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Abstract: In recent studies, the Contrastive Language–Image Pretraining (CLIP) model has showcased
remarkable versatility in downstream tasks, ranging from image captioning and question-answering
reasoning to image–text similarity rating, etc. In this paper, we investigate the effectiveness of CLIP
visual features in predicting perceptual image quality. CLIP is also compared with competitive large
multimodal models (LMMs) for this task. In contrast to previous studies, the results show that
CLIP and other LMMs do not always provide the best performance. Interestingly, our evaluation
experiment reveals that combining visual features from CLIP or other LMMs with some simple
distortion features can significantly enhance their performance. In some cases, the improvements are
even more than 10%, while the prediction accuracy surpasses 90%.

Keywords: LMMs; CLIP; visual features; image quality assessment; distortion features

1. Introduction

In the dynamic realm of visual content, various types of distortions are inherent in
its life cycle, such as generation, processing, and delivery [1–3]. This has given rise to an
increasing need for evaluating image quality without any reference points. In the domain
of image quality assessment, particularly in the blind image quality assessment task,
the emphasis has historically been on leveraging distortion features exclusively [1,2,4,5].
Recent developments have witnessed significant progress in the alignment of images
with accompanying text, such as Contrastive Language–Image Pretraining (CLIP) [6]. In
addition to the multimodal uses of CLIP [7–11], the visual features provided by CLIP have
showcased remarkable versatility in diverse applications, such as captioning [12–15], object
detection [16], semantic image segmentation [17], cross-modal retrieval tasks [18–20], etc.
This wide-ranging utilization underscores the broad applicability and robust performance
of CLIP and its derivatives across a spectrum of interdisciplinary challenges. Fueling
this progress is the availability of massive training data used to train the image and text
encoder blocks.

In this paper, our goal is to investigate how effective CLIP visual features work in
image quality assessment. This is an interesting issue because, although CLIP was trained
with a huge number of images and associated texts, there could be few hints for CLIP to
learn which images have distortions or artifacts. So, it is not clear whether CLIP’s visual
features can represent the perceptual distortions present in images.

To this end, an evaluation of CLIP’s visual features for the image quality assessment
(IQA) task is carried out. In particular, CLIP’s features are compared with those of related
large multimodal models (LMMs), such as HPS [21], ALTCLIP [22], and ALIGN [23],
and conventional features of image quality models. Through extensive experiments, it is
shown that CLIP does not always provide the best performance, as seen in Figure 1. Here,
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the performance metrics are the Pearson Linear Correlation Coefficient (PLCC) and the
Spearman Ranking Correlation Coefficient (SROCC) [24].

Figure 1. Performance of CLIP visual features compared with other LMMs on four public natu-
ral datasets.

Remarkably, it has been observed that augmenting LMMs with simple distortion fea-
tures yields a substantial enhancement in performance. This implies that service providers
can efficiently extract feature vectors using various APIs and then incorporate these vectors
for the purpose of quality assessment. The synergistic combination of large pretrained
models with more straightforward distortion features showcases a promising avenue
for assessing image qualities. To the best of our knowledge, this is the first work that
comprehensively evaluates the image features of CLIP and related models for image qual-
ity assessment.

The remainder of this paper is organized as follows. Section 2 reviews and ana-
lyzes related research works, while Section 3 describes our evaluation architecture, the
datasets used, and our implementation details. In Section 4, the evaluation results and the
experimental findings are presented. Finally, concluding remarks are given in Section 5.

2. Related Work

This section highlights the relevant related literature in image quality assessment.
Additionally, LMMs and recent research that explores using their features are presented.

2.1. Perceptual Quality Assessment

Perceptual image quality evaluation takes into account human perception factors
to assess how well an image reproduces the content, colors, textures, and overall visual
experience. It can be divided into three broad categories: full-reference (FR), reduced-
reference (RR), and no-reference (NR) or blind image quality assessment (BIQA) [25,26].
BIQA refers to the process of evaluating the quality of a distorted image without using a
reference image for comparison. It is a challenging task, as it requires the model to analyze
the image content and identify potential artifacts or distortions that may affect its quality.
There are various approaches to IQA, ranging from hand-crafted features [27–30] to deep
learning-based methods [24,31–36].
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Deep learning-based approaches have shown remarkable success in accurately evalu-
ating image quality by leveraging the power of deep neural networks. However, a common
challenge faced by deep learning methods is the availability of large-scale training datasets.
In some cases, the limited availability of annotated image samples can affect the perfor-
mance of IQA models [2,33]. To address this, transfer learning has been proposed as an
effective solution [37,38]. Transfer learning involves pretraining a neural network on a
large-scale image dataset. Subsequently, the pretrained model is fine-tuned on the IQA task
using the available annotated IQA data. This approach was successfully applied in [33–35],
where the models were pretrained on ImageNet [39] and then adapted to predict image
quality scores. Additionally, the meta-learning approach in [2] can be applied to enhance
the ability of IQA models to learn other distortion types prevalent in images. By employ-
ing meta-learning, the model can acquire knowledge about a wide range of distortions,
improving their generalization capabilities and adaptability to diverse image datasets [2].

2.2. Large Multimodal Models

In recent times, multimodal or cross-modal learning has emerged as a thriving research
area, particularly for downstream tasks like image–text similarity evaluation and image
retrieval tasks. Researchers have made significant contributions by proposing robust
learning models such as CLIP [6], ALIGN [23], HPS [21], ALTCLIP [22], etc., all of which aim
to uncover and understand the intricate relationship between vision and language. These
models often leverage advanced architectures, such as vision transformers [40], CNNs, or
pretrained ResNet models [41], to effectively capture and analyze complex relationships
within and between different modalities. The development of large multimodal models
has been facilitated by advancements in deep learning, computational resources, and the
availability of vast and diverse datasets.

