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Abstract: Subspace predictive control (SPC) is a widely recognized data-driven methodology known
for its reliability and convenience. However, effectively applying SPC to complex industrial process
systems remains a challenging endeavor. To address this, this paper introduces a nonlinear subspace
predictive control approach based on locally weighted projection regression (NSPC-LWPR). By pro-
jecting the input space into localized regions, constructing precise local models, and aggregating
them through weighted summation, this approach handles the nonlinearity effectively. Additionally,
it dynamically adjusts the control strategy based on online process data and model parameters, while
eliminating the need for offline process data storage, greatly enhancing the adaptability and efficiency
of the approach. The parameter determination criteria and theoretical analysis encompassing feasibil-
ity and stability assessments provide a robust foundation for the proposed approach. To illustrate its
efficacy and feasibility, the proposed approach is applied to a continuous stirred tank heater (CSTH)
benchmark system. Comparative results highlight its superiority over SPC and adaptive subspace
predictive control (ASPC) methods, evident in enhanced tracking precision and predictive accuracy.
Overall, the proposed NSPC-LWPR approach presents a promising solution for nonlinear control
challenges in industrial process systems.

Keywords: data-driven control; industrial process; locally weighted projection regression (LWPR);
nonlinear system control; subspace predictive control (SPC)

1. Introduction

Industrial processes constitute the backbone of modern economies, contributing to diverse
sectors such as chemical engineering, transportation, and energy production [1–3]. The effi-
cient operation and regulation of these processes are essential for achieving optimal resource
utilization, product quality, and safety [4]. In pursuit of these objectives, the field of industrial
process control has emerged as a crucial discipline, aiming to harness advancements in science
and technology to enhance process performance, stability, and reliability [5].

The significance of industrial process control extends beyond mere operational efficiency.
It plays a pivotal role in ensuring consistent product quality, minimizing waste, and mitigat-
ing environmental impact [6–8]. Furthermore, effective control strategies empower indus-
tries to adapt swiftly to changing market demands and regulatory requirements, fostering
competitiveness and sustainability [9]. However, the realm of industrial process control
is not without its challenges. Conventional model-based control approaches encounter
limitations when applied to complex industrial systems [10–12]. A prominent constraint is
the difficulty in obtaining accurate and comprehensive model information. Constructing a
detailed mathematical representation for complex processes is often formidable, especially
given nonlinear dynamics, intricate interactions, and inherent uncertainties [13]. These
challenges hinder the efficacy of conventional model-based control, leading to suboptimal
performance, compromised stability, and difficulties in real-time adaptation [14].
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To tackle these formidable challenges, data-driven control approaches have emerged as
a promising and dynamic solution in the realm of industrial process control [15]. These
methodologies, including machine learning [16], deep learning [17], and reinforcement
learning [18], leverage the wealth of information derived from sensors, actuators, and his-
torical data to formulate effective and adaptive control strategies.

Within the spectrum of data-driven control strategies, the subspace predictive control
(SPC) approach stands out as a particularly compelling choice. SPC ingeniously combines
subspace identification techniques with predictive control methodologies, rendering it an
attractive option for its simplicity and ease of implementation [19]. The adoption of SPC
has spurred extensive research into its practical applications within the realm of industrial
process control. For instance, Li et al. [20] have devised a SPC method to regulate the power
allocation of server racks and control the supply temperature of cold air. Furthermore,
Navalkar et al. [21] have introduced a repetitive SPC approach that demonstrates precise
individual blade pitch control on a wind turbine prototype. These applications underscore
the potential of SPC in optimizing complex industrial systems. Nevertheless, it remains
clear that many intricate industrial systems inherently exhibit nonlinear behaviors, intricate
interactions, and uncertain dynamics. While the strength of SPC lies in its foundation on
linear models and its reliance on offline data, it encounters formidable challenges when
confronted with the inherent complexities of nonlinear processes. This limitation has the
potential to curtail its effectiveness in capturing the multifaceted nature of these systems
and responding adeptly to dynamic variations [22].

To address the prevalent issue of the inadequacy of the SPC method in dealing with
the intricate nonlinear dynamics inherent in industrial processes, there is a compelling
imperative to develop and advance the field of adaptive subspace predictive control (ASPC).
The primary objective motivating ASPC is to facilitate real-time adjustments of controller
parameters in response to dynamic data fluctuations, offering a dynamic and adaptive ap-
proach to control. A cornerstone of ASPC involves the utilization of a sliding data window
mechanism, which serves as a vital tool for describing the current operational conditions
and effectively mitigating the nonlinear complexities often encountered in intricate systems.
This approach has been notably applied and refined by pioneering researchers such as
Wahab et al. [23], Vajpayee et al. [24], and Hallouzi et al. [25]. Their work has showcased
the effectiveness of the sliding data window in applications ranging from wastewater
treatment systems to nuclear reactors and even complex models like the Boeing 747 aircraft.
While substantial progress has been achieved in the application of ASPC, a noteworthy
limitation lies in the fact that these methodologies have predominantly been tailored to
linear controllers. This limitation restricts their capability to comprehensively address the
intricate nonlinear characteristics commonly found in diverse industrial scenarios.

