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Abstract: The introduction of artificial intelligence (AI) in video surveillance systems has significantly
transformed security practices, allowing for autonomous monitoring and real-time detection of
threats. However, the effectiveness and efficiency of AI-powered surveillance rely heavily on the
hardware infrastructure, specifically high-performance computing (HPC) architectures. This article
examines the impact of different platforms for HPC edge servers, including x86 and ARM CPU-based
systems and Graphics Processing Units (GPUs), on the speed and accuracy of video processing tasks.
By using advanced deep learning frameworks, a video surveillance system based on YOLO object
detection and DeepSort tracking algorithms is developed and evaluated. This study thoroughly
assesses the strengths, limitations, and suitability of different hardware architectures for various
AI-based surveillance scenarios.

Keywords: HPC architectures; machine learning; image processing; edge computing; YOLO

1. Introduction

Recent advancements in artificial intelligence (AI) have ushered in a transformative era
for video surveillance, revolutionizing its capabilities across various domains. AI-driven
video surveillance applications have emerged as powerful tools for enhancing security and
surveillance in public spaces, critical infrastructures, and commercial premises [1,2]. Lever-
aging computer vision and machine learning algorithms, these applications autonomously
analyze video feeds, detecting anomalies, identifying objects and individuals, and issuing
real-time alerts to operators.

However, the efficacy and functionality of AI video surveillance systems are heavily
contingent on the underlying hardware infrastructure [3,4]. The deployment of high-
performance computing (HPC) architectures is pivotal for achieving efficient and accurate
video processing capabilities [5–7]. With their immense computational prowess and parallel
processing capabilities, HPC systems hold the potential to significantly enhance the speed
and precision of video analysis tasks, facilitating real-time monitoring and swift responses
to security threats [8].

In this paper, we embark on a comprehensive exploration of an AI-powered video
surveillance application, employing a range of High-Performance Computing (HPC) archi-
tectures. Our primary goal is to meticulously examine the influence of various architectural
configurations, encompassing traditional CPU-based systems and GPUs, on both the effi-
ciency and speed of video processing operations. Through a rigorous comparative analysis
of these architectural designs against a predefined set of evaluation metrics, we aim to
elucidate their strengths, limitations, and suitability across a spectrum of surveillance sce-
narios. Our investigation delves into the intricate interplay between hardware architecture
and the performance of AI-driven video surveillance systems. By systematically evaluating
the efficacy of different HPC configurations, we aim to provide valuable insights into the
optimal utilization of computational resources for enhancing surveillance capabilities.

To conduct our investigation, we harness cutting-edge deep learning frameworks and
libraries. Specifically, we present a video surveillance application founded on the renowned
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YOLO [9] object detection framework, considered in the overall system architecture shown
in Figure 1, integrated with the DeepSort [10] tracking algorithm, implemented on the
Pytorch framework. Employing a meticulous benchmarking methodology, we assess
crucial performance parameters such as processing power, resource utilization, and energy
efficiency. Moreover, we juxtapose findings from prominent computing systems such as
x86 and ARM 64b CPUs, combined with GPU technology, within the realm of AI video
processing. Figure 1 shows the system architecture envisioned in this work: several video
surveillance appliances record and stream data (e.g., videos, images) to several EDGE and
HPC platforms. These platforms independently perform AI-based video surveillance tasks,
and their processed images are conveyed together to a control room for human evaluation.

The structure of this paper is as follows: Section 2 presents a brief review of related
works in the field of AI and video-surveillance applications and architectures; Section 3
introduces the people-down application in the context of video surveillance, delineating
its constituent elements and useful search and rescue in critical scenarios such as war,
earthquake or other natural disasters; Section 4 expounds upon the benchmark setup;
and Section 5 presents the benchmark results for the people-down application and draws
some conclusions. All the work source code can be publicly found at https://github.com/
federicorossifr/eupilot-cini-mandown (accessed on 2 May 2024).

Figure 1. Overall system architecture, including camera surveillance system and deep-learning based
edge-HPC system.

2. Related Works

The integration of artificial intelligence (AI) into video surveillance systems has cat-
alyzed a significant evolution in security practices, ushering in an era of autonomous
monitoring and real-time threat detection. However, the efficacy and efficiency of AI-
powered surveillance systems are intricately tied to the underlying hardware infrastructure,
particularly high-performance computing (HPC) architectures [8,11,12]. As such, a growing
body of research has emerged to investigate the impact of different HPC platforms on
the speed and accuracy of video processing tasks with a focus on enhancing surveillance
capabilities.