The visual features of LMMs trained by text supervision can be applied for various
downstream tasks. Notably, recent research conducted in [12] underscores the “unreason-
able effectiveness” of the CLIP features for image captioning. They discovered that CLIP is
currently one of the best visual feature extractors. Also, the research in [42] showed that
CLIP can understand image aesthetics better. In their experiment, the authors trained a
linear regression model using the CLIP visual features extracted from AVA datasets. Their
finding shows that CLIP visual features outperform features from an ImageNet classifica-
tion model. Similar to [12], the frozen CLIP features were employed in [43] for the video
recognition task. It was also found that CLIP features are very effective in representing
spatial features at the frame level. In the context of embodied AI tasks (e.g., robotics) [44],
the use of CLIP features has been shown to be very simple but more effective than the
features of ImageNet-pretrained models.

In this paper, we explore another important question: are CLIP visual features effec-
tive for perceptual image quality assessment? For this purpose, CLIP is compared with
related large multimodal models, and its features are compared with those of conventional
quality models.

3. Evaluation Methodology

In this section, we present a description of our evaluation architecture, LMM features,
and distortion features. Also, an overview of the datasets and implementations used in our
evaluation is provided.

3.1. Evaluation Architecture

Our purpose is to evaluate features from LMMs such as CLIP and related models. So,
the selection and comparison of features are important for a meaningful evaluation. For
this, the features were selected from various models with different degrees of complexity,
as presented in Sections 3.2 and 3.3. Also, similar to [12], as a large number of models and
their feature combinations were considered in our study, we adopted a simple architecture,
as depicted in Figure 2. The flow of feature processing and quality prediction is as follows.
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First, we extract and compare visual features from each LMM. Distorted images are passed
through the image encoder block, and the visual features are extracted and input into the
fully connected (FC) layer block, which serves as a regressor. Features from three typical
image quality models (namely, a pretrained image quality metric, a statistical metric, and
a lightweight CNN metric) are also included for comparison purposes. Second, visual
features from each LMM are concatenated with the distortion features of a certain quality
model, which is controlled by a switch in our architecture. Then, the vector of concatenated
features is processed by the FC block to predict a quality score. The final output from the FC
block is pass through a sigmoid function. The output of the sigmoid function is interpreted
as the quality score between 0 and 1. During training, the objective is to minimize the Mean
Squared Error (MSE) to measure the difference between the predicted score and Mean
Opinion Score. The Mean Opinion Score (MOS) is a measure of perceived quality. It is an
average score obtained through subjective experiments where subjects are asked to rate the
images. According to the ITU-T standard P.800.1 [45], the rating typically has five levels:
5 (excellent), 4 (good), 3 (fair), 2 (poor), and 1 (bad). For image quality prediction, the MOS
serves as the ground truth to judge the predicted quality score.

Figure 2. Architecture of our evaluation study.

3.2. LMM Features

Image features are obtained by applying the respective model encoder directly to the
input image in Figure 2. These model encoders are pretrained on large-scale image–text
datasets such as CC-3M [46], WebText [47], Laion-400M and 5B [48,49], ALIGN training
data [23], and COYO-700M [50], and they are evaluated on downstream datasets (e.g.,
MsCOCO [51], PascalVOC2007 [52], Flickr30k [53]) They have the capability of capturing
high-level visual representations from the image data. In our study, the LMMs include
CLIP [6], HPS [21], ALIGN [23], and AltCLIP [22].

3.2.1. CLIP (Contrastive Language–Image Pretraining)

CLIP [6] is a powerful model created by OpenAI for learning visual representations
from natural language supervision. Trained on a vast dataset pairing images with textual
descriptions, CLIP excels in tasks like visual classification and image–text retrieval [6].
CLIP is trained on WebImageText datasets [6] created by collecting 400 M image–text pairs
publicly available on the Internet. It has both ViT- [40] and ResNet-based [41] backbones.
For ViT-based CLIP models, CLIP ViT-/14 has 304 million parameters. CLIP ViT-B/32 and
CLIP ViT-B/16 have 87.8 million and 86.2 million parameters, respectively. ResNet-based
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CLIP versions include RN50, RN101 (where 50 and 101 indicate the model depth), RN50x4,
RN50x16, and RN50x64 (where x denotes up-scaling). CLIP-RN50x64 is the largest, with
420 million parameters, while CLIP-RN50 is the smallest, with 38.3 million parameters.
CLIP-RN101 has 56.2 million parameters.

3.2.2. ALTCLIP (Alter Ego CLIP)

ALTCLIP [22] is a bilingual model designed to understand both English and Chinese.
It enhances the text encoder of CLIP with XLM-R [54], a multilingual pretrained model.
This means that the text encoder is a student text encoder that has learned from a teacher
training stage. It uses the Conceptual Captions (CC-3M) [46] and TSL2019-5M [55] datasets
as training data. The student text encoder possesses similar capabilities to the multilingual
model that is used as its teacher model. Comparing both CLIP and ALTCLIP on down-
stream tasks like image classification using both the English and Chinese languages, CLIP
outperformed ALTCLIP on the English language, while ALTCLIP outperformed CLIP on
the Chinese language [22]. ALTCLIP enables cross-language understanding, allowing it to
process and interpret information in both English and Chinese [22].

3.2.3. HPS (Human Preference Score)

HPS is a model designed to solve the misalignment issues (artifacts) inherent in gener-
ated images using human preferences. The study was divided into two parts: firstly, the
authors [21] collected a large-scale dataset guided by human preference. Second, they de-
signed a human preference classifier (HPC) using the collected dataset as training data [21].
The dataset is made up of 98,807 images created by 25,205 prompts of human choices. For
each prompt, multiple images are provided. The user selects one image as the preferred
choice, while the remaining images are considered non-preferred negatives [21]. The classi-
fier was designed by fine-tuning CLIP ViT-L/14 with a few modifications. For both image
and text encoder blocks, they used only the last 10 and 6 layers. The collected dataset was
used as training data to achieve accurate semantic understanding and preference scoring.
HPS was designed to guide models to generate human-preferred images.

