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Abstract: To address the reactive power optimization control problem in offshore wind farms (OWFs),
this paper proposes an adaptive reactive power optimization control strategy based on an improved
Particle Swarm Optimization (PSO) algorithm. Firstly, an OWF multi-objective optimization control
model is established, with the total sum of voltage deviations at wind turbine (WT) terminals, active
power network losses, and reactive power margin of WTs as comprehensive optimization objectives.
Innovatively, adaptive weighting coefficients are introduced for the three sub-objectives, enabling
the weights of each optimization objective to be adaptively adjusted based on real-time operating
conditions, thus enhancing the adaptability of the reactive power optimization model to changes
in operating conditions. Secondly, a Uniform Adaptive Particle Swarm Optimization (UAPSO)
algorithm is proposed. On one hand, the algorithm initializes the particle swarm using a uniform
initialization method; on the other hand, it improves the particle velocity update formula, allowing
the inertia coefficient to adaptively adjust based on the number of iterations and the fitness ranking
of particles. Simulation results demonstrate the following: (1) Under various operating conditions,
the proposed adaptive multi-objective reactive power optimization strategy can ensure the stability
of node voltages in offshore wind farms, reduce active power losses, and simultaneously improve
reactive power margins. (2) Compared with the traditional PSO algorithm, UAPSO exhibits an
approximately 10% improvement in solution speed and enhanced solution accuracy.

Keywords: offshore wind farm; active power grid loss; reactive power margin; reactive power
optimization control; multi-objective optimization; improved particle swarm algorithm

1. Introduction

Currently, the development of offshore wind power is rapid. With the gradual im-
provement in nearshore wind resources development, the development of deep-sea wind
resources has become the next focus. Three issues arise during the construction and op-
eration of deep-sea OWFs, which have attracted people’s attention. Firstly, because of
the long transmission lines, there is significant energy loss along the transmission lines.
Secondly, the capacitive effect of submarine cables is pronounced, leading to the risk of
WT terminal voltages at both ends of the same feeder line exceeding the safe and stable
range. Thirdly, when the voltage at the grid connection point suddenly drops, the WF
should provide a certain reactive power compensation capability. Therefore, WTs need
to retain a certain level of reactive power margin. Consequently, it is necessary to study
optimization strategies for issues such as energy loss, voltage stability, and reactive power
reserve within OWFs.

Based on the above considerations, Ref. [1] analyzed the influence of on-load tap
changer (OLTC) settings on the terminal voltage of WTs. However, the established reactive
power optimization model did not optimize the WT terminal voltage, which could lead to
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the WT terminal voltage at the end of the feeder line exceeding the safe and stable range.
Refs. [2–4] established reactive power optimization models for WFs with the objective of
minimizing active power network losses within a WF. These models, while maintaining
stable grid connection voltages, reduced active power losses within the WF and improved
the economic operation of the WF. Ref. [5] addressed both active power losses and grid
connection voltage stability, establishing a multi-timescale reactive power optimization
model for WFs. This model effectively reduced active power losses by coordinating the
reactive power compensation capabilities of discrete compensation equipment and WTs,
thereby lowering the probability of grid connection voltage violations and enhancing the
robustness of WF operation. Ref. [6] focused on the voltage stability issue at the grid con-
nection point of OWFs, establishing a multi-objective reactive power optimization model
aiming to minimize reactive power compensation output and grid connection voltage
deviation. However, this model did not consider WT terminal voltage instability. Ref. [7]
accurately predicted the reactive power output limits of each WT studied based on wind
power forecast information and established a multi-timescale reactive power optimization
model with active power losses, grid connection voltage deviation, and the stability mar-
gin as optimization objectives. This model reduced the adjustment frequency of discrete
reactive power compensation equipment and improved voltage support capability. Ref. [8]
addressed the issue of insufficient reactive power reserve in WFs leading to cascade trip-
ping faults in WTs. It established a reactive power optimization model with the objective of
maximizing the reactive power margin, thereby enhancing the robustness of WF operation.
Ref. [9] established a reactive power optimization model with the grid connection voltage
stability margin and active power losses as optimization objectives. This model improved
grid connection voltage stability by coordinating the output of static var generators (SVGs)
and WT reactive power while also reducing active power losses.