Several studies have explored the performance of various edge and HPC architectures
in the context of AI-driven video surveillance and real-time object detection [4,13–15]. Their
findings highlighted the potential of ARM and FPGA-based architectures in delivering
competitive performance while offering improved energy efficiency compared to traditional
x86 platforms. In [16], the authors reviewed the capabilities of three different units of
HPC platforms: CPUs, GPUs, and Tensor Processing Units (TPUs), each of them serving
unique functions within computing systems. The authors highlighted how the CPU
primarily manages overall system performance, while the GPU is dedicated to rendering
or processing graphics and video, possibly through AI. Acting as an additional hardware
component alongside the CPU, the GPU enhances image and video processing capabilities.

https://github.com/federicorossifr/eupilot-cini-mandown
https://github.com/federicorossifr/eupilot-cini-mandown
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On the other hand, the TPU finds its niche in fields like artificial intelligence, machine
learning, and deep learning, offering specialized processing tailored to these domains [17].

Furthermore, researchers have explored novel architectural configurations to optimize
the efficiency of AI-based surveillance systems. In [18], the authors proposed a hybrid
architecture combining ARM-based CPUs, GPUs, and cameras to implement an AI-based
surveillance system for a railway-crossing. Meanwhile, in [15,19–21], the authors presented
potential applications of deep-learning techniques for crowd analysis and identification
and for security assessment in architecture, engineering, and construction.

Object Detection

One of the core tasks in computer vision via deep learning is object detection [22],
which includes recognizing and localizing entities in images or video streams. It is essential
to many applications, including augmented reality, medical imaging, autonomous driving,
and, of particular interest in this work, video surveillance.

Fundamentally, deep learning object detection is based on convolutional neural net-
works (CNNs), which are a subclass of deep learning models created especially for visual
data analysis. A CNN is made up of several layers of linked neurons that process different
parts of the input image and gradually learn to extract features that are important for
detecting objects.

The region-based convolutional neural network (R-CNN) family of algorithms is one
of the primary methods used in object detection with deep learning [23,24]. R-CNNs work
by first producing a set of candidate bounding boxes, or region proposals, that might
include objects in the image. After that, a CNN is fed these suggestions, and it extracts
features from each region. Lastly, a classifier is used to identify and ascertain whether
objects are present in each proposition.

By enhancing the detection process’s accuracy and computing efficiency, later develop-
ments including Mask R-CNN, Fast R-CNN, and Faster R-CNN [25–27] have significantly
enhanced object detection performance by building upon R-CNNs. These models effi-
ciently create region proposals and extract multi-scale features from input pictures by
using methods like region proposal networks (RPNs) [28] and feature pyramid networks
(FPNs) [29].

Another notable approach in object detection with deep learning is the single-shot
detection (SSD) framework [30–32], which streamlines the detection process by directly
predicting object bounding boxes and class probabilities from feature maps at multiple
scales. SSD models are renowned for their real-time performance and suitability for
applications requiring fast inference speeds.

The object identification algorithm known as YOLO (You Only Look Once) [32] trans-
formed computer vision by quickly and precisely identifying objects in images in real time.
With just one neural network, YOLO can predict bounding boxes and the associated class
probabilities for several objects at once in a single pass. Because of this method’s remarkable
speed, YOLO can be used in applications that need real-time object identification, like
augmented reality, autonomous driving, and surveillance. Because of its effectiveness
and efficiency, YOLO has become a mainstay in the object detection space. Iterations like
YOLOv4 and YOLOv5 up to YOLOv8 (https://github.com/ultralytics/ultralytics, accessed
on 2 May 2024) have all pushed the envelope in terms of speed and accuracy.

Moreover, transformer-based designs and the emergence of attention processes have
propelled recent developments in object detection. Traditional anchor-based methods are
no longer necessary thanks to models like DETR (DEtection TRansformer) [33], which use
self-attention mechanisms to directly predict object locations and classes from full images
in a single pass.

3. The People-Down Application

In this section, we introduce the AI-based video processing application that will be
used as a benchmark in the next sections. This application automatically detects, tracks,

https://github.com/ultralytics/ultralytics
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and counts people lying on the ground/floor in a video sequence. It comprises three main
parts, which are executed for each of the video frames. Figures 2 and 3 shows an example
output from the application.

