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Abstract: Deep learning (DL)-based side-channel analysis (SCA) has posed a severe challenge to the
security and privacy of embedded devices. During its execution, an attacker exploits physical SCA
leakages collected from profiling devices to create a DL model for recovering secret information from
victim devices. Despite this success, recent works have demonstrated that certain countermeasures,
such as random delay interrupts or clock jitters, would make these attacks more complex and less
practical in real-world scenarios. To address this challenge, we present a novel denoising scheme
that exploits the U-Net model to pre-process SCA traces for “noises” (i.e., countermeasures) removal.
Specifically, we first pre-train the U-Net model on the paired noisy-clean profiling traces to obtain
suitable parameters. This model is then fine-tuned on the noisy-only traces collected from the
attacking device. The well-trained model will be finally deployed on the attacking device to remove
the noises (i.e., countermeasures) from the measured power traces. In particular, a new inductive
transfer learning method is also utilized in our scheme to transfer knowledge learned from the source
domain (i.e., profiling device) to the target domain (i.e., attacking device) to improve the model’s
generalization ability. During our experimental evaluations, we conduct a detailed analysis of various
countermeasures separately or combined and show that the proposed denoising model outperforms
current state-of-the-art work by a large margin, e.g., a reduction of at least 30% in computation costs
and 5× in guessing entropy.

Keywords: deep learning; side-channel analysis; denoising model

1. Introduction

Deep learning-based profiled side-channel analysis (SCA) has posed a significant secu-
rity and privacy threat to cryptographic circuits. During its execution, an attacker leverages
physical SCA leakages (e.g., power [1], electromagnetic emissions [2], etc.) collected from
profiling devices to create DL models for recovering secret information from target devices.
For example, Maghrebi et al. [3] demonstrated that deep convolutional neural networks
(DCNNs) can be applied for SCA and even exceed traditional statistical methods due to
their high-level feature representation capacity and translation-invariance property. Since
then, many following works have been proposed to improve the performance of SCA
attacks by using specialized DL models or data pre-processing algorithms. For instance,
Cagli et al. [4] proposed to embed DCNNs with data augmentation techniques such as
shifting deformation to reduce the number of traces required to recover secret information
from target devices. Kim et al. [5] showed that the addition of Gaussian noise to traces can
address the overfitting problem of DL models and is therefore beneficial for all DL-based
SCA attacks. However, these attacks would become less effective or even useless if the
distribution of the training set deviates from that of the testing set.

To tackle this issue, Das et al. [6] proposed a cross-device attack method that builds
the DL model with traces from multiple devices and eventually achieves lower minimum
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traces to disclosure (MTD) than previous attacks, even in the preference of high inter-device
variations. Zhang et al. [7] considered a more practical scenario and introduced a new
attack method, known as frequency and learning-based power analysis, to address the
challenge caused by homogeneous and even heterogeneous devices. Yu et al. [8] took a
further step towards utilizing the meta-transfer learning to optimize the parameters of
the DL model and make the attack more powerful. Cao et al. [9] proposed to leverage
adversarial networks to learn device-invariant features for SCA attacks. However, these
DL-based SCA attacks routinely depend on the signal’s correction characteristics to build
the DL model for cross-device SCA attacks. The countermeasures designed by vendors can
easily destroy such signal patterns and eventually degrade the attack’s performance.

Recent works apply the DL technique for making implicit feature selection of SCA
measurements when facing the challenges from the countermeasures [10]. However,
they mainly address a particular type of countermeasures. The performance of these
methods will rapidly degrade if they are used for the pre-processing of multiple source
countermeasures. Wu et al. [11] further treat single/multi-source countermeasures as
noise and utilize autoencoder models to denoise SCA traces for profiled SCA attacks.
Nevertheless, they mainly considered a strong white-box assumption that an attacker has
complete control over target devices so that they can turn off countermeasures to obtain
clean traces from these devices, making it impractical in real-world scenarios. Moreover,
they build their DL models and perform the noise removal only on similar devices (i.e.,
the same circuit architecture). Their method’s effectiveness on cross-devices still needs to
be thoroughly evaluated.