The existing literature on reactive power optimization in WFs typically focuses on
optimization objectives such as grid connection voltage stability, reducing active power
network losses, and enhancing reactive power margin, which improves the grid connection
stability and economic operation of WFs. However, there are two main shortcomings.
Firstly, the existing models in the literature primarily concentrate on grid connection
voltage stability, overlooking the need to maintain voltage balance among individual WTs.
Secondly, the optimization models established in the existing literature cannot adapt to
real-time changes in operating conditions. Specifically, during significant fluctuations
in grid conditions, there may be instances of WT terminal voltage instability or even
disconnection of WTs. At such times, the optimization model should prioritize optimizing
the voltage stability of WTs. Conversely, when a WF is operating stably, the optimization
model should focus on efficiently reducing active power network losses and enhancing the
reactive power margin.

In response to the aforementioned issues, this paper proposes an adaptive reactive
power optimization model for OWFs, with the objectives of minimizing the sum of voltage
deviations at WT terminals, minimizing active power network losses, and maximizing
the reactive power margin. Recognizing that the priorities of these three sub-objectives
vary under different operating conditions, and that fixed weighting coefficients cannot
dynamically adjust the priorities of these sub-objectives in real-time scenarios, this paper
innovatively adjusts the weights of the three sub-objectives in the adaptive reactive power
optimization model for OWFs based on real-time operating conditions.

The reactive power optimization problem in WFs is typically highly nonlinear, often
requiring the utilization of intelligent optimization algorithms for solutions. Among these,
the PSO algorithm is favored for its fast search speed, wide search range, and fewer
parameters, and it has thus been applied to solve reactive power optimization problems in
WFs [10–13]. However, the PSO algorithm suffers from drawbacks such as easily falling into
local optima and low convergence accuracy [14,15], leading researchers to propose various
improved algorithms. Ref. [16] proposed an Adaptive Discrete Binary Particle Swarm
Optimization (ADBPSO) algorithm, which adjusts the inertia coefficient based on the
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fitness value of particles, thus accelerating the convergence speed. However, the algorithm
suffers from the limitation of a small initial search range, making it prone to local optima.
Ref. [17] introduced a novel PSO algorithm that adjusts the acceleration factor of particles
based on the number of iterations, effectively preventing particles from converging to local
optima. Ref. [18] addressed the slow search problem of PSO by introducing a constraint
factor to control the inertia coefficient of particles’ velocity, thereby enhancing the search
speed and convergence accuracy. However, the algorithm still encounters issues with
falling into local optima. Ref. [19] improved the PSO algorithm by incorporating the
advantages of the Firefly Algorithm, resulting in faster convergence without enhancing
convergence accuracy. Ref. [20] linearly adjusted the inertia coefficient and acceleration
factor of particles based on the number of iterations, improving the optimization speed
and accuracy of the PSO algorithm. Nonetheless, the algorithm’s utilization of the random
initialization method introduces significant randomness into the initial search range of
particles, hence increasing the risk of falling into local optima.

The existing literature has predominantly focused on adjusting the inertia coefficient
and acceleration factor of particles in the PSO algorithm to improve its performance.
Although these adjustments have enhanced the algorithm’s search speed and convergence
accuracy, there are still two main shortcomings. Firstly, because of the utilization of the
random initialization method, the initial search range of particles is unstable, making it
susceptible to falling into local optima during the solution process. Secondly, insufficient
consideration is given to differences in particle fitness during the update process of particle
velocity, which may result in the slower convergence of particles with inferior fitness,
thereby affecting convergence accuracy. To address these issues, this paper proposes a
UAPSO algorithm capable of global fast optimization. The algorithm initializes particle
positions using a uniform initialization method and adaptively adjusts the inertia coefficient
of particles based on both the fitness level and the number of iterations.

In summary, this paper presents the following innovations:

(1) An adaptive reactive power optimization model for OWFs is established, with the
objectives of minimizing the sum of voltage deviations at WT terminals, minimizing
active power network losses, and maximizing the reactive power margin. The weights
of the three sub-objectives in the model are adaptively adjusted based on real-time
operating conditions.

(2) An improved PSO algorithm is proposed. The improvements include the utilization
of a uniform initialization method for particle positions and the adaptive adjustment
of particle inertia coefficients based on the fitness of particles.

