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Abstract: In the domain of emotion recognition in audio signals, the clarity and precision of emotion
delivery are of paramount importance. This study aims to augment and enhance the emotional
clarity of waveforms (wav) using a technique called stable diffusion. Datasets from EmoDB and
RAVDESS, two well-known repositories of emotional audio clips, were utilized as the main sources
for all experiments. We used the ResNet-based emotion recognition model to determine the emotion
recognition of the augmented waveforms after emotion embedding and enhancement, and compared
the enhanced data before and after the enhancement. The results showed that applying a mel-
spectrogram-based diffusion model to the existing waveforms enlarges the salience of the embedded
emotions, resulting in better identification. This augmentation has significant potential to advance the
field of emotion recognition and synthesis, paving the way for improved applications in these areas.

Keywords: deep learning; generative adversarial networks; data augmentation; speech emotion
recognition; speech emotion synthesis; diffusion; speech emotion recognition

1. Introduction

Accurate recognition of emotions from audio signals has long been a topic of intense
research. Scholars have explored ways to capture and analyze the subtle nuances and
intensity of emotions in audio signals. Previous work has utilized various feature extraction
techniques and machine learning models to classify and predict emotions from audio
signals. Also, in the area of emotion synthesis, various technical approaches have been
proposed to generate speech recordings with natural emotions [1–6].

At the core of these studies is the need for high-quality data. In AI research, good
quality data is necessary to train a model that performs well. In recent years, as the level
of artificial intelligence research has been increasingly advanced, the need to build high-
quality data has become increasingly necessary and the process has become increasingly
difficult. In addition, in recent deep learning research, generative models are in the spotlight,
and the quality of the generated results depends on the data used, so the importance of
data is becoming more important. In recent generative model research, the focus has been
on diffusion. Generative models such as conventional synthetic models or GANs have
problems such as too much computation, long training time and cost, and poor accuracy
in the inference process. Therefore, applying diffusion, which has been actively utilized
in the image domain, to audio data is expected to facilitate the development of emotion
recognition and synthesis by obtaining high-quality data [7].

In this paper, we applied the diffusion technique to enhance the emotion clarity of
audio clips by utilizing the mel-spectrogram, a unique feature of audio [8]. The process
of emotion synthesis using diffusion is divided into emotion embedding, utterance-style
embedding, and the diffusion process. Emotion embedding is used to extract emotion
information, utterance-style embedding is used to identify the features of emotion-specific
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mel-spectrogram images, and then diffusion is used to generate mel-spectrograms that meet
the user’s conditional input. The augmented emotional utterance data obtained through
this process was evaluated using a residual network (ResNet)-based emotion classification
model. The evaluation showed that the emotion recognition rate was higher than the
existing dataset, which means that the augmented dataset contains clearer emotions than
the existing emotion dataset, confirming the advantages of augmented emotional utterance
data in emotion research.

The organization of this paper is as follows. Section 2 describes the background
of the techniques utilized in the research. We overview and summarize diffusion, mel-
spectrograms, Convolutional Neural Networks (CNNs), and the Emotional Speech Database.
Section 3 describes related research. Starting with the work that precedes this thesis, synthe-
sizing emotional speech data using GANs, we describe and review the work on synthesizing
emotional speech data using diffusion models. In Section 4, we propose a diffusion-based
sentiment synthesis model, which is the method of sentiment utterance data synthesis
proposed in this paper, followed by the experimental design and experimental results in
Section 5, and concluding remarks in Section 6.

This paper aims to respond to the need for high-quality emotion data and to explore
quality data augmentation methods in the field of audio emotion recognition and synthesis
by utilizing diffusion models. We demonstrate the improvement of emotion clarity through
mel-spectrograms and diffusion techniques and propose a novel approach to improve
the accuracy of emotion recognition. This represents a technological advance in emotion
research and is expected to have a good impact on the future development of emotion
recognition and synthesis technology.

2. Related Work

Research on the augmentation and generation of emotional utterance data has been
continuously evolving from the past to the present, and various approaches have been
tried in this field, including emotion data augmentation using GANs, data generation
using diffusion models, and emotion synthesis models using existing neural networks. In
particular, recent research has focused on augmentation using GANs and data generation
using diffusion models.