To achieve a more robust and appropriate solution, some researchers have explored
alternative avenues by directly crafting controllers explicitly designed for specific nonlinear
systems. For example, a specialized nonlinear subspace predictive controller tailored to
bilinear systems is introduced in [26]. Zhou et al. [27] and Luo et al. [28] have extended
nonlinear SPC methods to encompass Hammerstein systems and Hammerstein–Wiener
systems, expanding the scope of applicability. However, it is essential to recognize that
while these endeavors have shown promise, designing controllers for specific nonlinear
systems often lacks the necessary universality required for broad industrial implementation.
In light of these considerations, the field of nonlinear SPC is confronted with the challenge
of achieving a more versatile solution.

In this paper, a nonlinear subspace predictive control approach based on locally weighted
projection regression (NSPC-LWPR) is presented to address the aforementioned issues. The lo-
cally weighted projection regression (LWPR) algorithm, which is an incremental nonparamet-
ric statistical learning technique [29] and is related to the field of linear parameter varying
modeling [30–32], is integrated into the SPC method. By fitting the local nonlinear rela-
tionships between input and output data to construct a predictive model, higher prediction
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accuracy can be achieved when the expected output of the nonlinear process changes, while
maintaining smooth tracking. The main contributions of this approach are listed as follows:

(1) Seamless integration of LWPR and SPC: The LWPR algorithm and the SPC method are
seamlessly integrated for industrial process control. By projecting the input space into
localized regions, constructing precise local models, and aggregating them through
weighted summation, the proposed approach effectively addresses the complex non-
linear relationships in industrial processes.

(2) Enhanced adaptability and efficiency: The proposed approach constructs the con-
troller from the trained regression model. This implies that it can adapt the control
strategy using online process data and local model parameters. In addition, it re-
moves the necessity for storing offline process data. These advancements highlight
improvements in both adaptability and efficiency.

(3) Improved predictive and tracking performance: The proposed approach shows improve-
ments in both predictive and tracking performance. It creates an accurate predictive
model by capturing the dynamic characteristics of the system from input/output (I/O)
data. This boosts the accuracy of the predictive controller, especially during transitions
from nonlinear to steady-state processes. The increased prediction accuracy also greatly
enhances the tracking performance of the predictive controller. In situations where
the expected output of the nonlinear process changes, the controlled system adjusts
smoothly to match the projected output path, ensuring consistent and smooth tracking.

This paper is structured as follows. Section 2 offers an extensive elucidation of the
preliminaries associated with the subspace predictor and the LWPR learning scheme.
Section 3 focuses on the design of the controller, including parameter determination criteria
and theoretical analysis. The application of the proposed NSPC-LWPR approach in a CSTH
benchmark study is showcased in Section 4. Finally, Section 5 concludes the paper by
summarizing its main content and suggesting potential directions for future research.

2. Preliminaries
2.1. Subspace Predictor

Assuming discrete time intervals indexed by k where measurements of the I/O data
for the system are denoted by uk ∈ Rm and yk ∈ Rl , the stacked vector us,k of length s is
introduced as

us,k =
[

uT
k · · · uT

k+s−1
]T . (1)

The block Hankel matrices Up and U f are constructed as

Up =
[

usp ,k−sp+1 · · · usp ,k−sp+N̄

]
,

U f =
[

us f ,k+1 · · · us f ,k+N̄

]
,

(2)

where the indexes p and f correspond to the past and future block Hankel matrices, respectively.
sp and s f both denote the number of row blocks. N̄ represents the sample length. Similarly,
the output data block Hankel matrices Yp and Yf are defined based on the output data.

The subspace predictor model represents the optimal prediction of Yf as a combination
of past I/O data and future input data [33]. The subspace predictor can be formulated as

Ŷf = LwWp + LuU f , (3)

where Lw and Lu are the subspace predictor coefficient matrices, and Wp =
[(

Yp
)T (Up

)T
]T

.

2.2. LWPR Learning Scheme

The LWPR algorithm employs the standard regression model y = βTx + ε to approxi-
mate the nonlinear function y = f (x) + ε, where x is the input vector, y is the scalar output,
and ε is a zero-mean random noise term.
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To capture the locality aspect, the position of each data point x is leveraged through a
Gaussian kernel to compute the weight w:

w = exp
(
−0.5(x − xc)

TD(x − xc)
)

, 0 < w ≤ 1, (4)

where xc denotes the center of a local subset of data, and D is a positive semi-definite
distance metric that determines both the size and shape of the neighborhood contributing
to the establishment of the corresponding local model. A smaller D results in a smoother
kernel, while a larger D captures finer details. As discussed in [34], besides the Gaussian
kernel, alternative kernel functions can also be employed. However, the choice of kernel
function only affects the computation of weights and consequently influences the number
and shape of local models, but it does not significantly impact the prediction results.