2. Adaptive Reactive Power Optimization Model for OWFs

This paper selects the sum of deviations between the voltages of each node in the WF
and their reference values to be minimized, along with minimizing active power grid losses
and maximizing the overall reactive power margin of the WF as optimization objectives.
The weighting coefficients of each optimization objective are determined based on real-
time operating conditions of OWFs. While ensuring the stability of each node voltage, a
sufficient reactive power margin is retained and active power grid losses are reduced.

2.1. Optimization Objective Function

The sum of voltage deviations among nodes within the WF is expressed as follows:

F1 =
N1

∑
i=2

∣∣∣Ui − Ure f

∣∣∣ (1)

where N1 represents the number of nodes in the WF, Ure f stands for the designated voltage
reference value, and Ui denotes the real-time voltage of the node.
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The active power loss is expressed as follows:

F2 =
N1

∑
i,j∈N1

Gi,j

(
U2

i + U2
j − 2UiUjcosφi,j

)
(2)

where Gi,j represents the admittance of branch i − j, φi,j stands for the electrical angle of
branch i − j, and Ui and Uj, respectively, denote the voltage values of nodes i and j.

The overall reactive margin of the WF is expressed as follows:

F3 = Qmax −

NT
∑

i=1
|Qi|

NT
(3)

where Qmax represents the maximum reactive output of the WT, Qi stands for the real-time
reactive output of the WT, and NT represents the number of WTs in the WF.

By normalization and weight allocation, the multi-objective optimization problem is
transformed into a single-objective optimization problem. The weights of each objective
are determined by real-time conditions, specifically, the weight α1 of optimization objective
F1 is determined based on the real-time voltage deviation in each node in the OWF, the
weight α3 of optimization objective F3 is determined based on real-time reactive margins,
and the weight α2 of optimization objective F2 is determined by α1 and α3. The overall
optimization objective function is expressed as follows:

min(F) =
α1F1

F1_max
+

α2F2

F2_max
− α3F3

F3_max
(4)

The calculation formulas for α1, α2, and α3 are as follows:

α1 =

NT
∑

i=1

∣∣∣Ui − Ure f

∣∣∣
NT × min

[
Umax − Ure f , Ure f − Umin

] (5)

α3 = 0.12

/ NT
∑

i=1
(Qmax − |Qi|)

NT
(6)

α2 = 1 − α1 − α3 (7)

where F1_max, F2_max, and F3_max, respectively, represent the maximum values of optimiza-
tion objectives F1, F2, and F3, and Umax and Umin represent the maximum and minimum
values of node voltages, respectively.

2.2. Constraints
2.2.1. Equational Constraint

The WF power flow constraints are as follows:
Pi = Ui

N1
∑

j=1
Uj(Gi,j cos φi,j + Bi,j sin φi,j)

Qi = Ui
N1
∑

j=1
Uj(Gi,j sin φi,j − Bi,j cos φi,j)

(8)

where the active and reactive outputs of node i are denoted by Pi and Qi respectively, while
φi,j represents the reactance of branch i − j.
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2.2.2. Inequality Constraint

The constraints for active and reactive power outputs of WTs are as follows:

QGmin < QGi < QGmax (9)

PGmin < PGi < PGmax (10)

where PGmin and QGmin , respectively, represent the minimum active and reactive power
outputs of the WT, while PGi and QGi represent the real-time active and reactive power
outputs of the WT. PGmax and QGmax represent the maximum active and reactive power
outputs of the WT.

The constraints for the SVG output are as follows:

Qs_min < Qs < Qs_max (11)

where Qs_max and Qs_min, respectively, represent the maximum and minimum reactive
power outputs of the SVG and Qs represents the real-time reactive power output of
the SVG.

The voltage safety constraints are as follows:

Ui_min < Ui < Ui_max (12)

The line transmission power constraints are as follows:

Pi,j_min ≤ Pi,j ≤ Pi,j_max (13)

Qi,j_min ≤ Qi,j ≤ Qi,j_max (14)

3. Improved PSO Algorithm

The PSO algorithm, widely used for solving various optimization problems because
of its broad search range and fast iteration speed, suffers from issues such as premature
convergence and getting stuck in local optima. Therefore, this paper proposes improve-
ments to the particle swarm algorithm through uniform initialization and adaptive inertia
coefficients.