First, in [9], DCGAN among GANs was used to augment data for each emotion using
mel-spectrograms. By comparing the emotion recognition rate of EmoDB and RAVDESS
datasets used in the experiment, this study showed that data augmentation using DCGAN
contributes to increasing the emotion recognition rate.

Next, studies using diffusion models, such as papers [10–13], proposed to augment
emotional utterance data by using mel-spectrograms of spoken utterances as input data for
diffusion models.

Among the studies using diffusion, paper [10] used a refinement process of injecting
and extracting Gaussian noise for learning sentiment data, and introduced a method of
receiving conditional input from users by utilizing U-Net, a basic type of BERT model and
diffusion model.

Next, paper [11] proposed the design of Grad-TTS [14] using a sentiment synthesis
method based on stochastic differential equation (SDE) [15] formulation and de-noised
diffusion probability model (DDPM) [16]. This study directly injected sentiment data into
the learning process, introduced SER to encode sentiment information, utilized text as
conditional input from the user, and used the wav2vec 2.0 model [17] to capture speaker
embeddings. The speaker embeddings and emotion information were used to augment the
new dataset by de-noising the mel-spectrograms. This work differs from paper [15] in that
it achieves emotion synthesis using emotion embeddings rather than simply using emotion
data for training, and shows that emotion embedding techniques improve the performance
of emotion data augmentation, increasing the depth of emotion information.

Paper [12] had the structure of text encoder–emotion embedding–diffusion decoder,
and used adversarial learning to separate speaker features, while emotion embedding



Electronics 2024, 13, 1314 3 of 16

used orthogonal projection, considering that speaker separation may weaken emotion
expressiveness. Finally, diffusion decoders used emotion-related distributions to recover
the mel-spectrogram.

Finally, ref. [13] had a phoneme encoder, speaker encoder, and emotion encoder
similar to [18], and used the mel-spectrograms of emotion data for training without further
adjustment, but differed in that it applied the information from the resulting emotion
embeddings for inference.

In this paper, we propose a model that contains sufficient emotion information and
generates augmented datasets of much higher quality than existing emotion datasets for
superior performance in the synthesis of emotional utterance data by referring to emotion
embedding techniques in related research, as well as techniques such as utterance encoders
and conditional inputs.

3. Background
3.1. Diffusion

Diffusion models, as referenced in [16], are a form of latent variable models charac-
terized by the equation pθ(x0) =

∫
pθ(x0 : T) dx1 : T. In this equation, x1, · · · ,xT are

latent variables having the same dimensionality as the observed data x0, which is drawn
from the distribution q(x0 ). The combined distribution pθ(x0 : T) is recognized as the
reverse process and is characterized by a Markov chain using learned Gaussian transitions,
originating from the distribution p(xT) = N(xT; 0, I).

The cornerstone idea of the diffusion model emanates from the diffusion process,
where Gaussian noise is sequentially added to the original image, converting it into pure
random noise. This diffusion process essentially has the structure q(xT|xT−1), as expressed
in Equation (1), and it involves the continuous application of a Gaussian Markov chain
to the original image x0. After multiple iterations, xT adheres to a complete random
Gaussian distribution.

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1), q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI) (1)

Subsequently, an essential aspect is learning the inverse transformation of Equation (1),
termed the inverse process. The inverse process begins when xT follows a thorough
Gaussian distribution and seeks to convert it back to the original x0. This inverse process
is defined by the parameters of the Gaussian Markov chain, µθ and Σθ , and is represented
as Equation (2).

pθ(x0:T) := p(xT)
T
∏

t=1
pθ(xt−1|xt),

pθ(xt−1|xt) := N(xt−1; µθ(xt, t), ∑θ(xt, t))
(2)

By optimizing the diffusion process and the inverse process, the training objective, in
terms of the ELBO, is given by Equation (3).