Based on the obtained weights, the following weighted means can be calculated:

x̄ =
N

∑
n=1

wnxn

/ N

∑
n=1

wn, ȳ =
N

∑
n=1

wnyn

/ N

∑
n=1

wn. (5)

By subtracting x̄ and ȳ from the original measurements, the input and output of the
LWPR algorithm can be guaranteed with zero means.

Following the initialization of LWPR without a locally linear model (receptive field, RF),
the algorithm proceeds with the training process. For each training sample, the weight is
computed using (4). Subsequently, the regressions, projections, and distance metrics of each
RF are updated iteratively until no new RF creation is required. The crucial aspects of the
LWPR learning scheme for one RF centered at xc, which hold relevance for our extension
of locally weighted learning to SPC, are concisely summarized in Table 1. Corresponding
symbols and their notations are provided in Table 2.

Table 1. Locally Weighted Projection Regression (LWPR) learning scheme for one RF centered at
xc [29].

1. Initialization: (number of training samples seen n = 0)
x0

0 = 0, β0
0 = 0, W0 = 0, u0

r = 0, p0
r = 0; r = 1 : R

2. Incorporating new data: Given training point(x,y)
2a. Compute activation and update the means

1.w = exp
(
−0.5(x − xc)

T D(x − xc)
)

; Wn+1 = λWn + w

2.xn+1
0 =

(
λWnxn

0 + wx
)
/Wn+1;

βn+1
0 =

(
λWnβn

0 + wy
)
/Wn+1

2b. Compute the current prediction error
xres,1 = x − xn+1

0 , ŷ = βn+1
0

Repeat for r = 1 : R(projections)

1.zr = xT
res,run

r /
√

un
r

Tun
r

2.ŷ = ŷ + βn
r zr

3.xres,r+1 = xres,r − zr pn
r

4.MSEn+1
r = λMSEn

r + w(y − ŷ)2

2c. Update the local model
res1 = y − βn+1

0
Repeat for r = 1 : R(projections)

2c.1 Update the local regression and compute residuals
1.an+1

zz,r = λan
zz,r + wz2

r ; an+1
zres,r = λan

zres,r + wzrresr
2.βn+1

r = an+1
zres,r/an+1

zz,r
3.resr+1 = resr − zrβn+1

r
4.an+1

xz,r = λan
xz,r + wxres,rzr

2c.2 Update the projection directions
1.un+1

r = λun
r + wxres,rresr

2.pn+1
r = an+1

xz,r /an+1
zz,r
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Table 2. Indexes and symbols used for LWPR [29].

Notation Description

N Number of training data points
M Number of local models
R Number of local projections
zr(r = 1 : A) rth element of the lower-dimensional projection of input data x
ur(r = 1 : A) rth projection direction

pr(r = 1 : A)
Regressed input space to be subtracted to maintain
orthogonality of projection directions

W Diagonal weight matrix representing the activation due to all samples
βr(r = 1 : A) rth component of slope of the local linear model β =

[
β1 · · · βR

]T

λ Forgetting factor used to exclude data and accelerate the learning process
MSEn

r Mean square error of the nth sample in the rth projection

an
zz,r, an

zres,r, an
xz,r

Sufficient statistics for incremental computation of rth
dimension of variable var after seeing n data points

3. Locally Weighted Projection Regression-Based Subspace Predictive Control
3.1. Controller Design

Considering that only the leftmost column of Ŷf is considered to predict the output, (3)
can be rewritten as

ŷNp l = L̃wwp + L̃uuNcm, (6)

where ŷNp l is the first Npl row of the leftmost column in Ŷf , wp is the leftmost column of
Wp, and uNcm is the first Ncm row of the leftmost column in u f . L̃w and L̃u are truncated
from Lw and Lu.

Given the congruity in structure between the subspace predictor outlined in (3) and the
regression model employed for approximating nonlinear functions within the framework
of the LWPR algorithm, it follows that the LWPR algorithm becomes instrumental in the
computation of the coefficients L̃w and L̃u for the subspace predictor. Then, for the query
point uNcm, the calculation of the i-th element of its output vector ŷi

Np l in the local prediction

output ŷi,j
Np l of the j-th locally linear model can be simplified as follows:

ŷi,j
Np l = βi

0 +
R

∑
r=1

β
i,j
r si,j

r , (7)

where 1 ≤ i ≤ Npl, 1 ≤ j ≤ M, βi
0 is the average of the i-th training output samples

calculated in (5). β
i,j
r signifies the parameter linked to the respective RF, while si,j

r is
defined as

si,j
1 = (ui,j

1 )
T

ϑ,

si,j
2 = (ui,j

2 )
T
(

I − pi,j
1 (ui,j

1 )
T
)

ϑ,

...

si,j
R = (ui,j

R )
T
(

1
∏

r=R−1

(
I − pi,j

r

(
ui,j

r

)T
))