3.1. Basic PSO Algorithm

The formula for updating particle velocity particle i at iteration j is as follows:

vi,j = ωvi,j−1 + c1r1

(
xgbest − xi,j−1

)
+ c2r2

(
xpbest − xi,j−1

)
(15)

where vi,j represents the velocity of particle i at iteration j, ω is the inertia coefficient, c1 and
c2 are acceleration factors, typically ranging between [1.2, 2], r1 and r2 are random value
between (0, 1), xgbest is the best position of the population, xi,j−1 is the position of particle i
at iteration j − 1, and xpbest is the historical best position.

The formula for updating the position of the particle is as follows:

xi,j = xi,j−1 + vi,j (16)

3.2. UAPSO Algorithm
3.2.1. Particle Velocity Update Method Based on Fitness Sorting

This paper categorizes particles into three classes based on the quality of their fitness
values, including inferior particles, intermediate particles, and superior particles. For
inferior particles, it is necessary to accelerate their search speed to expand the search range
and quickly find optimal solutions. For superior particles, it is essential to appropriately
reduce their velocity to approach the optimal solution and achieve rapid convergence.
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The specific classification method is as follows: calculate the average fitness value
of the population and categorize particles with fitness values greater than the average
fitness value as inferior particles and the rest as superior particles. Calculate the average
fitness value of the superior particle group and categorize particles with fitness values less
than the average fitness value of the superior particles as superior particles and the rest as
intermediate particles. The calculation formula is as follows:

f j_aver =

N2
∑

i=1
fi,j

N2
(17)

f j_down_aver =

N3
∑

i=1
fi,j

N3
(18)

where f j_aver represents the average fitness value of the population at iteration j, fi,j denotes
the fitness value of particle i at iteration j, N2 stands for the size of the particle population,
f j_down_aver signifies the average fitness value of the superior particle swarm at iteration j,
and N3 denotes the number of superior particles.

The size of the inertia coefficient in Equation (13) affects the convergence speed of
particles. In the early stages of iteration, it is necessary to expand the search range of the
particle swarm, so a smaller inertia coefficient should be set. In the later stages of iteration,
it is necessary to accelerate the convergence speed of the particle swarm, so a larger inertia
coefficient should be set.

When G < 1
2 Gm, the formula for calculating the inertia coefficient is as follows:

ωi,j+1 = ωmax, fi,j > f j_aver

ωi,j+1 = ωmin + (ωmax − ωmin)×
fi − f j_best

f j_aver − f j_best
, f j_down_aver < fi ≤ f j_aver

ωi,j+1 = ωmin + (ωmax − ωmin)×
fi − f j_best

f j_down_aver − f j_best
× rand(0, 1), f j_best < fi ≤ f j_down_aver

(19)

When G ≥ 1
2 Gm, the formula for calculating the inertia coefficient is as follow:

ωi,j+1 = ωmax − (ωmax − ωmin)×
fi − f j_aver

f j_aver − f j_best
× rand(0, 1), fi > f j_aver

ωi,j+1 = ωmax − (ωmax − ωmin)×
fi − f j_best

f j_aver − f j_best
, f j_down_aver < fi ≤ f j_aver

ωi,j+1 = ωmin, f j_best ≤ fi ≤ f j_down_aver

(20)

where G represents the current iteration number, Gm represents the total iteration number,
ωmax and ωmin, respectively, denote the maximum and minimum values of the particle
inertia coefficient, and f j_best represents the optimal position of the population at iteration j.

3.2.2. Uniform Initialization Method for Particle Swarm

This paper adopts uniform initialization for particles to ensure their uniform distribu-
tion in the solution space, thereby expanding the search range of the particle swarm and
avoiding premature convergence.

The formula for initializing particle positions is as follows:

xi =
i

N2
× (xmax − xmin) + xmin (21)

where xi denotes the encoding of the initial position of particles, while xmax and xmin
represent the maximum and minimum values of the position encoding, respectively.
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4. The UAPSO Algorithm Solving Process

The specific steps for solving the adaptive multi-objective optimization model of
OWFs using the UAPSO algorithm are as follows:

1. Input WF data and perform the first power flow calculation to obtain initial voltages
at each node and calculate the initial reactive power reserve of WTs. Determine the
weighting coefficients of the optimization objective function.