To overcome the above drawbacks, in this paper, we propose a novel DL-based
denoiser to pre-process side-channel traces for noise removal. Different from current
state-of-the-art works, the proposed method particularly focuses on a realistic scenario,
i.e., black-box setting. Specifically, we assume that attackers have full access to profiling
devices so that they can turn on/off countermeasures to obtain paired noisy/clean traces
for building a DL model. We further assume that attackers have no control over attacking
devices but can observe and collect noisy traces without knowing their clean counterparts
(i.e., unsupervised learning). The key idea of our method is that we utilize a novel U-Net-
based denoiser to efficiently remove the noises (i.e., countermeasures) from the measured
power traces. To the best of our knowledge, such a technique has never been used in
the SCA community. Figure 1 shows the overview of the proposed denoising framework.
Our denoising framework mainly consists of three key stages: DCANNs pre-training,
DCNNs Fine-tuning, and DCNNs inference and denoising. Specifically, we first pre-
train the U-Net model on the paired noisy-clean traces collected from the profiled device.
In particular, since the U-shaped structure of the model allows for the use of global location
and feature representation, the resulting denoiser is able to achieve higher accuracy and
lower computation cost simultaneously, which is much better than the results achieved
by current state-of-the-art work. Then, we fine-tune the DL model on the noisy-only
traces captured from the target device. During the DCNNs inference and denoising stage,
the well-trained model will be finally deployed on the target device to remove various
types of noises and countermeasures. We also use a simple but efficient learning scheme,
known as inductive transfer learning to optimize the parameters of the DL model for
cross-device side-channel attacks (i.e., secret key recovery). Since this transfer learning
scheme effectively regularizes the feature mapping, the fine-tuned model can converge
faster while reducing the probability of overfitting problems.
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Figure 1. Overview of the proposed denoising framework for profiled SCA attacks: (a) Pre-training
the DCNNs model (i.e., U-Net) on the paired noisy/clean profiling dataset; (b) Fine-tuning the
trained DL model on noisy only target dataset; (c) Deploying the well-trained DCNNs model on
newly collected SCA traces for the noise removal.

In a nutshell, the main contributions of our work are as follows:

• We propose the first method that utilizes a novel U-Net-based denoising scheme
to remove certain types of countermeasures for DL-based SCA attacks even in the
black-box setting.

• We use a simple but efficient transfer learning technique to transfer knowledge learned
from the source domain (i.e., profiling device) to the target domain (i.e., attacking
device) to improve the model’s generalization ability.

• Extensive evaluation on both local datasets and publicly available datasets shows that
the proposed scheme outperforms state-of-the-art DL-based denoising methods by a
large margin.

The paper is organized as follows. In Section 2, we discuss some background and
related works. Section 3 describes our scheme of the proposed denoising model. Section 4
presents the experimental results and analysis. Section 5 concludes the paper.

2. Background and Related Works
2.1. Profiled Side-Channel Attack

Profiled side-channel analysis has posed a significant threat to embedded devices [12–14].
It aims to exploit various physical side-channel leakages such as power consumption or
electromagnetic (EM) emanations to reveal confidential information (e.g., secret keys) from
victim cryptographic algorithms. The DL technique has become increasingly common in
the SCA domain and even outperforms traditional statistical methods due to its high-level
feature representation ability and translation-invariance property. A typical DL-based
SCA attack can be divided into two key stages: the profiling and the attacking stages.
For the profiling stage, an attacker captures side-channel measurements from a profiling
device and uses these measurements along with their labels as a dataset to train DL models.
An attacker usually selects the architecture of DL models from the model zoo based on
their experiences. During the attacking stage, such a trained DL model would be re-used
by an attacker to determine the target device’s secret keys from the collected SCA leakages.
The guessing entropy (GE) is often used to assess the attack’s performance [5]. An attacker
routinely hopes to break target devices using as fewer SCA traces as possible (i.e., lower
guessing entropy value). However, background noises and complicated countermeasures
often compromise this goal and lead to high computing costs while an attacker works
towards building a DL model for breaking victim implementations.

2.2. Transfer Learning

Transfer learning (TL) has been widely used in various real-world scenarios, such as
computer vision and natural language processing. In general, it is used to fine-tune DL
models so that the knowledge learned from the source domain can be effectively transferred
to related but different target domains. For example, Ge et al. [15] introduced a transfer
learning method that uses a selective joint fine-tuning technique to optimize the parameters
of DL models even in the context of insufficient training data. Yang et al. [16] proposed to
utilize the learned latent relational graphs to capture dependencies between data points,
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thus improving the DL model’s performance on downstream tasks. Guo et al. [17] took
a further step to use an adaptive fine-tuning approach to find the optimal strategy for
target data. Moreover, many researchers have recently explored the possibility of using
dedicated regularization approaches and showed that the transfer learning technique with
explicit inductive bias promotes the similarity between fine-tuned parameters and original
parameters [17]. As a result, such approaches outperform standard fine-tuning on most
baseline datasets while performing transfer operations from the source domain to the target
domain. In this paper, we utilize such an inductive transfer learning scheme to transfer
features learned from the source domain (i.e., profiling devices) to the target domain
(i.e., attacking devices). Consequently, our transfer learning scheme accelerates the model
denoising process and provides performance gains by using well-trained DL models.