ϑ,

(8)

where ϑ = uNcm − ũNcm, and ũNcm is the average of the training input samples.
Then, ŷi,j

Np l can be rewritten as

ŷi,j
Np l = ζ i,j + Li,juNcm, (9)

where

ζ i,j = βi
0 −

R

∑
r=1

ψτ ũNcm, Li,j =
R

∑
r=1

ψr, (10)
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ψr =


β

i,j
1 (ui,j

1 )T , r = 1

β
i,j
r (ui,j

r )T

(
1

∏
d=r−1

(
I − pi,j

d

(
ui,j

d

)T
))

.r ̸= 1
(11)

Based on the obtained weights, the total output ŷi
Np l of the LWPR model is the normal-

ized weighted mean of all the predicted outputs ŷi,j
Np l of the M local models, that is,

ŷi
Np l =

M

∑
j=1

ωjŷ
i,j
Np l

/ M

∑
j=1

ωj. (12)

To better understand the solving process of global output ŷi
Np l , the information process-

ing unit of the LWPR learning scheme is shown in Figure 1.

Weighted Average  

Locally linear 

model

The center of the

j-th receptive field

Receptive Field 

Weighting

Global Output

Correlation Computation Module

 !"#$
%

Inputs
cN m

u

Learning Module Input
p

i

N ly

Projection 

directions

Figure 1. Information processing unit of the LWPR learning scheme.

Furthermore, we have
ŷi

Np l = Li
cst + Li

c f tuNcm, (13)

where

Li
cst =

M

∑
j=1

ωjζ
i,j
/ M

∑
j=1

ωj, Li
c f t =

M

∑
j=1

ωjLi,j
/ M

∑
j=1

ωj. (14)

Then, ŷNp l can be expressed as

ŷNp l = Lcst + Lc f tuNcm (15)

where

Lcst =

[ (
L1

cst
)T · · ·

(
Li

cst
)T · · ·

(
L

Np l
cst

)T
]T

,

Lc f t =

[ (
L1

c f t

)T
· · ·

(
Li

c f t

)T
· · ·

(
L

Np l
c f t

)T
]T

.
(16)

To enhance the precision of the system’s behavior modeling and maintain the consistent
accuracy of predictions, it is advisable to express the projected output in (13) through an
incremental formulation concerning ∆uNcm:

ŷNp l = A1
Np lyk + A2

Np l Lc f t∆uNcm, (17)
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where

A1
Np l =


Il
Il
...
Il

, A2
Np l =


Il 0 · · · 0
Il Il · · · 0
...

...
. . .

...
Il Il · · · Il

,

∆uNcm =
[
(∆uk+1)

T(∆uk+2)
T · · · (∆uk+Ncm)

T
]T

,

(18)

while Il is the identity matrix in the dimension of l, and ∆uk+1 in ∆uNcm is defined as

∆uk+1 = uk+1 − uk, (19)

and other components, such as ∆uk+2 and ∆uk+Ncm, are defined similarly as ∆uk+1.
The approach is designed to generate a control signal uk by minimizing a quadratic cost

function J. This cost function takes into account the incremental input ∆uk, the provided
reference signal rk, and the projected output ŷk, and is mathematically expressed as follows:

J =
Np

∑
ni=1

(
Q̃
)TWQ

(
Q̃
)
+

Nc

∑
nj=1

(
R̃
)TWR

(
R̃
)
, (20)

where
Q̃ = rk+ni

− ŷk+ni
, R̃ = ∆uk+nj

, (21)

while Np and Nc are the prediction and control horizons. WQ and WR are the weighting
matrices of the cost function J.

Based on (20) and (17), J can be rewritten as

J = (Q̄)
TWQ(Q̄) + (R̄)TWR(R̄), (22)

where Q̄ and R̄ are represented as

Q̄=A1
Np l(rk − yk) + A2

Np l L̃u∆uNcm, R̄=∆uNcm. (23)

Based on (22), it becomes evident that the cost function is exclusively contingent upon
∆uNcm, a quantity attainable through the computation of the derivative of the cost function
with respect to ∆uNcm under unconstrained circumstances (UCs). Furthermore, the differ-
ential quandary can be redefined as a quadratic problem under constrained circumstances
(CCs). Consequently, the representation of ∆uNcm takes the form:

∆uNcm =


∂J

∂∆uNcm
= 0,

min
∆uNcm

J s.t.AQP ≤ BQp,
UC
CC

(24)

where AQP and BQP are constructed from preset constraints.
Upon acquiring ∆uNcm, the initial m components are chosen for utilization. Drawing

from (19) and armed with the understanding of uk as well as ∆uk+1, one can ascertain
the forthcoming controller output to be incorporated into the regulated system, thereby
determining uk+1.

Subsequently, the control diagram outlining the proposed NSPC-LWPR approach is
depicted in Figure 2, while Algorithm 1 succinctly encapsulates the essential steps.