Figure 2. Example of the output of a processed frame.

• An object detector: responsible for detecting objects of interest (OOIs) in a given frame
and predicting bounding boxes around them

• A people-down classifier: responsible for filtering out boxes that are either not associ-
ated with people or associated with people not lying on the ground.

• A tracking algorithm: responsible for fingerprinting each detected lying person, fol-
lowing their movement across the frames. This is useful to avoid counting the same
people multiple times in case the camera is moving (if mounted in a mobile drone) or
the same people are observed by multiple cameras from different point of views.

Figure 3. Data-flow diagram for the people-down application with all the processing steps.

3.1. The Object Detector

The object detection task is implemented using the YOLOv5 [32] One-shot Object
Detector algorithm. This task detects all the OOIs in a frame and then discards the objects
not classified as people. From a computing perspective, the algorithm completes three
steps for each frame:

• Image pre-processing: each video frame is transformed to accommodate the correct
size and format accepted by the YOLOv5 neural network model.

• Neural network inference: the proper step of OOI detection using the YOLOv5 neural
network

• Result post-processing: YOLOv5 predictions are filtered and selected based on predic-
tion confidence and class labels.
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3.1.1. Image Pre-Processing

The object detector model requires each image to be in the correct format; depending
on the original frame format, this results in at least the following steps:

• Image resizing: a 640× 640 frame is required for the YOLOv5 input (smaller images
are padded with black pixels)

• Channel transposing: each resized frame is transposed to match the channel layout
CHW (channel, height, width) and RGB (red, green, blue) color formats.

• Data conversion and normalization: pixel data are converted from an 8-bit unsigned
integer to a floating-point format on 16-bit or 32-bit (or even 8-bit, [34]). This also
normalizes each pixel range from [0, 255] to [0, 1].

• Batch preparation: multiple images (if available) are batched together to increase
parallel computation (when possible) of YOLOv5 inference.

3.1.2. Image Inference

Figure 4 details the process of the YOLOv5 inference pass (bb is the number of bound-
ing boxes and nc is the number of class probabilities). From an architectural point of view,
the YOLOv5 network is constructed as follows:

• Feature maps are extracted from the input image with a backbone of convolutional and
pooling filters.

• Refinement of previous feature maps is performed at the neck of the architecture
exploiting spatial fusion [35]. Spatial fusion techniques aim to merge these multi-scale
feature maps to achieve more robust object detection. This fusion process helps the
model capture fine-grained details of small objects and contextual information of larger
objects in a single pass through the network. It also ensures that the detector can detect
objects across different scales. There are various methods for spatial fusion, including
concatenation, addition, or more sophisticated operations like spatial pyramid pooling
or feature pyramid networks (FPNs, [29]). These techniques enable the model to
leverage information from different scales and spatial resolutions.

• The feature maps output by the neck are used to finally predict and classify bounding
boxes and classes for which the network was originally trained.

Figure 4. Workflow of YOLOv5 inference.

As shown in Figure 4, the output of the model is a three-dimensional tensor:

[batch, bounding boxes, number of classes + 5]

The first index refers to the original index of the frame in the batch if multiple images
are provided. The second index refers to the bounding boxes that the network has detected.
The f ive additional items added to the 3rd dimension are the bounding box coordinates and
score x, y, w, h, oscore. Indeed, for each of the bounding boxes, we obtain the pixel coordinates
x, y and the dimension w, h, and the probability of each class label, classscore. Finally, the
oscore measures the probability of having an OOI inside that bounding box. For example,
if we use a YOLOv5 model trained on the COCO dataset [36], we obtain a tensor of roughly
[1, 25200, 80+ 5] for a single image, where there are 80 class probabilities and f ive additional
coordinates are added to the 3rd dimension of the tensor. Post-processing then must be
used to reduce and select the actual OOIs between all the bounding boxes.
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3.1.3. Image Post-Processing

The selection of the best bounding boxes is critical to the overall network accuracy.
This process encompasses the following steps:

• Confidence-based filtering and scoring: any object with a oscore below a predefined
threshold is discarded. Then, each predicted classed is given a confidence score cscore =
oscore · classscore (e.g., for the COCO dataset, we will obtain a confidence score of 80 for
each bounding box). Finally, only the highest confidence class is kept as a class for
that bounding box.