Eq

DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸
Lt

+ ∑
t>1

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt ))︸ ︷︷ ︸
L1:T−1

− logpθ(x0|x1)︸ ︷︷ ︸
L0

 (3)

In Equation (3), Lt signifies the forward process, while L1:T−1 pertains to the reverse
process. The critical learning parameter is denoted by pθ . As Lt lacks trainable parameters,
it can be regarded as a constant during the learning phase. Consequently, the essence is
optimizing the L1:T−1 segment. The optimization results are represented by Equation (4).

pθ(xt−1|xt) = N(xt−1; µθ(xt, t), ∑θ
(xt, t)), (t = 1 ∼ T − 1) (4)
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Therefore, this paper utilized the diffusion and backward process of the diffusion
model to generate mel-spectrograms using de-noising techniques, and combined with
techniques such as emotion embedding, text embedding, feature extraction, encoder,
and decoder to generate emotional speech data in the form of mel-spectrograms with
improved emotion.

3.2. Mel-Spectrograms

A mel-spectrogram is a visual representation of the spectrum of sound that utilizes
the mel frequency scale to show one of the salient features of speech and voice. The mel
frequency scale is often used in speech and audio processing because it is intentionally
designed to reflect the way the human ear is sensitive to certain frequencies. Whereas
standard spectrograms operate on a logarithmic frequency scale, mel-spectrograms are
constructed using a mel frequency scale. This design choice allows it to more closely match
human auditory characteristics, focusing specifically on the frequencies that the human ear
perceives most distinctly.

To obtain a mel-spectrogram, speech utterances and speech are divided into short
frames of uniform length. To perform spectral analysis on each frame, it must be trans-
formed from the time domain to the frequency domain. This transformation step uses
techniques such as the Fast Fourier Transform (FFT) and the Short Time Fourier Transform
(STFT). The transformation step uses a Hamming window to reduce frequency leakage,
which occurs when a signal is truncated to a certain length and the periods of the signal are
not exactly aligned, and edge effects, which are distortions of the signal at the beginning
and end of the signal in the time domain. After this transformation, the derived spectrum
is interfaced with a bank of mel filters to extract the energy associated with each frequency
bank on the mel scale. The mel-spectrogram effectively encapsulates relevant information
about speech by representing three-dimensional data of time, frequency, and amplitude as
a two-dimensional image [19].

Therefore, in this study, we use mel-spectrograms as input data to augment speech
data through the diffusion process. Furthermore, the reason why we do not use features
other than mel-spectrograms in this study is that if we use features such as MFCC or
chroma in the diffusion model, we are trying to generate the value of the feature rather
than the speech information itself, and we use mel-spectrograms because the diffusion
model originated in the image domain and we want to extend it to the speech domain. In
addition, by evaluating the enhanced emotional speech data by using it as input to the
emotion evaluation model, we can comprehensively analyze the trajectories of complex
speech features and emotional nuances [20].

3.3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) originated from the necessity of deep learn-
ing models that accommodate local features within image patterns, adeptly capturing their
spatial structures. CNNs have been predominantly employed in various computer vision
tasks, including image classification, object detection, medical image analysis, and face
recognition. Due to their remarkable performance in learning based on spatial structures,
patterns, and features of images, their usage has extended beyond vision tasks to various
signal data, encompassing audio and sensors [21].

A CNN processes input images through several layers, such as convolutional layers,
pooling layers, and fully connected layers, to distill information. The convolutional layers
are primarily utilized to detect features from the input data, while pooling layers serve the
purpose of reducing the data’s dimensionality.

In this study, we investigate the change in emotion recognition rate of emotional audio
data enhanced by a diffusion model. The diffusion model is used for feature extraction,
pattern-based learning, feature map generation, etc.
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3.4. Emotional Speech Database

The main objective of this thesis is to identify clearer emotional distinctions through
the enhancement of emotional speech data, where the chosen database plays a pivotal role.
Two databases were used in this thesis: EmoDB and RAVDESS.

EmoDB, originating from the Technical University of Berlin, consists of data sampled
at 16 kHz. It contains emotions such as neutral, happy, sad, angry, fear, and disgust.
There are 10 speakers in the database, five male and five female. The recordings consist of
different emotional states conveyed through German sentences and are characterized by
the fact that the speakers were genuinely experiencing the emotions they described during
the recording.