Notably, the training of this locally weighted regression model is closely related to the
number of inputs and outputs of the MIMO system. Specifically, the number of inputs and
outputs directly impacts the training cost and computational efficiency of the algorithm.
In essence, a larger number of inputs and outputs in the MIMO system increases the
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model’s training cost, reduces the computational efficiency, and prolongs the runtime.
Conversely, a small number will have the opposite effect.

Predictive Controller

Locally Weighted Projection Regression Algorithm

control 

signal 

desired

output

online update 

prediction model

Subspace Prediction Model for Nonlinear System 
predictive output of 

the controlled object

actual output of 

the controlled object

Subspace Predictor Coefficient 
( ),cst cftL L

Figure 2. The control diagram of the proposed nonlinear subspace predictive control approach based
on locally weighted projection regression (NSPC-LWPR) approach.

Algorithm 1 The proposed NSPC-LWPR approach.

Step 1. Initialization
a. Fully excite the initialization signal of the system input;
b. Initialize the LWPR model with no RF;
Step 2. LWPR Regression Model Training
a. Normalize the process data;
b. Train the LWPR regression model utilizing the learning scheme specified in II-B;
c. Continue the training until the predicted output of the controlled object consistently
converges to its actual value;
Step 3. Subspace Predictor Construction
a. Calculate the subspace predictor’s coefficients according to (16);
b. Convert the predictor to the incremental form of (17);
Step 4. Control Input Signal Calculation
a. Select methods to find ∆uNcm based on (24);
b. Calculate the control input according to (19);
c. Denormalize the solved control signal and input it into the controlled system;
Step 5. Judgment
a. If the controlled system is still running, return to Step 2 and calculate the next signal;
b. If the controlled system stops running, the proposed approach is terminated and the
calculation of the next control signal is stopped.

Furthermore, to emphasize the superiority of the proposed NSPC-LWPR approach,
a theoretical comparison is performed between it and the MPC, SPC, and ASPC methods
as delineated in Table 3.

Table 3. Theoretical comparison among different control strategies.

Method MPC SPC ASPC NSPC-LWPR

Approach Type model-based data-driven data-driven data-driven
Prior Knowledge model information off-line process data no need no need
Dynamic Ability able unable able able
Controller Type fixed; linear fixed; linear unfixed; linear unfixed; nonlinear
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3.2. Parameters Determination Criteria

Achieving a balance between the computational efficiency and effectiveness of the
proposed control approach relies heavily on making careful choices regarding parameters
such as sp, s f , Nc, Np, WQ, and WR. These parameter selections are critical in ensuring that
the control system operates smoothly and effectively. The specific details are as follows.

3.2.1. sp and s f

sp and s f correspond to the number of row blocks contained within the past and future
Hankel matrices. Choosing an excessively large value for these parameters can result in a
model that has too many parameters, potentially causing problems related to complexity.
On the other hand, selecting a value that is too small may result in a model with too few
parameters, potentially affecting its accuracy and predictive abilities.

3.2.2. Nc and Np

The choice of the control horizon Nc influences the behavior of the control signal and
the control law’s structure, while the predictive horizon Np is crucial for tracking error
calculations. It is recommended to set Nc to be greater than or equal to the system’s order
α for precise control performance, and Np should be larger than Nc to ensure effective
tracking, within the limits defined by the predictive horizon s f . Care must be taken to
strike a balance, as selecting excessively large Nc and Np values can increase computational
demands, particularly in fast systems, while overly small values may compromise effective-
ness. In total, the criteria for determining Nc and Np are α + 1 ≤ Nc ≤ Np ≤ s f , with Nc
shaping the control signal and Np affecting the tracking accuracy.

3.2.3. WQ and WR

WQ and WR are employed as adjustable parameters in the optimization process, serving
to impose penalties on the tracking error and the rate of control signal variation, respectively.
Opting for substantial penalties on tracking errors yields a swifter yet potentially more
aggressive response, facilitating rapid adaptation. Conversely, assigning a substantial
penalty to the control signal engenders a more resilient but potentially slower controller,
fostering stability and reducing abrupt changes in control action.

3.3. Theoretical Analysis

For the convenience of the theoretical analysis, the cost function in (20) can be rewrit-
ten as

J =
Np

∑
ni=1

(⌣

Q
)T

WQ

(⌣

Q
)
+

Nc

∑
nj=1

(⌣

R
)T

WR
⌣

R, (25)

where
⌣

Q = hk+ni |k+1 = rk+ni |k+1 − ŷk+ni |k+1,
⌣

R = gk+nj |k+1 = ∆uk+nj |k+1.
(26)

while k+ ni|k + 1 represents the prediction at the (k+ ni)th sampling time when the current
time is k + 1.

Then, the sequences of ϕh,k+1 and ϕg,k+1 are given by

ϕh,k+1 =
{

hk+2|k+1, hk+3|k+1, . . . , hk+Np+1|k+1

}
,

ϕg,k+1 =
{

gk+1|k+1, gk+2|k+1, . . . , gk+Nc |k+1

}
.