3.2.4. ALIGN (A Large-Scale ImaGe and Noisy-Text Embedding)

ALIGN is an LMM that aligns images and noisy texts using straightforward dual
encoders. It was developed as an LMM competitive with CLIP. Its image encoder backbone
was designed using EfficientNet [56]. For the text encoder, the BERT base model was
used. Its training data are approximately one billion noisy image alt-text pairs [23]. For
image and text encoders, it has approximately 480 M and 340 M parameters, respectively.
ALIGN also employs a contrastive loss to train image and text encoders. This approach
facilitates the alignment of visual and textual information, making it an effective model for
understanding the relationships between images and their associated noisy texts. ALIGN
outperformed CLIP in downstream tasks such as image–text retrieval (Flickr30k-1K test set
and MsCOCO-5K test set) and the image classification task (ImageNet) [23]. In this study,
the implementation in [57], which is available in the transformer library, was used.

3.3. Distortion Features

For comparison, we also employed perceptual distortion features provided by various
models that focus on the perceptual image quality. Three models were selected with
increasing levels of complexity, namely, a statistical model, a lightweight CNN model, and
a meta-learning model. This is important for understanding how effective LMM features
are in comparison to the features that have been conventionally used to predict the quality
of images.

3.3.1. Statistical Features

We used the BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) algo-
rithm [28]. BRISQUE was developed based on the observation that the normalized lumi-
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nance coefficients of natural images follow a nearly Gaussian distribution. This means that
the presence of distortions can be attributed to the possible loss of naturalness. The authors
designed BRISQUE [28] by using the scene statistics of locally normalized luminance coeffi-
cients to account for losses of naturalness. BRISQUE features are generated by applying
the BRISQUE algorithm to each image sample. The resulting feature vector has a size of 36.

3.3.2. Lightweight CNN Features

A very simple CNN model for image quality assessment, denoted by CNNIQA [31],
was employed. It is one of the earliest models developed for no-reference quality assess-
ment. The structure is simple, with only one convolutional layer. The pooling operations
include both max pooling and min pooling to pool features. For regression, 2 fully con-
nected layers with a vector size of 800 are used. In training, both feature learning and the
regression process are jointly optimized.

3.3.3. Meta-Learning Features

The state-of-the-art MetaIQA model [2] was included for our quality evaluation. This
approach is based on meta-learning, which involves learning the shared meta-knowledge in-
herent in diverse image distortions, thereby mimicking the human visual system (HVS). The
meta-learning model is based on a ResNet-18 model extensively trained on the TID2013 [58]
and KADID-10k [59] datasets to learn the essential aspects of image quality distortions. The
model uses bi-level gradient optimization to learn the shared meta-knowledge. To adapt
to unknown data, we fine-tuned the pretrained MetaIQA model. Compared to BRISQUE
and CNNIQA, the features of MetaIQA provide a much deeper representation of image
quality characteristics.

3.4. Combined Features

In this study, the combined features between an LMM and a quality model were also
considered. It is possible that LMMs may not have been trained with distorted images
as image quality models. Therefore, augmenting LMM features with distortion features
could be effective. This results in twelve (12) different combinations between the above
four LMMs (CLIP, ALTCLIP, HPS, ALIGN) and the three IQA models (BRISQUE, CNNIQA,
MetaIQA). As shown later in the experiments, it turns out that even the simple hand-
crafted features of BRISQUE are surprisingly effective in boosting the performance of every
LMM’s features.

3.5. Datasets and Implementation Details

In our evaluation, four authentically distorted IQA datasets were used. They are
KonIQ-10k [60], LIVE [61], SPAQ [62], and CID2013 [63]. Through this thorough assessment,
we are able to see how well the features of each LMM perform across a wide range of
authentic distorted IQA datasets. Table 1 shows the characteristics of each of the selected
IQA datasets. It also highlights some properties of the datasets used in our evaluation,
such as the MOS range, the number of samples, and the type of subjective experiment
conducted.

Table 1. Summary of IQA datasets.

Dataset Total Samples Subjective
Assessment MOS Range Distortion Details

LIVE 1162 Crowd-sourced 0–100 Blurry, grainy, noise over/under camera exposure, etc.

KonIQ-10k 10,073 Crowd-sourced 1–5 Camera shakes, wrong focus, motion blur, compression,
noise, etc.

SPAQ 11,125 Laboratory 0–100 Lens flare, chromatic aberrations, camera movement, etc.

CID2013 474 Laboratory 0–100 Photon noise, pixel defects, pixel saturation, optical
aberrations, etc.
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Our evaluation was implemented in PyTorch 1.10.2 for the training and testing tasks.
The experimental settings, such as the learning rate, epochs, and batch size, were similar to
those of MetaIQA [2]. To extract CLIP features, we used CLIP ViT-B/16 with a feature size
of 512. ALTCLIP and HPS models were designed with CLIP ViT-L/14, resulting in a feature
size of 768. The ALIGN model is based on EfficientNet B7 and outputs an image feature
size of 640. For distortion features, the CNNIQA [31] model was adapted by resizing the
default feature vector size from 800 to 512. The feature vector is passed through an FC
block consisting of 3 layers. Layer 1 takes the feature vector as input, layer 2 has a size of
512, and layer 3 culminates in a single scalar value, which represents the quality score. Due
to the small feature size of BRISQUE features (36), the number of FC layers was reduced to
2, with an input size of 36 and an output size of 1. The Adam optimizer [64] was used in all
experiments.

4. Experiments

This section presents the experimental settings and the evaluation results. Also, the
trends of different feature combination cases are discussed in detail.

4.1. Experimental Settings

In our experiment, two widely recognized metrics, SROCC and PLCC, were used to
evaluate the no-reference quality assessment [1,24]. These metrics are used to quantify
non-linear and linear relationships between the ground-truth MOS and the predicted scores.
The scale spans from −1 to 1, where higher values signify superior predictive accuracy.