RAVDESS, on the other hand, is a product of the University of Toronto that records
data sampled at 48 kHz in English [18]. While RAVDESS provides a wider spectrum of
emotions, including neutral, calm, happy, sad, angry, surprised, fearful, and disgust, we
specifically used neutral, happy, sad, angry, surprised, fear, and disgust in this paper to
maintain consistency with EmoDB. The database contains recordings from 24 speakers,
12 male and 12 female. A unique feature of RAVDESS is that the speakers expressed
emotions with two different intensities, and all recordings were made under controlled
conditions using the same sentences.

A high-quality database is indispensable for sentiment-based analysis. In this paper,
we utilized both EmoDB and RAVDESS. Due to the difference in sampling rate of the two,
we resampled all data to 22,025 Hz for uniformity.

Table 1 shows the number of datasets per emotion.

Table 1. The count of datasets per emotion.

Emotions EmoDB RAVDESS

Neutrality 79 96
Angry 127 192

Sadness 62 192
Fear 69 192

Happy 71 192
Disgust 46 192

Total 454 1056

4. Proposed Method
4.1. Data Preprocessing

In this paper, we used the EmoDB and RAVDESS datasets. For our experiments,
nested emotions such as happiness, anger, sadness, fear, neutrality, and disgust were used
from both the EmoDB and RAVDESS datasets. EmoDB has a sampling rate of 16 kHz and
RAVDESS has a sampling rate of 48 kHz, so both datasets were resampled to 22,025 Hz.

To ensure consistent conditions across the datasets, we adjusted the length of the
emotion speech samples by padding shorter samples to match the length of the longest
sample, so that all data was 10 s long, and we grouped and reorganized the datasets
according to each emotion.

Table 2 shows the emotion data information.

Table 2. Emotion data information.

Emotions Number of Experimenters Data Time Length Sampling Rate

EmoDB 5 males, 5 females 10 s 22,025 Hz
RAVDESS 12 males, 12 females 10 s 22,025 Hz

In this paper, we also considered the utilization of diffusion by treating speech like
an image [22]. Therefore, all the speech data were converted into mel-spectrograms using
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Python’s librosa library. The reason why we do not detect utterance segments in this process
is that we use mel-spectrograms like images, where noise is injected during the diffusion
and inversion process and subsequently removed. This way, the firing part of the image is
reconstructed according to the features of the original data, while the padded part, which
has no mel-spectrogram image, is not reconstructed. This approach justified bypassing
the firing part. To avoid the loss of temporal information in the data, we did not use the
Fast Fourier Transform (FFT), but rather the Short Time Fourier Transform (STFT) during
the conversion. As a result, the emotional speech was converted into a mel-spectrogram
using the STFT, and after several iterations of parameter tuning, considering the overall
length and sampling rate of the WAV file, we chose a hop length of 256 and a window size
of 1024 for the STFT [23]. The converted mel-spectrograms were then subjected to Z-score
normalization for standardization [24].

4.2. Speech Emotion Recognition (SER)

In this study, we used speech emotion recognition in two steps [25]. First, emotion
embeddings were utilized to generate emotion information for typical utterances. Mel-
spectrograms containing emotion information were used as input data, and the minibatch
technique was used to reduce the amount of computation during the training process. The
model was constructed using Pytorch, based on Python, and the model was implemented
using the ResNet-50 model, based on CNN specialized in feature extraction and classi-
fication. The labels mapped to the data were created by integer encoding of sentiment
information followed by one-hot encoding. The training data and validation data were
divided 8:2 for training, Adam was used as the optimization function, the learning rate was
set to 1× 10−4, the CrossEntropyLoss function was used as the loss function, and the Epoch
was set to 800 [26,27]. After training, we measured performance based on accuracy and F1
score for each label prediction and used an emotion classification model with a classification
performance of 98.31% and an F1 score of 0.9831. We used the trained model in inference
mode, where the output is an embedding vector containing emotion information rather
than classification results, and then combined it with the utterance-style vector to perform
emotion embedding.

Table 3 shows the parameters of the emotion recognition model for emotion embedding,
and Figure 1 shows the confusion matrix of the spoken emotion recognition model.

Table 3. Experiment settings of emotion recognition models for emotion embedding.

