PS protocol-based EH over Nakagami-m/Rayleigh channels. The analytical closed-form
expressions for the OP and the EC is derived. Moreover, the closed-form expression of the EC
is derived in cases of maximum and non-maximum capacity. Finally, we use Monte Carlo simulations
to derive analytical expressions in connection with all possible system parameters. From the research
results, we can see that the simulation and the analytical analysis agree well.
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Appendix A

Outage probability can be calculated as

Pout = Pr(SNR < z) = Pr

 ηρ(1− ρ)ψ|hsr|
2
|hrd|

2

ηρ|hrd|
2dm

sr + (1− ρ)dm
i

< z

 (A1)

where z = 22R
− 1 is a threshold, and R is the source rate.

Equation (A1) can be rewritten as

Pout = Pr
{
ηρ(1− ρ)ψ|hsr|

2
|hrd|

2 < zηρ|hrd|
2dm

sr + z(1− ρ)dm
i

}
= Pr

[
|hsr|

2 <
zηρ|hrd|

2dm
sr+z(1−ρ)dm

i

ηρ(1−ρ)ψ|hrd|
2

]
= Pr

[
|hsr|

2 <
zdm

i

ηρψ|hrd|
2 +

zdm
sr

(1−ρ)ψ

] (A2)

Pout =

∞∫
0

F
|hsr |

2

 zdm
i

ηρψ|hrd|
2 +

zdm
sr

(1− ρ)ψ

∣∣∣∣∣∣|hrd|
2

 f
|hrd |

2(|hrd|
2)d

(
|hrd|

2
)
. (A3)
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From Equations (19) and (20), we have

Pout = 1−
∞∫
0

exp

−
zdm

i
ηρψ|hrd|

2 +
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Ω
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i
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2 +

zdm
sr

(1−ρ)ψ

t

t!
(
Ω
|hsr |2

)t

×
1
λq

K−1∑
p=0

(−1)pCp
K−1K × e−(p+1)|hrd |

2/λqd
(
|hrd|

2
) (A4)

Pout = 1−
exp

[
−

zdm
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Ω
|hsr |2

(1−ρ)ψ

]
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∞∫
0

mγ1−1∑
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i
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−
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2

]

×
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2/λrd d
(
|hrd|

2
) (A5)

Now by applying the equation (x + y)m =
m∑

n=0

(
m
n

)
xm−nyn to Equation (A5), the outage

probability can demonstrate as follows:

Pout = 1−
exp

[
−

zdm
sr

Ω
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]
λrd
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Using the Table of Integral Equation (3.471,9) in [32], Equation (A7) can reformulated as

Pout = 1− 2
exp

[
−
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Ω
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2
√
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ηρψλrd

) (A8)

where Kv(•) is the modified Bessel function of the second kind and the v-th order.

Appendix B

It is easy to observe that ∂2SNR
∂ρ2 is negative for 0 < ρ < 1. Hence, we conclude that SNR is a

concave function of ρ (0 < ρ < 1). We can find the value of ρ that maximizes SNR by differentiating the
SNR concerning ρ, and we can then equate it to zero. After some algebraic calculations, we have the
following possible solutions for ρ*:

ρ∗ =
1

1 + |hrd|

√
ηdm

sr
dm

i

or ρ∗ =
1

1− |hrd|

√
ηdm

sr
dm

i

. (A9)
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Since ρ∗ = 1

1−|hrd|

√
ηdm

sr
dm
i

results in a value of ρ* > 1 or ρ* < 0, we choose ρ∗ = 1

1+|hrd|

√
ηdm

sr
dm

i

as

the solution.
If Equation (A3) is placed into Equation (A1), SNRmax can be obtained as

SNRmax =
ηψ|hsr|

2
|hrd|

2(
1 + |hrd|

√
ηdm

sr
dm

i

)2

dm
i

. (A10)

EC analysis can be demonstrated as follows:

CAF =

∞∫
0

fSNRmax(z) logz(1 + z)dz =
1

ln 2

∞∫
0

1− FSNRmax(z)
1 + z

dz (A11)

FSNRmax(z) = Pr(SNRmax < z) = Pr
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2
|hrd|

2(
1+|hrd|

√
ηdm

sr
dm

i

)2

dm
i

< z


= Pr

|hsr|
2 <

(
1+|hrd|

√
ηdm

sr
dm

i

)2

zdm
i

ηψ|hrd|
2


(A12)
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As in the previous section, we have

FSNRmax(z) = 1− 1
λrd
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In Equation (A14), we consider

A = exp
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(
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We then apply a Taylor series as follows:

exp
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Equation (A15) can then be rewritten as

A =
∞∑

q=0

(−1)q
(

2z
√

dm
srdm

i
Ω
|hsr |2

ψ
√
η
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× exp

− zdm
sr

Ω
|hsr |

2ψ

 exp

− zdm
i

Ω
|hsr |

2ηψ|hrd|
2

. (A16)

If Equation (A14) is placed into Equation (A16) and the expression (x + y)m =
m∑

n=0

(
m
n

)
xm−nyn is

applied, we have
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FSNRmax(z) = 1− e
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ψ
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) (A19)

Using the Table of Integral Equation (3.471,9) in [32], Equation (A18) can be reformulated as

FSNRmax(z) = 1− 2e
−
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Ω
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ψ

λrd
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FSNRmax(z) = 1− 2e
−

zdm
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Ω
|hsr |2

ψ
×

m
|hsr |2
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2t∑
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4
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(
z
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(A21)

CAF =
1

ln 2

∞∫
0

1− FSNRmax(z)
1 + z

dz. (A22)

We can observe that the involving integral in Equation (A22) is difficult to solve in a closed form.
However, by changing the variable of the integration in Equation (B13) as z = tanθ, we have

CAF =
1

ln 2

∞∫
0

1− FSNRmax(z)
1 + z

dz =
1

ln 2

π/2∫
0

1− FSNRmax(tanθ)
1 + tanθ

sec2 θdθ. (A23)
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We can then apply an efficient NP-point Gauss–Chebychev quadrature (GCQ) formula ([19]
Equation (25.4.39)) from [20] to numerically derive the Proof of Theorem 2.

Where xv = tan
(
π
4 cos

[
2v−1
2Np

π
]
+ π

4

)
, and ωv =

π2 sin
(

2v−1
2Np π

)
4Np cos2

(
π
4 cos

[
2v−1
2Np π

]
+ π

4

) .
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