For LIVE and KonIQ-10k, we used the splitting described in [2]. For SPAQ, similar
splitting to that in [62] was used. In each of the three datasets, 80% of the images were
used as training samples, while the remaining 20% was used for testing. CID2013 contains
6 subsets in each set; we used four (4) subsets from each set for training and two (2) subsets
for testing. For each dataset, we performed the random train–test splitting procedure
10 times and report the mean PLCC and SROCC values, along with the corresponding
standard deviation (std) values. The experiment was carried out on a computer with an
NVIDIA RTX 3090 GPU.

4.2. Evaluation Results

In this part, we first compare features from different LMMs and quality models. Then,
the combinations of LMM features with distortion features are investigated. Also, the
performance trends and behaviors of the features are discussed in detail.

The performance comparison of the features is shown in Table 2. The results reveal that
MetaIQA consistently achieves the highest performance in most cases. The performance of
LMM features is good but usually lower than that of MetaIQA. The only exceptions are the
SRCC values of CLIP features on the CID2013 dataset and the HPS features on the LIVE
dataset, which are a little higher than those of MetaIQA. Anyway, LMM features perform
significantly better than the features of BRISQUE and CNNIQA. This means that large
models, though trained in a general manner, can extract more distortion information than
the hand-crafted or simple features of BRISQUE and CNNIQA.

The results also show that using CLIP features does not always provide the best
results. More specifically, it is interesting that, when considering LMMs only, each LMM
has the best performance on only one dataset (i.e., CLIP on CID2013, ALIGN on KonIQ-10k,
ALTCLIP on SPAQ, and HPS on LIVE). So, no LMM can be considered the best model in
this experiment.

The above results suggest that these LMMs might not have been as extensively trained
with various visual distortions as MetaIQA. So, LMM features may be augmented by
distortion-oriented features. For this reason, we further investigated various cases of
feature combinations between an LMM and a conventional quality model. Tables 3–5
show the results of LMM features combined with the features of BRISQUE, CNNIQA, and
MetaIQA, respectively.
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Table 2. Performance comparison using only LMM visual features on the four selected datasets. Red
and blue boldfaced entries indicate the best and second best for EACH model.

MODEL
LIVE KONIQ-10k SPAQ CID2013

PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std)

BRISQUE 0.5071 (0.050) 0.4846 (0.052) 0.7197 (0.0109) 0.7013 (0.013) 0.8170 (0.006) 0.8090 (0.007) 0.4410 (0.039) 0.4426 (0.037)

CNNIQA 0.4527 (0.051) 0.4263 (0.064) 0.7172 (0.012) 0.6505 (0.014) 0.8050 (0.008) 0.7978 (0.009) 0.5495 (0.052) 0.3298 (0.063)

MetaIQA 0.8387 (0.023) 0.8025 (0.028) 0.8835 (0.005) 0.8454 (0.005) 0.9030 (0.004) 0.9007 (0.004) 0.7324 (0.029) 0.6561 (0.048)

CLIP 0.8079 (0.015) 0.7622 (0.013) 0.8608 (0.004) 0.8273 (0.008) 0.8844 (0.003) 0.8802 (0.003) 0.7126 (0.022) 0.6764 (0.029)

ALIGN 0.7243 (0.028) 0.7099 (0.018) 0.8620 (0.006) 0.8385 (0.006) 0.8743 (0.004) 0.8725 (0.004) 0.5953 (0.036) 0.5369 (0.049)

ALTCLIP 0.7444 (0.034) 0.7171 (0.025) 0.8609 (0.005) 0.8251 (0.005) 0.8914 (0.004) 0.8868 (0.004) 0.5194 (0.036) 0.4798 (0.045)

HPS 0.8290 (0.024) 0.8028 (0.024) 0.8600 (0.008) 0.8284 (0.009) 0.8893 (0.004) 0.8860 (0.004) 0.6534 (0.022) 0.5972 (0.020)

In Tables 3–5, it is interesting to see that adding distortion features can significantly
boost the performance of all LMMs. For instance, examining Table 3 (last row), the combina-
tion of HPS features and BRISQUE (hand-crafted) features provides the best results on three
datasets (LIVE, KonIQ-10k, SPAQ), which are higher than those of MetaIQA. Meanwhile,
on CID2013, the combination of CLIP and BRISQUE is the best among all LMMs and better
than MetaIQA.

Table 3. Performance comparison using LMM visual features and the BRISQUE model on the
four selected datasets. Red and blue boldfaced entries indicate the best and second best for each
fusion type.

FUSION TYPE
LIVE KONIQ-10k SPAQ CID2013

PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std)

CLIP +
BRISQUE 0.8276 (0.013) 0.7806 (0.015) 0.8838 (0.003) 0.8549 (0.006) 0.8959 (0.003) 0.8921 (0.003) 0.7457 (0.021) 0.7171 (0.026)

ALIGN +
BRISQUE 0.7895 (0.028) 0.7695 (0.023) 0.8782 (0.004) 0.8579 (0.005) 0.8902 (0.005) 0.8889 (0.004) 0.6953 (0.037) 0.6367 (0.055)

ALT +
BRISQUE 0.8372 (0.018) 0.8012 (0.014) 0.8794 (0.006) 0.8503 (0.005) 0.9017 (0.003) 0.8980 (0.003) 0.6091 (0.032) 0.5615 (0.041)

HPS +
BRISQUE 0.8529 (0.019) 0.8255 (0.016) 0.8962 (0.005) 0.8687 (0.006) 0.9069 (0.003) 0.9032 (0.003) 0.7030 (0.020) 0.6516 (0.023)

Table 4. Performance comparison using LMM visual features and CNNIQA on the four selected
datasets. Red and blue boldfaced entries indicate the best and second best for each fusion type.