Experiment Settings Value

Label Anger, Sadness, Happiness, Neutral, Fear, Disgust
Optimizer Adam

Learning rate 1 × 10−4

Loss function CrossEntropyLoss
Epoch 800

We used the generated mel-spectrograms to validate the emotion feature enrichment.
We compared the input EmoDB and RAVDESS data with the generated data based on the
accuracy of the confusion matrix [28].
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4.3. Diffusion Models with Mel-Spectrograms

In this paper, we utilized a diffusion model to improve the quality of emotional speech
data. The diffusion model is a generative AI model that generates data based on the user’s
conditional input, input data, and trained data. The generation process is the process of
injecting and extracting noise and producing the results requested by the user. It is mainly
used in video, and we used mel-spectrograms to generate speech via a diffusion model in
terms of signals like video [14].

First, we embedded the utterance. Speech embedding refits data that are not sampled
at 22,025 Hz, normalizes the wav, locates the start of the speech, and includes information
about the start and end of the speech. It creates a mel-spectrogram for the input wav and
normalizes it to prepare the mel-spectrogram for use as input data. The model also uses
the mel-spectrogram obtained from the original emotional speech as one of the input data
items, the emotion vector.

To solve the memory problem in training the model, we used mel-spectrogram resizing
and a batch-based training process. The model is built on Python-based Pytorch and uses
a CNN and attention-based encoder to extract features from the input mel-spectrograms.
During this process, the utterance style of the mel-spectrogram was extracted, and the
attention layer was used in each ResNet block to further focus on the noteworthy features.
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The second half of the diffusion model, the decoder, was then trained. The decoder used
trigonometric and sequential functions to account for temporal information about the data,
and the ResNet-based model structure was used to learn based on the features of the data.
When using ResNet, we added temporal embeddings and emotion embeddings to focus on
information about utterance and emotion and used a linear attention mechanism to focus
more on information such as emotion, time, and intonation [29].

Table 4 shows the overall model design structure of the diffusion model for emotional
speech generation.

Table 4. Diffusion model architecture for emotional speech generation.

Block (Layers) Input Dimension Stride Output Dimension

Diffusion

Initial input (32, 80, 861) - (32, 256, 861)
ResNet block (32, 256, 861) 1 (32, 256, 861)
Downsample (32, 256, 861) 2 (32, 512, 430)
ResNet block (32, 512, 430) 1 (32, 1024, 215)

Upsample (32, 1024, 215) 2 (32, 512, 430)
ResNet block (32, 512, 430) 1 (32, 256, 861)
Final Conv2d (32, 256, 861) 1 (32, 1, 861)

The structure of the emotional speech generation model implemented in this paper is
shown in Figure 2 below.
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The proposed method in this paper focuses on the augmented data containing more
emotions, which is an important point in related works. It can be seen that the proposed
method focuses more on the augmentation of the emotional utterance dataset than the
emotional speech utterance, and we note that it is very difficult to obtain good quality data
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in this process, because of limitations in the emotional utterance dataset for emotion-related
learning of artificial intelligence. From this perspective, the authors believe it will be helpful
for future emotion-related research if the dataset is augmented with more emotions.

The diffusion model-based emotion synthesis model proposed in this paper is divided
into two styles [25].

The first is the emotion embedding module. The emotion embedding module requires
a pre-trained emotion recognition model as mentioned above and extracts the emotion
vector inferred from the emotion recognition model. It is confirmed that if the diffusion
model is used without emotion embedding or in the learning process, as in [10,13], relatively
little consideration is given to emotions when data augmentation is performed. Therefore,
in [11,12], emotion embedding is used to extract emotion information from the emotion
data to be used as training data, and then emotion embedding is performed in the learning
process, such as emotion labels.

The second module is the mel-style embedding module, which focuses on utterance
information. It utilizes the mel-spectrogram as training data to extract utterance information
by emotion. In this paper, we consider using mel-spectrograms as images and use the
mel-style embedding module to learn the progression structure, shape, and features of
mel-spectrograms. In this way, emotion information can be embedded in the style of
each emotion-specific mel-spectrogram to augment new emotional utterance data using a
diffusion model, and it is expected that more emotion data will be augmented.

Since this paper focuses on augmenting emotional utterance data with more emotions,
we evaluated the recognition rate of each emotion with an emotion recognition model, and
since we use mel-spectrograms to do this, we stopped the augmentation step using the
diffusion model at the mel-spectrogram.