(27)

Based on the descriptions mentioned above, the dynamic of the controlled system can
be modeled with the following nonlinear discrete-time difference equations:

hk+2|k+2 = f
(

hk+1|k+1, gk+1|k+1

)
, (28)
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and the problem to be solved at step k + 1 can be turned into

Problem*: min
ϕg,k+1

J(hk+1)

s.t. : gk+nj |k+1 ∈ G, nj ∈ {1, ..., Nc};

hk+ni |k+1 ∈ H, ni ∈
{

2, ..., Np
}

;

hk+1+Np |k+1 ∈ Ht, Ht ∈ H,

(29)

where G is the time-invariant set, H is the convex constraints set subject to the system
evolution, and the terminal set Ht is {0}.

Theorem 1. The proposed control approach is recursively feasible, and the controlled system under
the proposed control approach is asymptotically stabilized at the origin.

Proof of Theorem 1. The sequence ϕ∗
g,k+1, which is assumed to be the optimal solution to

Problem* at step k + 1, is represented as

ϕ∗
g,k+1 =

{
g∗k+1|k+1, g∗k+2|k+1, . . . , g∗k+Nc |k+1

}
, (30)

and the corresponding optimal sequence ϕ∗
h,k+1 is given by

ϕ∗
h,k+1 =

{
h∗k+2|k+1, h∗k+3|k+1, . . . , h∗k+Np+1|k+1

}
. (31)

Since h∗k+Np+1|k+1 ∈ Ht according to (29) applies, and Ht equals to {0}, we can obtain

that Φ(Ψ) ∈ G, and
hk+Np+2|k+1= f (Ψ, Φ(Ψ)) ∈ Ht, (32)

where Ψ = h∗k+Np+1|k+1. The terminal controller Φ exists such that Φ(x) ∈ G for all x ∈ Ht,

and f (x, Φ(x)) ∈ Ht for all x ∈ Ht under the condition that Ht, which equals to {0}, is a
control invariant set of the system. Φ(Ψ) characterizes the effect of the terminal controller
Φ on Ψ.

The temporary sequences ϕ
tp
g,k+2 and ϕ

tp
h,k+2 are given by

ϕ
tp
g,k+2 =

{
g∗k+2|k+1, · · · , g∗k+Nc+1|k+1, Φ(Ψ)

}
,

ϕ
tp
h,k+2 =

{
h∗k+3|k+1, · · · , h∗k+Np+1|k+1, hk+Np+2|k+1

}
,

(33)

where ϕ
tp
g,k+2 and ϕ

tp
h,k+2 both satisfy constraints of Problem*, and ϕ

tp
g,k+2 is a feasible solution

of the proposed approach to the Problem* after moving to h∗k+2|k+1 at step k + 2.
Based on the analysis provided above, if a feasible solution to Problem* exists for k = 1,

it implies that there is also a feasible solution for the problem at any k ∈ {1, 2, 3, · · · }.
Therefore, it can be concluded that the proposed control approach, developed by solving
Problem*, is recursively feasible.

In what follows, the stability analysis of the proposed control approach is presented.
The difference in cost between Jcd(hk+2) and J∗(hk+1) can be computed from

Jcd(hk+2)− J∗(hk+1)=
(

hk+Np+2|k+1

)T
WQ

(
hk+Np+2|k+1

)
−
(

h∗k+2|k+1

)T
WQ

(
h∗k+2|k+1

)
−
(

g∗k+1|k+1

)T
WR

(
g∗k+1|k+1

)
+
(

Φ
(

h∗k+Np+1|k+1

))T
WR

(
Φ
(

h∗k+Np+1|k+1

))
,

(34)

where cost Jcd(hk+2) is led by the sequence ϕ
tp
g,k+2 and ϕ

tp
h,k+2 at step k + 2, and J∗(hk+1) is

the optimal cost at step k + 1.
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Since both hk+Np+2|k+1 and h∗k+Np+1|k+1 belong to Ht, it is evident that the right-hand

side of (34) is nonpositive. Additionally, Jcd(hk+2) serves as an upper bound for the optimal
cost J∗(hk+2). Therefore, we can derive the following result:

J∗(hk+2) ≤ Jcd(hk+2) ≤ J∗(hk+1). (35)

Based on the fact that J∗ decreases monotonically as the Lyapunov function, it can
be concluded that the controlled system, governed by the solution to Problem*, satisfies
J∗(hk+2) ≤ J∗(hk+1).

Consequently, the controlled system is asymptotically stabilized at the origin. This
completes the proof.