FUSION TYPE
LIVE KONIQ-10k SPAQ CID2013

PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std)

CLIP +
CNNIQA 0.8359 (0.011) 0.7925 (0.014) 0.8918 (0.004) 0.8607 (0.007) 0.9044 (0.003) 0.9005 (0.003) 0.7658 (0.018) 0.7316 (0.022)

ALIGN +
CNNIQA 0.8002 (0.025) 0.7791 (0.020) 0.8870 (0.004) 0.8644 (0.005) 0.8963 (0.004) 0.8950 (0.004) 0.7741 (0.029) 0.7152 (0.036)

ALT +
CNNIQA 0.8469 (0.017) 0.8144 (0.013) 0.8866 (0.006) 0.8564 (0.006) 0.9056 (0.000) 0.9023 (0.004) 0.7123 (0.029) 0.6598 (0.031)

HPS +
CNNIQA 0.8602 (0.018) 0.8364 (0.015) 0.9028 (0.006) 0.8738 (0.007) 0.9117 (0.000) 0.9084 (0.003) 0.6864 (0.027) 0.6283 (0.015)
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Table 5. Performance comparison using LMM visual features and METAIQA on the four selected
datasets. Red and blue boldfaced entries indicate the best and second best for each fusion type.

FUSION TYPE
LIVE KONIQ-10k SPAQ CID2013

PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std) PLCC↑ (Std) SRCC↑ (Std)

CLIP +
MetaIQA 0.8623 (0.018) 0.8326 (0.023) 0.9105 (0.004) 0.8794 (0.006) 0.9085 (0.004) 0.9051 (0.003) 0.7719 (0.031) 0.7230 (0.042)

ALIGN +
MetaIQA 0.8529 (0.024) 0.8187 (0.028) 0.9098 (0.004) 0.8834 (0.005) 0.9061 (0.004) 0.9033 (0.003) 0.7516 (0.026) 0.6888 (0.043)

ALT +
MetaIQA 0.8541 (0.021) 0.8200 (0.026) 0.9109 (0.004) 0.8801 (0.005) 0.9099 (0.004) 0.9069 (0.003) 0.7474 (0.034) 0.6818 (0.050)

HPS +
MetaIQA 0.8503 (0.023) 0.8161 (0.027) 0.9097 (0.005) 0.8777 (0.006) 0.9076 (0.004) 0.9046 (0.004) 0.7519 (0.033) 0.6901 (0.049)

It should be noted that BRISQUE’s features are simply hand-crafted, and its own per-
formance is very low, as shown in Table 2. However, it is surprisingly effective in improving
the performance of LMM features. The reason could be that BRISQUE features contain
low-level distortion information, which is missed by the high-level features of LMMs.

When the features of CNNIQA or MetaIQA are combined with the features of an
LMM, the performance, in most cases, is further improved. This can be explained by the
fact that the distortion features of CNNIQA or MetaIQA are learned features, so they are
better than the hand-crafted features of BRISQUE.

The visualization of the data in Tables 2–5 is provided in Figure 3, where each curve
shows the performance (in terms of PLCC and SROCC) for each LMM. The horizontal axis
of each graph represents four cases: (1) original (denoted by “Orig”), (2) combination with
BRISQUE (denoted by “Orig + BRISQUE”, (3) combination with CNNIQA (denoted by
“Orig + CNNIQA”), (4) combination with MetaIQA (denoted by “Orig + Meta”). In Figure 3,
the performance trends of LMM features when combined with distortion features can be
more easily recognized. It is obvious that, in most cases, the gains obtained by combining
features with BRISQUE, CNNIQA, or MetaIQA features increase in ascending order. This
means that distortion features learned by meta-learning (i.e., MetaIQA) are richer than
those by lightweight CNN learning (i.e., CNNIQA), which are, in turn, better than the
simple hand-crafted features of BRISQUE. Some exception cases occur with HPS, where
some combinations do not follow this trend. For example, on the LIVE dataset (Figure 3a,b),
when HPS features are combined with BRISQUE features and CNNIQA features, the PLCC
value is improved from 0.8290 to 0.8529 (approx. 3%) and 0.8602 (approx. 4%), respectively.
But the result of the combination with MetaIQA features is just 0.8503, which is lower than
that of the combination with BRISQUE. Similar behavior can be found with HPS on the
SPAQ dataset. Anyway, the results of such exception cases are still better than those of
using only HPS features. This phenomenon can be explained as follows. The combination
of MetaIQA and HPS features may not effectively exploit the combination because both
MetaIQA and HPS produce rich features, which are possibly not complementary to each
other. The evaluation results suggest that LMMs only need to be combined with simple
distortion features to compete with state-of-the-art quality metrics.

From Figure 3, it can also be seen that the performance of LMM features when aug-
mented by distortion features varies across datasets. In particular, CLIP features are only
the best the on CID2013 dataset. On other datasets, the performance of HPS features is
mostly higher than or comparable to that of other LMMs’ features. Notably, though the
ALIGN model is the main competitor of CLIP, the performance of its features is usually
lower than that of CLIP features. One exception case is the SROCC curve of ALIGN on
KonIQ-10k (Figure 3d). This suggests that CLIP should be preferred to ALIGN in IQA tasks.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Performance trends of feature combinations between LMM visual features and distortion
features on the four IQA datasets. (a) PLCC on LIVE. (b) SROCC on LIVE. (c) PLCC on KonIQ-10k.
(d) SROCC on KonIQ-10k. (e) PLCC on SPAQ. (f) SROCC on SPAQ. (g) PLCC on CID2013. (h) SROCC
on CID2013.