The proposed method in this paper simplifies the emotion synthesis method into three
steps: emotion, utterance information, and generation and purification, which enables the
augmentation of emotional utterance data with a small amount of computing power and
computation. In addition, it has the advantage of freely obtaining mel-spectrograms that
can be utilized as speech features by adding conditional inputs from users to the trained
model without having to spend a lot of time and money on data collection.

5. Experiment
5.1. Experimental Design

In this paper, we compare the ground-truth and prediction values of the original data
and the generated data using an emotion recognition model to see if the generated data
contain improved emotion information.

In addition, there are many considerations for performance improvement such as time
complexity, computational cost, and data collection cost, but this paper focuses on the
improvement of the generated emotional speech data, so the experiments are focused on
how well the emotions are classified.

Each item of generated emotion speech data was given a percentage score for each emo-
tion, considering the balance of the data distribution, and the comparison was performed
on EmoDB and RAVDESS, which were used to train the existing emotion embedding and
diffusion models for emotion speech generation.

5.2. Synthetic Emotion Speech Data

An example of the mel-spectrogram data generated by the proposed diffusion process
is shown in Figure 3, which shows (a) the original mel-spectrogram of the anger emotion
speech data and (b) the improved mel-spectrogram of anger emotion using the emotion
speech generation diffusion model.

The mel-spectrogram image has temporal information on the x-axis and frequency
information on the y-axis. As you can see from the color map information in the mel -
spectrogram shown in Figure 3, it closely depicts the original tempo information, amplitude,
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and emphasis of the utterance. You can also see that the parts of the audio that were padded
to match the length of the audio were similarly padded during the WAV generation process.
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If you look at Figure 3a,b, you can see that the emotional features are captured and
closely mimicked by the duration of the utterance, and the similarity of the frequency flow
is very close. We can also see that the high intensity of the frequencies from the emotion of
anger is also a good reflection of the characteristics of the existing emotion.
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5.3. Result

The reason we used an emotion recognition model for our experiment was to see
if the enhanced emotional speech data has clearer emotional attributes. Therefore, we
compared the original and the generated emotional speech data. In general, weighted
and unweighted accuracy are used in emotion recognition. Weighted accuracy evaluates
performance by considering the distribution of each class in the dataset, while unweighted
accuracy calculates the overall accuracy by giving equal importance to all classes. Therefore,
we used both metrics to gain insight into the overall performance of the model and its
performance on individual classes [30].

To compare the UA and WA of the generated data with the original data, we ran
experiments using the EmoDB and RAVDESS datasets as shown in Table 5. For EmoDB,
the recorded WA was 82.1% and the UA was 81.7% when tested with the original data only.
When we also used the generated data for testing, the WA increased to 94.3% and the UA to
91.6%, an improvement of about 10–12%. Similarly, for RAVDESS, using only the original
dataset, the WA was 67.7% and the UA was 65.1%. However, using the data generated for
the experiment, the WA increased to 77.8% and the UA to 79.7%, a noticeable increase [14].

Table 5. Contrast of WA and UA between original data and generated data.

Dataset WA UA

EmoDB 82.1% 81.7%
Generated data 94.3% 91.6%

RAVDESS 67.7% 65.1%
Generated data 77.8% 79.7%

The above results show that data generation using latent diffusion yields meaningful
results. To further measure the prediction accuracy for individual emotions, we also
performed per-emotion accuracy measurements. The following table (Tables 6–9) shows
the per-emotion accuracy results for our dataset [9].

Table 6. Confusion matrix for the RAVDESS dataset.

Predict

Neutrality Happiness Sadness Anger Fear Disgust

True

Neutrality 82.1% 7%% 4.7% 3.5% 3.3% 2.1%
Happiness 9.8% 72.4% 0% 8.8% 0.3% 0.3%

Sadness 1.1% 0.4% 87.2% 0.4% 9.2% 7.9%
Anger 0.3% 8.1% 1.7% 81.9% 5.4% 10%
Fear 4.2% 8.6% 5.6% 3.6% 77.5% 5%

Disgust 2.5% 3.5% 0.8% 1.8% 4.3% 74.7%

Table 7. Confusion matrix for the RAVDESS dataset and generated dataset.