2. Uniformly initialize the particle swarm and perform the first strategy solution to
determine the initial optimal position and best fitness of the population.

3. Calculate the average fitness of the population f j_aver and the average fitness of
excellent particles f j_down_aver, and determine if the number of iterations has reached
halfway. Calculate the inertia coefficient value of particle velocity, and update particle
velocity and position.

4. Substitute particle positions into the power flow calculation to obtain fitness values
and update the population’s optimal position and historical optimal position.

5. Determine if the maximum number of iterations has been reached. If yes, end the
iteration; otherwise, return to step 3.

6. Output the optimal fitness and position of particles to obtain the reactive power
optimization strategy for the WF.

The flowchart of the solution process is shown below (Figure 1).
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5. Case Analysis
5.1. Simulation Parameter Settings

The OWF structure used in this paper is shown in Figure 2. The installed capacity
of the WF is 300 MW, with each WT having a rated power of 3 MW. There are 10 WTs
connected on each feeder line, with a distance of 2 km between adjacent WTs. There are a
total of 10 feeder lines. SVGs are connected to the primary side of the step-up transformer
at node 3. The grid connection point (node 1) is set as the slack bus for the WF power
flow calculation.
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The distance from the offshore booster station to the swing bus is about 50 km. XLPE
insulated submarine cables of 220 kV AC are used, and XLPE insulated submarine cables
of 35 kV are used between the WTs (2 km) and between the WTs and the offshore booster
station (5 km), with an operating temperature of 20 ◦C. The specific parameters are shown
in Table 1.

Table 1. Parameter list for submarine cables.

Cable Class Unit Reactance Ω/km Unit Capacitance µF/km

220 kV 0.0735 0.1509
35 kV 0.129 0.326

The basic parameters of the 3 MW permanent magnet synchronous WT are shown in
Table 2.

Table 2. Parameters of 3 MW permanent magnet synchronous wind generator.

Parameters Value

rated power Pn/kW 3000
rated apparent power Sn/kVA 3160

rated voltage Un/V 690
rated current In/A 2644

rated frequency fn/Hz 50
rated wind speed vn/(m/s) 10.5

5.2. Comparison of the Optimization Effects of Different Algorithms

To validate the effectiveness of the proposed improved particle swarm algorithm in
this paper, the traditional PSO algorithm and dynamic weighting particle swarm algorithm
(DPSO) are selected to compare the optimization results. Under the operating condition
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where the active power output of the WT is 2.8 MW and the reactive power output limit
is 1 MW, the voltage reference value Ure f is set to 0.97 p.u. The optimization objective
function is formulated using Equation (4). The optimization results of each algorithm are
shown in Figures 3 and 4.
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Figures 3 and 4 show the fitness iteration curves and WF node voltage curves for
different algorithms. In Figure 3, it can be observed that the uniform adaptive algorithm
converged to the vicinity of the optimal value within the first 50 iterations, while PSO and
DPSO gradually converged to local optimal values after 250 iterations. In Figure 4a,b, it can
be observed that compared with the DPSO algorithm and the PSO algorithm, the reactive
power optimization strategy derived from the UAPSO algorithm can bring the voltages of
each node closer to Ure f , effectively addressing the issue of excessive voltage deviation at
the terminals of WTs at ends of the feeder line. This enables the terminal voltages of each
wind turbine generator to accurately adhere to the specified voltage reference value. The
comparative analysis reveals that the proposed uniform adaptive algorithm can effectively
expand the search range of the particle swarm, avoiding local optima while achieving a
fast convergence speed. It can rapidly determine the optimal strategy, yielding significantly
better optimization results compared with PSO and DPSO.
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Figure 5 shows the reactive power output of WTs obtained from the different algo-
rithms’ optimization strategies. In the figure, it can be observed that the reactive power
output of WTs in the optimization strategy obtained by UAPSO is more uniform. The
difference in reactive power margin among WTs on the same feeder line is within 10%.
However, there is significant variation in the reactive power output of WTs obtained by
PSO and DPSO, with differences in the reactive power margin exceeding 100% on some
feeder lines. Additionally, some WTs do not retain reactive power margins. In the event of
a sudden drop or rise in busbar voltage, WTs may be unable to provide sufficient reactive
power compensation, leading to the possibility of terminal voltages exceeding the safe and
stable range.
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The solution durations of the three optimization algorithms are shown in Table 3.