• Class-based filtering: this step is specific to our use case; since we are only interested
in people, we discard all the boxes that are not classified as person/human

• Non-maximum-suppression (NMS): all the bounding boxes are sorted by their confi-
dence score computed before, and the box with the best score is appended to the list
of selected boxes. All boxes with a high (i.e., above threshold) overlap, namely inter-
section over union (IoU), with one of the selected boxes are discarded. The threshold
is typically set to 0.5.

At the end of this step, we obtain a list of bounding boxes with the following informa-
tion: (i) pixel coordinates of the top left and bottom right corner of the bounding box, (ii) the
confidence score for that bounding box, (iii) the predicted class for that bounding box.

3.2. People-Down Classifier and Tracking

After we obtained the list of bounding boxes containing people, we must process
them to select only the ones that contain people that are lying on the ground or floor. Each
bounding box is rescaled to the original frame dimension, and we retrieve the width and
the height of the boxes. Then, we discard all the boxes that have an aspect ratio width

height less
than a predefined threshold at. This means that depending on the camera positioning, we
are only keeping boxes that contain people lying down.

3.2.1. People Re-Identification

Since we want to track and count the number of people that are lying on the floor, we
must employ a mechanism to keep track of the same person between different frames. This
task can be labeled as an Object Re-Identification (re-ID) task [37]. One of the most effective
techniques that solve this task is the Omni-Scale Feature Learning (OSFL, [29,38]) with a
neural network model called OSNet. The idea behind the OSFL approach is similar to the
YOLOv5 spatial fusion of multi-scale feature maps, being able to perceive both fine-grained
details and global information. Figure 5 shows the base architecture of the neural network
model used for the OSFL.

Figure 5. Omni-scale network for people re-identification architecture.

During the feature extraction process, a sequence of bottleneck blocks is used, each
comprised of three convolutional layers. The first layer is a 1 × 1 convolutional layer that
reduces the number of input channels, thereby simplifying the model. The second layer
is a 3 × 3 depthwise convolutional layer that applies a single filter to each input channel
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to extract spatial features. Finally, the third layer is another 1 × 1 convolutional layer that
expands the number of output channels to include channel-wise information.

To facilitate the network’s learning of deeper and more intricate features, the bottleneck
blocks integrate a residual connection that adds the output of the final convolutional layer
to the block’s input. This also helps mitigate the risk of vanishing gradients during training.

After feature extraction, a global average pooling layer aggregates the features. This
layer takes the output of the final bottleneck block and performs an average pooling operation
across the spatial dimensions of the feature maps, resulting in a singular 512-dimensional
vector of feature values that represent the fingerprint of that person in the bounding box.

3.2.2. People Tracking

Once we obtain the re-identification for the people in the bounding boxes, we want to
track them across frames. A way to solve this problem is the Simple Online and Real-time
Tracking (DeepSORT, [39]) algorithm. Globally, this approach is based on four components:

Detection

This task can be performed by the detector model shown in Section 3.1. The output of
this step is exactly the set of bounding boxes coordinates alongside the classes and their
confidence score.

Estimation

Estimation of movement of boxes across frames can be achieved by applying a Kalman
Filter [40]. In particular, we define the filter state as s = (x, y, r, h, ẋ, ẏ, ȧ ), where x, y are the
midpoint coordinates of the bounding box, h is the height of the box, r is the aspect ratio of
the box, and the other quantities ẋ, ẏ, and ȧ are the corresponding derivatives with respect
to time. Since we can assume a constant aspect ratio due to the nature of the task, the state
transition matrix F of the filter is the following with ∆t being the inter-frame time.

F ∈ R7×7 =



1 0 0 0 ∆t 0 0
0 1 0 0 0 ∆t 0
0 0 1 0 0 0 ∆ t
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


The observation matrix H is then the following:

H ∈ R4×7


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0


Data Association and Track Management

Given a set of tracked boxes, data association consists of assigning each tracked box
to one of the elements of the current frame detected boxes, using the fingerprint features
computed before. Each tracked box is maintained for a given number of frames Amax.
At each frame, a cost matrix C is computed where the element cij is the IoU between the i-th
detection in the current frame and the j-th tracked bounding box. Then, a linear assignment
problem is set and solved using the Hungarian algorithm [41], which allows us to find
an assignment that maximizes the IoU between tracked and detected boxes. Algorithm 1
shows a pseudo-implementation of the association and tracking algorithm.
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Algorithm 1 Matching algorithm

Require: Track indices T = {1, . . . , N}, Detection indices D = {1, . . . , M}, Maximum age
Amax