Figures 4–7 present scatter plots, which are used to elucidate the relationship between
the predicted quality score produced by our evaluation architecture and the ground-truth
MOS. The scatter plots can also be used to identify anomalous patterns, outliers, or clusters
that exist between the two values. As previously mentioned, our experiment involved
10 random data splits, and in this presentation, we show the results of the last split (10)
and epoch 25. The scatter points marked in red, orange, and green signify the results pro-
vided by the combination of MetaIQA + LMM, BRISQUE + LMM, and CNNIQA + LMM,
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respectively. The results of using only LMM visual features are represented in blue color.
Despite the observation of a positive relationship, it is notable that there is sparsity along
the diagonal line when only LMM visual features are utilized during training. Notably, as
we transition from utilizing only LMM visual features to combining them with distortion
features, there is a discernible enhancement in the correlation between the predicted quality
score and the ground-truth MOS values.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Scatter diagrams showing the combination of LMM and perceptual features on the LIVE
dataset. Blue: LMM visual features; orange: LMM + BRISQUE; green: LMM + CNNIQA features; red:
LMM + MetaIQA. (a) ALIGN training. (b) ALIGN validation. (c) ALTCLIP training. (d) ALTCLIP
validation. (e) CLIP training. (f) CLIP validation. (g) HPS training. (h) HPS validation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Scatter diagrams showing the combination of LMM and perceptual features on the KonIQ-
10k dataset. Blue: LMM visual features; orange: LMM + BRISQUE; green: LMM + CNNIQA features;
red: LMM + MetaIQA. (a) ALIGN training. (b) ALIGN validation. (c) ALTCLIP training. (d) ALTCLIP
validation. (e) CLIP training. (f) CLIP validation. (g) HPS training. (h) HPS validation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Scatter diagrams showing the combination of LMM and perceptual features on the SPAQ
dataset. Blue: LMM visual features; orange: LMM + BRISQUE; green: LMM + CNNIQA features; red:
LMM + MetaIQA. (a) ALIGN training. (b) ALIGN validation. (c) ALTCLIP training. (d) ALTCLIP
validation. (e) CLIP training. (f) CLIP validation. (g) HPS training. (h) HPS validation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Scatter diagrams showing the combination of LMM and perceptual features on the CID2013
dataset. Blue: LMM visual features; orange: LMM + BRISQUE; green: LMM + CNNIQA features; red:
LMM + MetaIQA. (a) ALIGN training. (b) ALIGN validation. (c) ALTCLIP training. (d) ALTCLIP
validation. (e) CLIP training. (f) CLIP validation. (g) HPS training. (h) HPS validation.

5. Conclusions

Recently, the Contrastive Language–Image Pretraining (CLIP) model and related
large multimodal models (LMMs) have been introduced as key achievements in the deep
learning era. In this study, we investigated the use of the visual features of CLIP and related
LMMs for perceptual image quality assessment. Based on the obtained results and above
discussions, the key findings from this evaluation study can be summarized as follows:

• The features of LMMs still cannot be as effective as those of state-of-the-art IQA models.
This could be because the training data of these models do not specifically include
distorted images with quality scores as labels. However, the performance of LMM
features is much better than that of hand-crafted features or that of lightweight CNN.

• CLIP features have the best results on only one dataset. In fact, the performance of dif-
ferent LMMs varies widely, depending on the given dataset and the feature combination.

• The features of ALIGN, which is the main competitor of CLIP, usually are not as
effective as the features of CLIP and its variants in image quality assessment. In
addition, the cases involving features from HPS demonstrate exceptional performance,
especially on large IQA datasets.
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• An important finding is that distortion features can be combined with LMM features
to significantly boost performance. Even the very basic distortion features of BRISQUE
are useful in improving the performance of LMM features.

The above findings suggest that, in practice, developers may just extract LMM features
and simple distortion features using some existing APIs, without having to build new and
complex models for IQA. The synergistic combination of LMM visual features with tradi-
tional distortion features showcases a promising and efficient approach to image quality
assessment. In future work, we will extend our investigation to the quality assessment of
video contents.

Author Contributions: Conceptualization, C.O., J.F. and T.C.T.; methodology, C.O., J.F. and T.C.T.;
software, C.O. and J.F.; validation, C.O. and T.C.T.; investigation, C.O., J.F., and T.C.T.; resources,
C.O. and J.F.; data curation, C.O. and J.F.; writing—original draft preparation, C.O., J.F. and T.C.T.;
visualization, C.O.; supervision, T.C.T.; project administration, T.C.T.; funding acquisition, T.C.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by JSPS KAKENHI, Grant No. 22K12299.

Data Availability Statement: Derived data supporting the findings of this study are available from
the corresponding author on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nguyen, D.; Tran, H.; Thang, T.C. An ensemble learning-based no reference qoe model for user generated contents. In Proceedings

of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China, 5–9 July 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 1–6.

2. Zhu, H.; Li, L.; Wu, J.; Dong, W.; Shi, G. MetaIQA: Deep meta-learning for no-reference image quality assessment. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14143–14152.

3. Nguyen, H.N.; Vu, T.; Le, H.T.; Ngoc, N.P.; Thang, T.C. Smooth quality adaptation method for VBR video streaming over HTTP.
In Proceedings of the 2015 International Conference on Communications, Management and Telecommunications (ComManTel),
DaNang, Vietnam, 28–30 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 184–188.

4. Tran, H.T.; Nguyen, D.; Thang, T.C. An open software for bitstream-based quality prediction in adaptive video streaming. In
Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 225–230.

5. Tran, H.T.; Ngoc, N.P.; Hoßfeld, T.; Seufert, M.; Thang, T.C. Cumulative quality modeling for HTTP adaptive streaming. ACM
Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–24. [CrossRef]

6. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 8748–8763.

7. Alpay, T.; Magg, S.; Broze, P.; Speck, D. Multimodal video retrieval with CLIP: A user study. Inf. Retr. J. 2023, 26, 6. [CrossRef]
8. Wu, H.H.; Seetharaman, P.; Kumar, K.; Bello, J.P. Wav2clip: Learning robust audio representations from clip. In Proceedings of

the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27
May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 4563–4567.

9. Flaherty, J.; Onuoha, C.; Paik, I.; Thang, T.C. AI to Judge AI-Generated Images: Both Semantics and Perception Matter. In
Proceedings of the 2023 IEEE 13th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 3–5
September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 51–52.

10. Lan, Y.; Li, X.; Liu, X.; Li, Y.; Qin, W.; Qian, W. Improving Zero-shot Visual Question Answering via Large Language Models with
Reasoning Question Prompts. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29
October–3 November 2023; pp. 4389–4400.