Table 3. Comparison of the solving time of the different algorithms.

PSO DPSO UAPSO

Solution duration/s 275.77 276.65 244.72
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In Table 3, it can be seen that the solving time of the UAPSO algorithm is less than that
of PSO and DPSO, with a speed improvement of about 10%. This is because the uniform
initialization method expands the initial search range of the particle swarm, allowing
particles to quickly search near the optimal solution. Meanwhile, the adaptive inertia
coefficient method assigns a larger search speed to particles in the initial search stage,
enabling particles to quickly search the solution space. In the later search stage, smaller
search speeds are allocated to particles, enabling them to search in a small range near
the optimal solution, thus improving the solution accuracy. In summary, the UAPSO
algorithm not only enhances the search accuracy but also improves the search speed of the
particle swarm.

5.3. Comparison of Optimization Results for Different Optimization Objectives

To demonstrate the significance of the optimization objective of the WT terminal
voltage, different optimization objectives are set to compare the optimization effects. Opti-
mization Objective 1 is the total optimization objective proposed in this paper; Optimization
Objective 2 has the minimum deviation in grid-connected voltage and active power loss as
the optimization objectives. The active power output of the wind turbine is set to 0.4 MW,
and the Ure f is set to 0.96. The UAPSO algorithm is used for solving. The terminal voltage
of the wind turbine generator after optimization is shown in Figure 6.
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In Figure 6, it can be observed that when the optimization objective does not include
the deviation in the WT terminal voltage, although the grid-connected voltage can accu-
rately approach the reference voltage, the WT terminal voltage decreases to below 0.95 p.u.,
and some WT terminal voltages even decrease to 0.928 p.u., severely affecting the safe and
stable operation of the WT. However, when the deviation in the WT terminal voltage is
included as an optimization objective, both the grid-connected voltage and the WT termi-
nal voltage can accurately approach the reference voltage, ensuring that the WT terminal
voltage remains stable within a safe range. Therefore, when optimizing the reactive power
of offshore wind farms, it is also necessary to pay special attention to the problem that the
WT terminal voltage easily exceeds limits.

5.4. Comparison of Optimization Effects of Different Multi-Objective Weighting Methods

To verify the effectiveness of optimizing the objective function with adaptive weight-
ing coefficients, different combinations of weights for the objective function are selected to
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compare the optimization results. Under the operating condition where the active power
output of the WT is 2.8 MW and the reactive power output limit is 1 MW, the voltage refer-
ence value Ure f is set to 0.97 p.u. The UAPSO algorithm is used for strategy optimization.
The optimization results for each weight combination are shown in Figure 7 and Table 4.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 18 
 

 

0.292

0.2915

0.291

0.2905

0.29

0.2895

0.289

0.2885

0.288

0.2875
0 50 100 150 200 250 300

The number of iterations
Combination 2 Combination 3 AdaptiveCombination 1

7.0815

7.082

7.0825

7.083

7.0835

7.084

0 50 100 150 200 250 300
The number of iterations

(a) (b)

T
o

ta
l 

v
o

lt
ag

e 
d

e
v

ia
ti

o
n

/p
.u

.

T
o

ta
l 

n
et

w
o

rk
 l

o
ss

/M
W

Combination 2 Combination 3 AdaptiveCombination 1

 

Figure 7. Comparison of the optimization effect of different weight combinations when Uref = 0.97: 

(a) network loss and (b) voltage deviation. 

Table 4. Comparison of reactive power margins for different weighting combinations. 