Ensure: Matched detections M, Unmatched detections D
Compute cost matrix C ← ci,j ∀i, j ∈ T, D
Initialize set of matches M← ∅
Initialize set of unmatched U ← D
for N ∈ 1, . . . , Amax do

Select tracks by age Tn ← {i ∈ T | agei = n}
Minimum cost matching X = {xi,j|i ∈ T, j ∈ D} = hungarian(C, Tn, U)
Update matches M← M ∪ {(i, j)|xi,j > 0}
Update unmatched U ← U \ {(j|∑i xi,j > 0)}

end for

4. Methodology and Benchmark Setup

In this section, we present the evaluation of our AI video surveillance application
employing diverse HPC architectures. Our assessment focuses on key performance metrics
including processing power, resource utilization, and energy efficiency. We begin by detail-
ing the benchmark setup, which is followed by a comprehensive analysis of benchmark
metrics for the people-down tracking application. The whole application described before
was implemented in Python using the Pytorch framework for the neural network models
and OpenCV for handling video sources. GPU metrics were collected using the pynvml
python package, while CPU metrics were collected by using both hardware-related tools
and the python psutil package when possible.

We conducted our evaluation using a variety of HPC architectures, encompassing
both conventional CPU-based systems and GPUs. The hardware configurations included
systems based on x86 and ARM 64b architectures, which were each equipped with different
specifications in terms of CPU/GPU models, memory, and storage. The evaluation was
performed using a dataset of 400 video frames extracted from a surveillance scenario with
few people lying on the ground. Each platform was evaluated with the same software
benchmark, analyzing the metric described in the previous section. Each frame is a JPEG-
encoded image with a resolution of 1920× 1080 pixels and an 8-bit sRGB color scheme.

For each platform, we ran the same detection and re-identification algorithm shown in
the previous sections 100 times over the 400 frames of the dataset. For each processed frame,
we collected the metrics mentioned above. At the end of the evaluation, we computed each
metric’s mean, variance, and distribution for the comparison.

We selected the following metrics and measured their instantaneous value for each of
the processed frames in every evaluation run.

• Processing Power: We quantified the processing power of each architecture by mea-
suring the average frames per second (FPS) achieved during video processing tasks.
Higher FPS values indicate greater computational efficiency and faster real-time moni-
toring capabilities.

• Resource Utilization: Resource utilization metrics, including CPU and GPU utilization
rates, were monitored throughout the evaluation. By analyzing resource usage pat-
terns, we gained insights into the effectiveness of hardware acceleration and parallel
processing capabilities offered by different architectures.

• Energy Efficiency: Energy consumption was assessed to evaluate the energy efficiency
of each HPC architecture. Power consumption measurements were recorded during
video processing tasks, allowing us to compare the energy efficiency of CPU and
GPU-based systems under varying workloads when possible.

We considered the following HPC computing architectures available at the GreenDat-
aCenter of the University of Pisa:
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• NVIDIA Grace Hopper super chip (GH200) with a 72-core ARM CPU (Neoverse
V2 64b architecture with vectorized instruction-set extension), NVIDIA H100 GPU,
and 480 GB unified memory.

• NVIDIA A100 GPU with an Intel Xeon Gold 6238R 28-core CPU.
• Ampera Altra ARM Neoverse 64b N1 CPU with 80-cores ARM64 enabled with the

ARM NEON vector ISA.
• NVIDIA T4 GPU with an Intel Xeon Cascadelake 8-core CPU, 23 GB main memory,

and 15 GB GPU memory.
• NVIDIA Jetson Orin AGX with 12 ARM 64b Cortex-A78 cores, Ampere-based GPU,

and 32 GB unified memory.

We may allocate the processing steps shown in Section 3 to the GPU or the CPU
depending on the considered architecture. Table 1 shows how we allocated the different
steps for the benchmarks above.

Table 1. Device allocation for each computing step and architecture considered.