Predict

Neutrality Happiness Sadness Anger Fear Disgust

True

Neutrality 86.6% 0.8% 2.4% 0% 0.5% 1.2%
Happiness 4.4% 83.4% 0.7% 5.1% 0.3% 0%

Sadness 1.0% 0.4% 88.9% 0.1% 8.7% 4.2%
Anger 0.3% 7.2% 0.8% 84.1% 6.7% 7.5%
Fear 3.1% 3% 3.4% 4.3% 79.2% 2.8%

Disgust 0.7% 3.5% 0.4% 3.7% 3.6% 81.7%
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Table 8. Confusion matrix for the EmoDB dataset.

Predict

Neutrality Happiness Sadness Anger Fear Disgust

True

Neutrality 96.9% 8.4% 5.6% 2.5% 0% 0%
Happiness 0.4% 78.8% 2.1% 4% 3.1% 0%

Sadness 1.1% 0.8% 91.4% 0% 8.5% 0.4%
Anger 0.2% 4.3% 0% 95.1% 0% 0%
Fear 0% 0% 8.7% 0.1% 84.2% 0.3%

Disgust 0% 0% 4.3% 0% 6.6% 74.9%

Table 9. Confusion matrix for the EmoDB dataset and generated dataset.

Predict

Neutrality Happiness Sadness Anger Fear Disgust

True

Neutrality 100% 0% 2.9% 0% 0% 0%
Happiness 0% 87.3% 0% 4.5% 0% 0%

Sadness 0% 0% 95.6% 0.1% 0% 0%
Anger 0% 2.5% 0% 95.1% 0% 0%
Fear 0% 0% 3.6% 0% 92.5% 2.4%

Disgust 0% 0% 0% 1.4% 4.1% 86.6%

The above experimental results show that, overall, the classification accuracy of the
generated emotion speech data is higher than that of the EmoDB and RAVDESS datasets,
but when looking at the emotions of anger and fear, the number of misclassifications
of anger as fear in RAVDESS increased by 1.3%, and the number of misclassifications
of happiness as anger in EmoDB increased by 0.5%. Therefore, although improvements
were made for each emotion, it was confirmed that there are generated data where the
boundaries between specific emotions are blurred.

In [9], data augmentation and dataset construction using DCGAN were performed
using EmoDB and RAVDESS in the same way as this paper, and it can be seen from
the results of the augmented dataset that the emotion recognition model was used to
complete data augmentation with a higher emotion recognition rate than the existing
emotion datasets, EmoDB and RAVDESS.

This paper augments the data compared to [9], but the experimental design and
process are different, so we checked the emotion recognition rate of the proposed diffusion
model compared to the results of existing studies.

The following tables (Tables 10 and 11) compare the difference between the emotion
recognition accuracy results (the match between the ground-truth and the predicted emo-
tion) of this paper and paper [9] for each emotion with the results of the datasets generated
based on the RAVDESS and EmoDB datasets.

Table 10. Comparing the accuracy of emotion recognition methods using EmoDB-based augmented
datasets.

Differences in
Recognition Accuracy

Proposed Method

Neutrality Happiness Sadness Anger Fear Disgust

Baek, Ji-Young
et al. [9]

Neutrality 0%p 0%p 2.9%p 0%p 0%p 0%p
Happiness 0%p 5.5%p 0%p −13.7%p 0%p 0%p

Sadness 0%p 0%p 6.7%p 0.1%p −11.1%p 0%p
Anger 0%p −2.8%p 0%p 0.4%p 0%p 0%p
Fear 0%p 0%p −5.4%p 0%p 1.6%p 2.4%p

Disgust 0%p 0%p −14.3%p 1.4%p 4.1%p 0.9%p
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Table 11. Comparing the accuracy of emotion recognition methods using RAVDESS-based augmented
datasets.