Weight Combination Value Reactive Power Margin (MW) 

combination 1 [0.2, 0.6, 0.2] 0.1319 

combination 2 [0.4, 0.4, 0.2] 0.1312 

combination 3 [0.8, 0.1, 0.1] 0.1308 

adaptive [0.7, 0.1, 0.2] 0.1309 

When the voltage reference value approaches the stable voltage boundary (0.95–1.05 p.u.) 

and the reactive power limit of WTs is relatively small, the calculated adaptive weighting 

coefficients correspondingly assign larger weights to voltage deviation and the reactive 

power margin. The resulting reactive power optimization strategy focuses on optimizing 

node voltage deviation and the reactive power margin. In Figure 7 and Table 4, it can be 

seen that the reactive power optimization strategy obtained by solving the adaptive 

weighting objective function sacrifices some of the grid loss optimization effects. How-

ever, it minimizes the voltage deviation and retains a larger reactive power margin. Reac-

tive power strategies based on fixed weights cannot simultaneously optimize voltage and 

the reactive power margin effectively. Under harsher operating conditions in the WF, this 

may lead to terminal voltages of WTs exceeding safety limits or an insufficient reactive 

power margin, failing to meet requirements. 

5.5. Adaptability of Adaptive Reactive Power Optimization Strategies under Various Operating 

Conditions 

5.5.1. Optimization Effect of Different Active Outputs of WT 

To validate the effectiveness of the adaptive weighting coefficients optimization ob-

jective and the UAPSO algorithm under different operating conditions in OWFs, the op-

timization results are compared across different conditions. In this case, the voltage refer-

ence value refU  is set to 0.97 p.u. A comparison of the optimization results after optimi-

zation is shown in Figures 8 and 9 and Table 5. 
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Table 4. Comparison of reactive power margins for different weighting combinations.

Weight Combination Value Reactive Power Margin (MW)

combination 1 [0.2, 0.6, 0.2] 0.1319
combination 2 [0.4, 0.4, 0.2] 0.1312
combination 3 [0.8, 0.1, 0.1] 0.1308

adaptive [0.7, 0.1, 0.2] 0.1309

When the voltage reference value approaches the stable voltage boundary (0.95–1.05 p.u.)
and the reactive power limit of WTs is relatively small, the calculated adaptive weighting
coefficients correspondingly assign larger weights to voltage deviation and the reactive
power margin. The resulting reactive power optimization strategy focuses on optimizing
node voltage deviation and the reactive power margin. In Figure 7 and Table 4, it can
be seen that the reactive power optimization strategy obtained by solving the adaptive
weighting objective function sacrifices some of the grid loss optimization effects. However,
it minimizes the voltage deviation and retains a larger reactive power margin. Reactive
power strategies based on fixed weights cannot simultaneously optimize voltage and the
reactive power margin effectively. Under harsher operating conditions in the WF, this may
lead to terminal voltages of WTs exceeding safety limits or an insufficient reactive power
margin, failing to meet requirements.

5.5. Adaptability of Adaptive Reactive Power Optimization Strategies under Various
Operating Conditions
5.5.1. Optimization Effect of Different Active Outputs of WT

To validate the effectiveness of the adaptive weighting coefficients optimization ob-
jective and the UAPSO algorithm under different operating conditions in OWFs, the
optimization results are compared across different conditions. In this case, the voltage
reference value Ure f is set to 0.97 p.u. A comparison of the optimization results after
optimization is shown in Figures 8 and 9 and Table 5.
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Table 5. Reactive power margin for different operating conditions.

Conditions (Active Output/MW) Weighting Factor Reactive Power Margin (MW)

0.4 [0.40, 0.55, 0.05] 2.6946
1.5 [0.54, 0.40, 0.06] 2.2283
2.2 [0.61, 0.31, 0.08] 1.6534
2.8 [0.66, 0.14, 0.20] 0.0625

Figures 8 and 9, respectively, compare the voltage and grid loss optimization effects
under different operating conditions. In the figures, it can be observed that the optimized
grid loss in the OWF is positively correlated with the active power output of the WTs.
When the active power output is small, the optimized grid loss is also small; however,
when the active power output is large, the optimized grid loss increases. At the same time,
it can be seen that under different operating conditions, the total voltage deviation in the
nodes in the WF is less than 1, indicating that the average deviation between the node
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voltages and the voltage reference value is less than 0.01 p.u. (a total of 103 nodes), and the
optimized node voltages meet the requirements.