11. Zhao, M.; Li, B.; Wang, J.; Li, W.; Zhou, W.; Zhang, L.; Xuyang, S.; Yu, Z.; Yu, X.; Li, G.; et al. Towards video text visual question
answering: Benchmark and baseline. Adv. Neural Inf. Process. Syst. 2022, 35, 35549–35562.

12. Barraco, M.; Cornia, M.; Cascianelli, S.; Baraldi, L.; Cucchiara, R. The unreasonable effectiveness of CLIP features for image
captioning: An experimental analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022; pp. 4662–4670.

13. Tang, M.; Wang, Z.; Liu, Z.; Rao, F.; Li, D.; Li, X. Clip4caption: Clip for video caption. In Proceedings of the 29th ACM
International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4858–4862.

14. Shen, S.; Li, L.H.; Tan, H.; Bansal, M.; Rohrbach, A.; Chang, K.W.; Yao, Z.; Keutzer, K. How much can clip benefit vision-and-
language tasks? arXiv 2021, arXiv:2107.06383.

15. Mokady, R.; Hertz, A.; Bermano, A.H. Clipcap: Clip prefix for image captioning. arXiv 2021, arXiv:2111.09734.

http://doi.org/10.1145/3423421
http://dx.doi.org/10.1007/s10791-023-09425-2


Electronics 2024, 13, 803 14 of 15

16. He, Y.; Huang, Z.; Liu, Q.; Wang, Y. Incremental Object Detection with CLIP. arXiv 2023, arXiv:2310.08815.
17. Wang, Z.; Lu, Y.; Li, Q.; Tao, X.; Guo, Y.; Gong, M.; Liu, T. Cris: Clip-driven referring image segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11686–11695.
18. Wang, J.; Wang, H.; Deng, J.; Wu, W.; Zhang, D. Efficientclip: Efficient cross-modal pre-training by ensemble confident learning

and language modeling. arXiv 2023, arXiv:2109.04699.
19. Huang, S.; Gong, B.; Pan, Y.; Jiang, J.; Lv, Y.; Li, Y.; Wang, D. VoP: Text-Video Co-operative Prompt Tuning for Cross-Modal

Retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 6565–6574.

20. Xia, X.; Dong, G.; Li, F.; Zhu, L.; Ying, X. When CLIP meets cross-modal hashing retrieval: A new strong baseline. Inf. Fusion
2023, 100, 101968. [CrossRef]

21. Wu, X.; Sun, K.; Zhu, F.; Zhao, R.; Li, H. Better aligning text-to-image models with human preference. arXiv 2023, arXiv:2303.14420.
22. Chen, Z.; Liu, G.; Zhang, B.W.; Ye, F.; Yang, Q.; Wu, L. Altclip: Altering the language encoder in clip for extended language

capabilities. arXiv 2022, arXiv:2211.06679.
23. Jia, C.; Yang, Y.; Xia, Y.; Chen, Y.T.; Parekh, Z.; Pham, H.; Le, Q.; Sung, Y.H.; Li, Z.; Duerig, T. Scaling up visual and vision-language

representation learning with noisy text supervision. In Proceedings of the International Conference on Machine Learning, Virtual,
18–24 July 2021; pp. 4904–4916.

24. Bosse, S.; Maniry, D.; Müller, K.R.; Wiegand, T.; Samek, W. Deep neural networks for no-reference and full-reference image
quality assessment. IEEE Trans. Image Process. 2017, 27, 206–219. [CrossRef]

25. He, L.; Gao, F.; Hou, W.; Hao, L. Objective image quality assessment: A survey. Int. J. Comput. Math. 2014, 91, 2374–2388.
[CrossRef]

26. Akhtar, Z.; Falk, T.H. Audio-visual multimedia quality assessment: A comprehensive survey. IEEE Access 2017, 5, 21090–21117.
[CrossRef]

27. Gao, X.; Gao, F.; Tao, D.; Li, X. Universal blind image quality assessment metrics via natural scene statistics and multiple kernel
learning. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 2013–2026.

28. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process.
2012, 21, 4695–4708. [CrossRef]

29. Moorthy, A.K.; Bovik, A.C. A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 2010,
17, 513–516. [CrossRef]

30. Saad, M.A.; Bovik, A.C.; Charrier, C. Blind image quality assessment: A natural scene statistics approach in the DCT domain.
IEEE Trans. Image Process. 2012, 21, 3339–3352. [CrossRef] [PubMed]

31. Kang, L.; Ye, P.; Li, Y.; Doermann, D. Convolutional neural networks for no-reference image quality assessment. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1733–1740.

32. Zhang, W.; Ma, K.; Yan, J.; Deng, D.; Wang, Z. Blind image quality assessment using a deep bilinear convolutional neural network.
IEEE Trans. Circuits Syst. Video Technol. 2018, 30, 36–47. [CrossRef]

33. Bianco, S.; Celona, L.; Napoletano, P.; Schettini, R. On the use of deep learning for blind image quality assessment. Signal Image
Video Process. 2018, 12, 355–362. [CrossRef]

34. Zeng, H.; Zhang, L.; Bovik, A.C. A probabilistic quality representation approach to deep blind image quality prediction. arXiv
2017, arXiv:1708.08190.

35. Talebi, H.; Milanfar, P. NIMA: Neural image assessment. IEEE Trans. Image Process. 2018, 27, 3998–4011. [CrossRef]
36. Ma, K.; Liu, W.; Zhang, K.; Duanmu, Z.; Wang, Z.; Zuo, W. End-to-end blind image quality assessment using deep neural

networks. IEEE Trans. Image Process. 2017, 27, 1202–1213. [CrossRef]
37. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE

2020, 109, 43–76. [CrossRef]
38. Ribani, R.; Marengoni, M. A survey of transfer learning for convolutional neural networks. In Proceedings of the 2019 32nd

SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), Rio de Janeiro, Brazil, 28–31 October 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 47–57.

39. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

40. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

42. Hentschel, S.; Kobs, K.; Hotho, A. CLIP knows image aesthetics. Front. Artif. Intell. 2022, 5, 976235. [CrossRef] [PubMed]
43. Lin, Z.; Geng, S.; Zhang, R.; Gao, P.; de Melo, G.; Wang, X.; Dai, J.; Qiao, Y.; Li, H. Frozen clip models are efficient video

learners. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham,
Switzerland, 2022; pp. 388–404.

44. Khandelwal, A.; Weihs, L.; Mottaghi, R.; Kembhavi, A. Simple but effective: Clip embeddings for embodied ai. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 14829–14838.

http://dx.doi.org/10.1016/j.inffus.2023.101968
http://dx.doi.org/10.1109/TIP.2017.2760518
http://dx.doi.org/10.1080/00207160.2013.816415
http://dx.doi.org/10.1109/ACCESS.2017.2750918
http://dx.doi.org/10.1109/TIP.2012.2214050
http://dx.doi.org/10.1109/LSP.2010.2043888
http://dx.doi.org/10.1109/TIP.2012.2191563
http://www.ncbi.nlm.nih.gov/pubmed/22453635
http://dx.doi.org/10.1109/TCSVT.2018.2886771
http://dx.doi.org/10.1007/s11760-017-1166-8
http://dx.doi.org/10.1109/TIP.2018.2831899
http://dx.doi.org/10.1109/TIP.2017.2774045
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.3389/frai.2022.976235
http://www.ncbi.nlm.nih.gov/pubmed/36504688


Electronics 2024, 13, 803 15 of 15

45. RECOMMENDATION P.800.1; Mean Opinion Score (MOS) Terminology. ITU-T: Geneva, Switzerland, 2016.
46. Sharma, P.; Ding, N.; Goodman, S.; Soricut, R. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic

image captioning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Melbourne, Australia, 15–20 July 2018; pp. 2556–2565.

47. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

48. Schuhmann, C.; Vencu, R.; Beaumont, R.; Kaczmarczyk, R.; Mullis, C.; Katta, A.; Coombes, T.; Jitsev, J.; Komatsuzaki, A.
Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. arXiv 2021, arXiv:2111.02114.

49. Schuhmann, C.; Beaumont, R.; Vencu, R.; Gordon, C.; Wightman, R.; Cherti, M.; Coombes, T.; Katta, A.; Mullis, C.;
Wortsman, M.; et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Adv. Neural Inf.
Process. Syst. 2022, 35, 25278–25294.

50. Byeon, M.; Park, B.; Kim, H.; Lee, S.; Baek, W.; Kim, S. COYO-700M: Image-Text Pair Dataset. 2022. Available online: https:
//github.com/kakaobrain/coyo-dataset (accessed on 20 November 2023).

51. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September
2014; Proceedings, Part V 13; Springer: Cham, Switzerland, 2014; pp. 740–755.

52. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results. Available online: http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
(accessed on 20 November 2023).

53. Young, P.; Lai, A.; Hodosh, M.; Hockenmaier, J. From image descriptions to visual denotations: New similarity metrics for
semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2014, 2, 67–78. [CrossRef]

54. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov, V.
Unsupervised cross-lingual representation learning at scale. arXiv 2019, arXiv:1911.02116.

55. Xu, B. Nlp chinese corpus: Large scale chinese corpus for nlp. Zenodo 2019.
56. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
57. Yoon, B.; Lee, Y.; Baek, W. COYO-ALIGN. 2022. Available online: https://github.com/kakaobrain/coyo-align (accessed on

13 August 2023).
58. Ponomarenko, N.; Ieremeiev, O.; Lukin, V.; Egiazarian, K.; Jin, L.; Astola, J.; Vozel, B.; Chehdi, K.; Carli, M.; Battisti, F.; et al. Color

image database TID2013: Peculiarities and preliminary results. In Proceedings of the European Workshop on Visual Information
Processing (EUVIP), Paris, France, 10–12 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 106–111.

59. Lin, H.; Hosu, V.; Saupe, D. KADID-10k: A Large-scale Artificially Distorted IQA Database. In Proceedings of the 2019 Tenth
International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 1–3.

60. Hosu, V.; Lin, H.; Sziranyi, T.; Saupe, D. KonIQ-10k: An ecologically valid database for deep learning of blind image quality
assessment. IEEE Trans. Image Process. 2020, 29, 4041–4056. [CrossRef] [PubMed]

61. Ghadiyaram, D.; Bovik, A.C. Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image
Process. 2015, 25, 372–387. [CrossRef] [PubMed]

62. Fang, Y.; Zhu, H.; Zeng, Y.; Ma, K.; Wang, Z. Perceptual quality assessment of smartphone photography. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3677–3686.

63. Virtanen, T.; Nuutinen, M.; Vaahteranoksa, M.; Oittinen, P.; Häkkinen, J. CID2013: A database for evaluating no-reference image
quality assessment algorithms. IEEE Trans. Image Process. 2014, 24, 390–402. [CrossRef]

64. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://dx.doi.org/10.1162/tacl_a_00166
https://github.com/kakaobrain/coyo-align
http://dx.doi.org/10.1109/TIP.2020.2967829
http://www.ncbi.nlm.nih.gov/pubmed/31995493
http://dx.doi.org/10.1109/TIP.2015.2500021
http://www.ncbi.nlm.nih.gov/pubmed/26571530
http://dx.doi.org/10.1109/TIP.2014.2378061

	Introduction
	Related Work
	Perceptual Quality Assessment
	Large Multimodal Models

	Evaluation Methodology
	Evaluation Architecture
	LMM Features
	CLIP (Contrastive Language–Image Pretraining)
	ALTCLIP (Alter Ego CLIP)
	HPS (Human Preference Score)
	ALIGN (A Large-Scale ImaGe and Noisy-Text Embedding)

	Distortion Features
	Statistical Features
	Lightweight CNN Features
	Meta-Learning Features

	Combined Features
	Datasets and Implementation Details

	Experiments
	Experimental Settings
	Evaluation Results

	Conclusions
	References