Differences in
Recognition Accuracy

Proposed Method

Neutrality Happiness Sadness Anger Fear Disgust

Baek, Ji-Young
et al. [9]

Neutrality 15.2%p 0.8%p −14.8%p −7.1%p −6.6%p −13.1%p
Happiness −2.5%p 31.7%p −16.5%p −5.2%p −6.6%p −6.9%p

Sadness −2.4%p −3%p 6.1%p 0.1%p 1.8%p 0.8%p
Anger 0.3%p −3.1%p 0.8%p 1.3%p −0.2%p 0.6%p
Fear −3.8%p 3.1%p −13.8%p 0.9%p 13.7%p −4.1%p

Disgust 0.7%p −3.4%p −13.4%p 3.7%p 3.6%p 2.4%p

Tables 10 and 11 compare the emotion recognition accuracy of the proposed method
in this paper with the results of paper [9]. This is a comparative analysis of how much
higher or lower the emotion recognition performance of the proposed method is compared
to paper [9].

The results show that for the same emotion, the proposed method is more accurate
than the original study [9]. The proposed method and paper [9] have the same dataset
augmented with a generative model, but paper [9] only imitates the original correct answer
data and does not generate it perfectly. However, the proposed method differs from
paper [9] in that the diffusion model trained with emotion and speech information generates
a new mel-spectrogram in response to the user’s conditional input.

Also, the accuracy of misclassification in the proposed method is high in some cases,
such as nervous–angry, which is one of the points to be improved in future research, but
since the purpose of this paper is to augment good emotion data, we focused on accurate
emotion classification, and the comparison shows that the proposed method performs
better in augmenting and generating emotion data.

Finally, the learning completeness of a classification model is evaluated by precision,
recall, F1 score, etc. Therefore, we objectively checked the degree of emotion improvement
of the generated data through the classification model evaluation metrics. The evaluation
was conducted on the emotion labels of the existing dataset and the generated dataset, and
the amount of data in EmoDB and RAVDESS was adjusted appropriately [31].

Table 12 shows the classification model evaluation metrics between the generated
dataset and the existing dataset.

Table 12. Emotion classification model evaluation metrics.

EmoDB, Generated Data RAVDESS, Generated Data

Accuracy 0.9831 0.8436
Precision 0.9834 0.8511

Recall 0.9831 0.8436
F1 score 0.9831 0.8437

6. Conclusions

In this study, we generated emotional speech data using diffusion models, which have
recently gained attention, and conducted experiments to verify whether the generated data
represent distinct emotions. RAVDESS and EmoDB datasets were used for the experiments.
We extracted mel-spectrogram features from the emotional speech data and used them as
input data for the diffusion model and implemented an encoder to convert the data into
training data, including mel-spectrogram feature extraction and normalization, a diffusion
model, and an emotion recognition model to evaluate the generated data and embed
emotions in the data.

The diffusion model is a model that is currently prominent in the image field, which
injects and extracts noise to generate data that the user wants. Therefore, in this paper, in
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addition to mel-spectrogram data with emotion embedding through the encoder, we used
text containing the user’s requirements as a conditional input to the model to generate the
desired data.

To evaluate the quality of the generated data, we judged the degree of emotion en-
hancement with the ResNet-based model used in the emotion embedding process. We
compared the recognition accuracy for each emotion with WA and UA to see if the emotion
attributes of the generated data became clearer, which can be helpful for emotion recogni-
tion and synthesis. We also checked the prediction accuracy of the generated data by label
with the confusion matrix, and checked whether the emotion classification of the generated
data was correct in terms of recall, precision, and F1 score, which are classification model
evaluation metrics.

As AI advances, the most important issue is data-related. In order to create a well-
performing AI model, you need to have good quality data. It is very difficult to collect good
quality data, but this paper confirmed that the diffusion model is an effective method for
building a high-performance model by generating data that is improved from the existing
data. In future research, along with the improvement of the diffusion model, we will
explore ways to improve the regions where the boundaries are blurred in certain emotions
by utilizing more datasets, and explore more emotions and situations, and apply and test it
in real-world applications to increase the naturalness of the generated data and the accuracy
of emotion expression.

This research shows that voice data generation technology that can accurately express
emotions can make human–machine interaction more natural and humanized. This can lead
to applications in various industries such as education, entertainment, and virtual reality,
as well as the development of emotional AI, and will inspire new forms of communication
and content creation. Therefore, this paper makes an important contribution to the field
of emotional speech data generation using diffusion models and is expected to further
promote research and development in this field.
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