4. Benchmark Study on Continuous Stirred Tank Heater

The continuous stirred tank heater (CSTH) is a vital component in various industrial
processes, particularly in the field of chemical engineering. This reactor is designed for
the purpose of simultaneously heating and mixing fluid substances. It comprises tanks
equipped with both mixing and heating elements, allowing for a continuous flow of fluids
in and out of these tanks, thereby ensuring constant movement. During this process,
the fluids are subjected to heating through various methods such as electric heaters or
steam injection. Concurrently, sophisticated mixing mechanisms are employed to maintain
uniform temperatures and prevent the formation of temperature gradients within the
system. Precise control over essential variables, including temperature and flow rates, is
crucial to optimizing heat transfer efficiency and facilitating desired reaction kinetics. In this
paper, the CSTH system has become a valuable platform for evaluating the effectiveness of
the proposed NSPC-LWPR approach.

As shown in Figure 3, the Automation Laboratory within the Department of Chemical
Engineering at IIT Bombay has developed a widely acknowledged CSTH system [35]. It
comprises five distinct inputs and three resultant outputs. Specifically, inputs u1, u2, and u3
correspond to flow rates that are governed by individual valves, while inputs u4 and u5
pertain to the intensity of heating within two distinct heaters. The three outputs of the
system encompass the temperature of the first tank T1, the temperature of the second tank
T2, and the water level within the second tank h2.

4–20 mA

4–20 mA

4–20 mA

3–15 psi

3–15 psi

Figure 3. The continuous stirred tank heater (CSTH) system in IIT Bombay.

Considering the needs during the production process, u4 and u5 are considered the
two adjustable input variables, and T1 is the predetermined setpoints. The remaining
parameters are set to their steady-state values shown in Table 4 unless otherwise specified.
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Table 4. Nominal model parameters and steady state.

Parameter Description Value

V1 Volume of tank 1 1.75 × 10−3 m3

A2 Cross sectional area of tank 2 7.584 × 10−3 m2

r2 Radius of tank 2 0.05 m
U Heat transfer coefficient 235.1 W/m2K
Tc Cooling water temperature 30 ◦C
Ta Atmospheric temperature 25 ◦C
u1 Flow F1 (%Input) 60%
u2 Flow F2 (%Input) 55%
u3 Flow FR (%Input) 50%
u4 Heat input Q1 (%Input) 60%
u5 Heat input Q2 (%Input) 80%
T1 Steady state temperature (tank 1) 49.77 ◦C
T2 Steady state temperature (tank 2) 52.92 ◦C
h2 Steady state level 0.3599 m

To further enhance the tracking control performance, the smoothing approximation,
which is a filtering process, is introduced to make the expected output able to change
smoothly from one desired state to the other. Specifically, the expected temperature for T1,
denoted as yT1

sp , is set to be

yT1
sp(k) =


yT1

sp1, k ∈ (0, 600]

λT1 yT1
sp(k − 1) +

(
1 − λT1

)
yT1

sp2, k ∈ (600, 1300]

λT1 yT1
sp(k − 1) +

(
1 − λT1

)
yT1

sp1, k ∈ (1300, 2000]

(36)

in which yT1
sp1 = 50, yT1

sp2 = 52, and the smoothing coefficient denoted as λT1 is set to be 0.998.
To account for the mechanical constraints of the CSTH system, the predictive controller is
subject to the constraints with 30 ≤ y ≤ 60, 0 ≤ u ≤ 100, and −0.5 ≤ ∆u ≤ 0.5.

The parameters setup of the CSTH benchmark study is illustrated in Table 5, where EQ
and ER are the eigenvalues of WQ and WR, and fs is the sampling frequency.

Table 5. Parameters setup of the CSTH benchmark study.

Parameter EQ ER sp s f Nc Np fs

Value 1 2 10 5 3 4 10 Hz

The outputs and setpoints of T1 under various control frameworks are presented in
Figure 4. It is evident that the outputs of T1 exhibit inadequate setpoint tracking perfor-
mance under the SPC framework. The output curves show erratic behavior, characterized
by shaking and oscillations, making the tracking of setpoints ineffective during set point
changes. Conversely, the tracking performance under the ASPC framework improves,
effectively following setpoints after a settling time. However, during the setpoint of T1
transitions, the tracking performance diminishes, leading to overshooting and less accurate
setpoint tracking. The tracking performance under the proposed NSPC-LWPR framework
shows the most promising results among the three control approaches. Even when the
setpoints of T1 change at 600 s and 1300 s, the T1 outputs consistently track the setpoints.

The disparities observed in the tracking performance of T1 can be attributed to variations
in the subspace predictor outputs generated by the controllers under different control frame-
works as illustrated in Figure 5. The SPC method employs a fixed, offline-designed subspace
predictor, making it unsuitable for effectively controlling nonlinear systems. In contrast,
the ASPC method incorporates online learning capabilities to optimize its parameters based
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on process data, enabling it to adapt to changing conditions and generate corresponding
subspace predictor outputs dynamically. However, the ASPC method remains linear and
approximates new conditions using fixed nearby sampling points. Consequently, this ap-
proach can lead to degraded tracking performance and overshooting issues during smooth
setpoint changes. Similar to the ASPC method, the proposed NSPC-LWPR approach is
equipped with autonomous learning capabilities, allowing real-time updates of controller
information using newly generated process data. However, it surpasses the limitations of
the ASPC controller by employing multiple linear working points for weighted summation.
This innovative approach constructs a nonlinear subspace predictive controller, leading to
a more precise predictive output for the current operating condition.