Table 5 compares the optimization effects of the reactive power margin of a single WT
under different operating conditions. In the table, it can be observed that the weighting
coefficients of the adaptive optimization objective function change with the real-time
operating conditions. When the reactive power limit of the WT is small, the weighting
coefficient corresponding to the reactive power margin is set to a large value to ensure that
the WT retains a sufficient reactive power margin. When the reactive power limit of the
WT is large, the weighting coefficient corresponding to the reactive power margin needs to
be set to a small value. While ensuring that the reactive power margin of the WT meets the
requirements, the focus is on reducing voltage deviation and grid loss, thereby improving
the stability and economy of the WF operation.

From the above analysis, it can be seen that the adaptive reactive power optimization
strategy based on the UAPSO algorithm can achieve good optimization results under
various operating conditions.

5.5.2. Optimization Effect of Different Voltage References

To verify the effectiveness under different voltage reference values, different voltage
reference values are selected to compare the optimization results. Simulations are conducted
under the condition that the WT has an active power output of 2.8 MW and a reactive
power output limit of 1 MW. The comparison of optimization results after optimization is
shown in Figure 10 and Table 4.

Figure 10 presents a comparison of voltage and network loss optimization effects
under different voltage reference values. In Figure 10a, it can be observed that the network
loss after optimization in OWFs is positively correlated with the active power output of
WTs. When the active power output is small, the optimized network loss is small, and
when the active power output is large, the optimized network loss is large. In Figure 10b,
it can be seen that under different voltage reference values, the optimized voltage values
of each node can closely match the reference values. The voltage deviation between WTs
at both ends of the same feeder line is less than 0.03 p.u. In Figure 10c, it can be observed
that under different operating conditions, the total voltage deviation in the nodes in the
WF is less than 1, indicating that the average deviation between each node voltage and the
voltage reference value is less than 0.01 p.u. (across 103 nodes), and the optimized node
voltages meet the requirements.

Table 6 compares the optimization effects of reactive power reserves for a single WT
under different voltage reference values. In the table, it can be seen that the weighting
coefficients corresponding to voltage deviation change with the voltage reference value.
When the difference between node voltage and the voltage reference value is small, the
weighting coefficients corresponding to voltage deviation are set to small values, emphasiz-
ing the reduction in network loss and an improvement in reactive power reserves of WTs
while ensuring that the voltage deviation meets the requirements, thereby enhancing the
economic efficiency and robustness of WF operation. When the difference between node
voltage and the voltage reference value is large, the weighting coefficients corresponding
to voltage deviation are set to large values, effectively reducing the voltage deviation and
ensuring that each node voltage is within a safe and stable range, thereby enhancing the
stability of WF operation.

Table 6. Reactive power margins at different voltage references.

Uref/p.u. Weighting Factor Reactive Power Margin/MW

0.97 [0.70, 0.10, 0.20] 0.1306
1 [0.66, 0.14, 0.20] 0.0625

1.03 [0.36, 0.44, 0.20] 0.9459
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From the above analysis, it can be seen that the adaptive reactive power optimization
strategy based on the UAPSO algorithm achieves good optimization effects under different
voltage reference values.
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6. Conclusions

This paper investigates the reactive power optimization problem in OWFs, considering
multiple sub-objectives including voltage control, active power loss, and reactive power
reserve. Because of the varying importance of different sub-objectives under different
operating conditions, fixed weighting coefficients cannot accurately represent the dynamic
changes in the importance of different sub-objectives. Therefore, innovatively, the weighting
coefficients of each sub-objective in this paper are adaptively adjusted according to real-
time operating conditions. Meanwhile, to address the issue of an insufficient search range
and susceptibility to local optimal values in PSO algorithms, improvements are made based
on uniform initialization and adaptive inertia coefficients. The research results demonstrate
the following:
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1. The proposed method can reduce the voltage deviation and active power loss in
OWFs, increase the reactive power reserve, and enhance the stability, economy, and
robustness of WF operation.

2. The uniform initialization of particles in PSO broadens the search range, avoiding
getting stuck in local optimal values, and adaptive inertia coefficients effectively
accelerate the convergence speed of the particle swarm.

3. When the operating state of the WF changes, the weighting coefficients between
optimization objectives can be adaptively adjusted based on real-time operating con-
ditions, ensuring that important objectives under different conditions are prioritized
and guaranteed.
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