GH200 A100 + INTEL ARM N1 JETSON T4 + INTEL
CPU GPU - - - - - - - -

Image pre/post ✓ ✓ ✓ ✓ ✓
YOLOv5 ✓ ✓ ✓ ✓ ✓
People classifier ✓ ✓ ✓ ✓ ✓
DeepSORT ✓ ✓ ✓ ✓ ✓

5. Results and Discussion

In this section, we present the findings of our comprehensive evaluation of various
HPC architectures in the context of an AI-based video surveillance application. Building
upon the groundwork laid out in the preceding sections, where we introduced the trans-
formative potential of AI-driven video surveillance and outlined our methodology for
benchmarking different architectures, the focus now shifts to the outcomes of our analy-
sis. From the achieved results in Figures 6 and 7, in terms of FPS processed in real time,
the use of a GPU makes an essential contribution. Indeed, Ampera Altra ARM Neoverse
N1 performs worse than all the others. Particularly, the ARM Neoverse core has higher
performance than the Cortex-A78 CPU in the Jetson Orin but the latter, thanks to the GPU
part, has an FPS rate higher than 2. The performance results are roughly independent of
the specific task performed; see Figure 7a,b. The best for performance is mixing a CPU with
a vectorized instruction set (ARM Neoverse V2) plus a GPU. As we can see from Figure 8,
in terms of energy efficiency, mixing Cortex-A architecture with Nvidia GPU in the Orin
AGX leads to a figure of 1 W per 1 FPS, while in the Grace Hopper GH200, the efficiency
drops to 3 W per 1 FPS. Roughly 1 W per 1 FPS is achieved also by the NVIDIA T4 GPU
with an Intel Xeon Cascadelake 8-core CPU.

Our results highlight how important GPUs are to improving edge servers’ real-time
computing power for video surveillance. The significant boost in frame-per-second (FPS)
rates that GPU acceleration provides emphasizes how important parallel computing is for
meeting the computational demands of sophisticated AI algorithms. But this performance
boost comes at the cost of increased power consumption; therefore, energy efficiency
indicators must be carefully taken into account in addition to processing power.

Although GPU-accelerated architectures are widely used, our research also emphasizes
the promise of ARM-based systems, especially when combined with GPU co-processors. De-
spite its relatively inferior performance when compared to its x86 counterparts, the Ampera
Altra ARM Neoverse N1 showed encouraging results in terms of performance-per-watt
when ARM cores were integrated with GPUs, as demonstrated by platforms such as the
Jetson Orin. This emphasizes how important it is to investigate heterogeneous designs to
maximize energy efficiency without compromising too much processing power.
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Figure 6. Overall FPS performance.

(a) YOLOv5 component FPS performance (b) DeepSort component FPS performance

Figure 7. Mean, variance, and distribution of FPS performance of people-down application modules
for the different architectures.

(a) GPU power draw distribution (b) GPU utilization distribution

Figure 8. Mean, variance, and distribution of GPU performance metrics for the overall people-down
application for the different architectures.
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Additionally, the Intel Xeon Cascadelake combination with a Tesla T4 GPU was found
to be another attractive option with significant performance-per-watt benefits by our
evaluation team. This emphasizes how crucial it is to take into account the synergistic
impacts of components within a heterogeneous architecture in addition to their individual
performance.

6. Conclusions

In this work, we examined the impact of different platforms for HPC edge servers,
including x86 and ARM CPU-based systems and GPUs, on the speed and accuracy of video
processing tasks. By using advanced deep learning frameworks, a video surveillance appli-
cation based on YOLO object detection and DeepSort tracking algorithms was developed
and evaluated. We then assessed the strengths, limitations, and suitability of heterogeneous
architectures to run such applications. For each system, we measured several metrics,
in particular, GPU power consumption and FPS speed. The results highlight the critical
role that GPUs play in enhancing edge servers’ real-time processing capacity for AI video
surveillance as well as the critical role that parallel computing plays in addressing complex
algorithms’ computational demands in the context of edge and high-performance comput-
ing platforms for AI video surveillance applications. Energy-efficiency indicators must be
carefully evaluated in addition to computing power, even while GPU acceleration improves
FPS rates dramatically at the expense of power consumption. Moreover, the research
underscores the promise of ARM-based systems, particularly in conjunction with GPU
co-processors like the Ampera Altra ARM Neoverse N1, which demonstrates encouraging
performance-per-watt results. Moreover, investigating heterogeneous designs—such as
combining Tesla GPUs with Intel Xeon processors—offers significant gains in performance
per watt, emphasizing the importance of synergistic effects in edge HPC platforms for AI
video surveillance. Future works will expand the analysis to other algorithms for AI video
surveillance and other EDGE/HPC platforms and architectures.