(a) (b) (c)

Figure 4. The outputs and setpoints of T1 under different control frameworks. (a) Under the subspace
predictive control (SPC) framework. (b) Under the adaptive subspace predictive control (ASPC)
framework. (c) Under the NSPC-LWPR framework.

(a) (b) (c)

Figure 5. Subspace predictor outputs u4 and u5 under different control frameworks. (a) Under the
SPC framework. (b) Under the ASPC framework. (c) Under the NSPC-LWPR framework.

The results indicate that the proposed NSPC-LWPR approach excels in describing
the current nonlinear operating condition and achieves superior tracking performance
in nonlinear industrial process control compared to SPC and ASPC methods. This high-
lights its potential as an advanced and effective controller in nonlinear industrial process
system applications.

According to Figures 4 and 5, the outputs of the controlled system and subspace
predictor are strictly limited within specific boundaries. Additionally, the change rates of
u4 and u5 are investigated and shown in Figure 6. It can be observed that the values of ∆u4
and ∆u5 both fall within the range of −0.5 and 0.5, which aligns with the constraints set.
This result indicates that the proposed NSPC-LWPR approach operates within the imposed
constraints, which effectively influence the system behavior.
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Figure 6. Change rates of u4 and u5.

To demonstrate the predictive performance of the proposed NSPC-LWPR approach,
we conduct a comparative analysis using the multi-step prediction means squared error
(MPMSE), defined as:

σ
(

Np
)
=

Tt

∑
k=Ts

Np

∑
j=1

∥ŷ(k + j)− y(k + j)∥2/
(

N · Np
)
, (37)

where Ts and Tt represent the starting point and the terminal point of the sampling data
considered for analysis. To account for the necessary initialization time required by the
proposed NSPC-LWPR approach, we set Ts to be 400, and Tt to be 10,000. The multi-step
prediction mean squared error comparison among different control algorithms with varying
predictive horizon Np is presented in Table 6.

Table 6. Multi-step prediction mean squared error (MPMSE) comparison.

Control Methods Np = 3 Np = 4 Np = 5 Np = 6 Np = 7

SPC 1.5429 1.2649 1.0923 0.9732 0.8983
ASPC 0.1321 0.1147 0.1026 0.0934 0.0896

NSPC-LWPR 0.0946 0.0845 0.0740 0.0711 0.0661

Table 6 reveals a clear trend in the MPMSE, where the proposed NSPC-LWPR approach
consistently outperforms the ASPC method and significantly outpaces the SPC method, all
while maintaining a constant value of Np. This performance discrepancy can be attributed
to the SPC method’s limited ability to effectively control nonlinear systems, leading to
subpar output predictions. In contrast, both the ASPC and NSPC-LWPR approaches
exhibit self-learning capabilities, enhancing their control of nonlinear systems. However,
the proposed NSPC-LWPR approach stands out by demonstrating superior predictive
accuracy under the current operational conditions.

Furthermore, as Np increases, MPMSE decreases across all three methods. This de-
cline is attributed to the broader prediction range, resulting in higher prediction accuracy.
The outcomes of this comparative analysis compellingly support the superiority of the pro-
posed NSPC-LWPR approach in terms of predictive performance. This finding indirectly
substantiates its efficacy in enhancing tracking capabilities, underscoring its potential for
effective control in nonlinear industrial process systems.
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In total, data analysis in this study was conducted using Python programming language
(V3.9.2) with the following libraries: NumPy (V1.21.6), SciPy (V1.11.0), and Matplotlib
(V3.3.1) [36].

5. Conclusions

In this paper, we propose a NSPC-LWPR approach to address tracking issues in non-
linear industrial process control. Our approach integrates the LWPR algorithm into the
framework of the SPC method, harnessing the exceptional nonlinear handling capabilities
of LWPR. Through the segmentation of the input space into localized regions, the con-
struction of precise local models, and their aggregation through weighted summation, our
approach adeptly captures dynamic system characteristics and trains the regression model.
The adaptability and efficiency of our approach are further augmented by a dynamic con-
trol strategy that adjusts based on the online process data and the parameters of established
local models. Furthermore, the verification of our approach against the CSTH benchmark
unequivocally demonstrates its superiority over conventional SPC and ASPC methods.
This verification affirms its ability to significantly enhance tracking precision and predictive
accuracy in industrial process control.

While our proposed control approach has demonstrated exceptional performance, it
is important to acknowledge that there remain unexplored avenues for further research.
Future investigations could delve into methodological refinements, expanding the applica-
bility of our approach to diverse control problems, or exploring advanced variants of the
LWPR algorithm.
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