Author Contributions: Conceptualization, F.R. and S.S.; methodology, F.R. and S.S.; software, F.R.;
validation, F.R. and S.S.; formal analysis, F.R. and S.S.; investigation, F.R. and S.S.; resources, F.R.
and S.S.; data curation, F.R. and S.S.; writing—original draft preparation, F.R.; writing—review and
editing, S.S.; visualization, F.R.; supervision, S.S.; project administration, S.S.; funding acquisition, S.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by EU Horizon 2020 Research and Innovation projects
The European Pilot under Grant 101034126, TextaRossa under Grant 956831, and in part by the Italian
Ministry of University and Research (MUR) in the framework of the Crosslab and FoReLab projects
(Departments of Excellence).

Data Availability Statement: All the work source code can be publicly found at https://github.com/
federicorossifr/eupilot-cini-mandown (accessed on 2 May 2024).

Acknowledgments: We thank the personnel of the Green DataCenter of the University of Pisa
(https://start.unipi.it/en/computingunipi) (accessed on 2 May 2024). In particular, we thank M.
Davini and F. Pratelli for having provided us with the computational resources that have been used
in the experimental section.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sharma, V.; Gupta, M.; Kumar, A.; Mishra, D. Video Processing Using Deep Learning Techniques: A Systematic Literature Review.

IEEE Access 2021, 9, 139489–139507. [CrossRef]
2. Rossi, F.; Mugnaini, G.; Saponara, S.; Cavazzoni, C.; Sciarappa, A. Evaluation of AI and Video Computing Applications on

Multiple Heterogeneous Architectures. In Applications in Electronics Pervading Industry, Environment and Society; Bellotti, F.,
Grammatikakis, M.D., Mansour, A., Ruo Roch, M., Seepold, R., Solanas, A., Berta, R., Eds.; Lecture Notes in Electrical Engineering;
Springer: Cham, Switzerland, 2024; pp. 130–136. [CrossRef]

3. Wang, X. Intelligent multi-camera video surveillance: A review. Pattern Recognit. Lett. 2013, 34, 3–19. [CrossRef]

https://github.com/federicorossifr/eupilot-cini-mandown
https://github.com/federicorossifr/eupilot-cini-mandown
https://start.unipi.it/en/computingunipi
http://doi.org/10.1109/ACCESS.2021.3118541
http://dx.doi.org/10.1007/978-3-031-48121-5_19
http://dx.doi.org/10.1016/j.patrec.2012.07.005


Electronics 2024, 13, 1757 12 of 13

4. Dilshad, N.; Hwang, J.; Song, J.; Sung, N. Applications and Challenges in Video Surveillance via Drone: A Brief Survey. In
Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju,
Republic of Korea, 21–23 October 2020; pp. 728–732. [CrossRef]

5. Webb, J. High performance computing in image processing and computer vision. In Proceedings of the 12th IAPR International
Conference on Pattern Recognition, Vol. 2—Conference B: Computer Vision and Image Processing. (Cat. No.94CH3440-5),
Jerusalem, Israel, 9–13 October 1994; Volume 3, pp. 218–222. [CrossRef]

6. Cococcioni, M.; Rossi, F.; Ruffaldi, E.; Saponara, S. Fast deep neural networks for image processing using posits and ARM scalable
vector extension. J. Real-Time Image Process. 2020, 17, 759–771. [CrossRef]

7. Cococcioni, M.; Rossi, F.; Ruffaldi, E.; Saponara, S. Vectorizing posit operations on RISC-V for faster deep neural networks:
Experiments and comparison with ARM SVE. Neural Comput. Appl. 2021, 33, 10575–10585. [CrossRef]

8. Yi, S.; Jing, X.; Zhu, J.; Zhu, J.; Cheng, H. The Model of Face Recognition in Video Surveillance Based on Cloud Computing.
In Advances in Computer Science and Information Engineering; Jin, D., Lin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 105–111.

9. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Yifu, Z.; Wong, C.; Montes, D.; et al. ultralyt-
ics/yolov5: V7.0—YOLOv5 SOTA Realtime Instance Segmentation; Version v7.0; Zenodo: Meyrin, Switzerland, 2022. [CrossRef]

10. Wojke, N.; Bewley, A. Deep Cosine Metric Learning for Person Re-identification. In Proceedings of the 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 748–756. [CrossRef]

11. Sacchi, C.; Regazzoni, C.S.; Dambra, C. Remote cable-based video surveillance applications: The AVS-RIO project. In Proceedings
of the 10th International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999; IEEE: Piscataway, NJ,
USA, 1999; pp. 1214–1215.
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