2.3. Dcnns Based Denoisers

Deep convolutional neural networks (DCNNs) have achieved great success in various
security-crucial tasks [18,19]. For example, Zhang et al. [20] introduced an effective and
efficient clustering framework that uses deviation-sparse fuzzy c-means w/o neighbor
information constraint to build the deep learning model. Similarly, Tang et al. [21] fur-
ther proposed a new viewpoint-based weighted kernel fuzzy clustering method that is
superior to previous clustering algorithms especially when processing high-dimensional
data. Moreover, Zhang et al. [22] took one step towards leveraging residual learning and
batch normalization to accelerate the training process and improve the performance of
the DCNNs model. Lehtinen et al. [23] presented novel DL models that learned to restore
images by only applying noisy data with the performance exceeding training using clean
data. Recently, researchers have investigated that network regularization and transfer
learning enables DCNNs to converge faster so that the network can quickly learn target
data and recover the clean counterparts from real-noise images with a high signal-to-noise
ratio (SNR). Motivated by these prior works, this paper proposes an effective and efficient
denoising scheme that utilizes a few novel DL techniques, including U-Net-based archi-
tecture, residual learning, and transfer learning to remove single and/or multiple source
countermeasures from the measured SCA traces. Since the proposed denoising scheme
does not require any clean traces from target devices, it is even more potent than previous
white-box DL-based noise removal models.

3. Methodology

In recent years, DL-based SCA attack methods have posed serious threats to embedded
devices. Although these existing works achieved progress, their effectiveness would
rapidly degrade if target devices are protected with various types of countermeasures,
such as random delay interrupts or clock jitters. To address this challenge, we treat these
countermeasures as particular “noise” due to their randomness and then apply a novel
DL-based denoising method to remove that noise. The overall scheme of our proposed
denoising method is shown in Figure 1. Specifically, we first pre-train the U-Net model with
paired noisy/clean trances captured from profiling devices. The model is then fine-tuned
on the noisy-only traces captured from target devices. In particular, we also utilize a simple
but efficient algorithm, known as inductive transfer learning, to optimize the parameters of
the DL model for cross-device side-channel attacks. Since the proposed method leverages
the advantages of the very deep architecture (i.e., U-Net) and inductive transfer learning,
our attack can significantly outperform the current state-of-the-art works by a large margin.

3.1. DCNNs Denoiser Pre-Training

The DCNNs pre-training phase is similar to the classic model training stage. Let X
and Y denote noisy traces and their clean counterparts, respectively. For the denoiser, we
employ a widely-used U-Net [24] architecture which takes X as inputs to give a prediction,
the X̂ of the noise-free clean traces (the DL model architecture used in this paper will be
discussed in the following sections). During the pre-training stage, we use the stochastic
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gradient descent (SGD) algorithm to minimize the cross-entropy loss J over the training set
Dt to obtain the model’s parameters θ (e.g., weights):

LDi ( fθ) = ∑
(X ,Y)∈Dt

J( fθ(x), y) (1)

where x ∈ X and y ∈ Y are paired noisy/clean SCA traces. In the proposed denoising
scheme, we collect paired noisy/clean SCA traces from profiling devices to pre-train the
U-Net model. After the pre-training stage, we can obtain initial parameters which would
serve as good starting points for the DL model while transferring generic features from the
source domain (i.e., profiling devices) to the target domain (i.e., target devices).

3.2. DCNNs Denoiser Fine-Tuning and SCA Attacks

To improve the efficiency of our proposed method, we further fine-tune the pre-trained
model on the target domain using a simple but powerful DL technique, i.e., inductive
transfer learning. We start by introducing the classic transfer learning scheme for DL
models. However, as mentioned in [17], it is hard for us to use this scheme to preserve
the knowledge learned from the source domain during the fine-tuning stage on the target
domain, leading to worse signal-to-noise ratio (SNR) and thus lower guessing entropy.
Motivated by prior works [17,25], we address this challenge by using a novel network
regularization term L2 − SP to optimize the parameters of DL models. Note that the
reason why we choose the L2 − SP as the regularization term is that, compared to other
regularization terms such as L1 or L2, L2 − SP can lead to faster convergence and better
performance of our DL models for SCA attacks.

Formally, we define the regularization term Ω(θ) as follows:

Ω(θ) =
α

2

∥∥∥θS − θ0
S

∥∥∥2

2
+

β

2
‖θS ′‖2

2 (2)

where θ0 is the parameter of the model pre-trained on the source domain. This will be
acting as the starting point at the fine-tuning stage. Using this initial vector as the reference
in the L2 − SP penalty, we obtain our final loss function J̃:

J̃(θ) = J(θ) + γ ·Ω(θ) (3)

where γ is the parameter that is used to trade off the data-fitting term and the compound
regularization term during the training stage of DL models. Furthermore, this partic-
ular parameter could also minimize the two terms simultaneously while using SGD to
update/fine-tune the network parameters. With the help of Equation (3), the DL model
could address the challenge exposed by the classic transfer learning technique, thus keeping
the original control of overfitting.

The working process of our denoiser and the resulting SCA attacks are presented
in Algorithm 1. Similar to the classic DL-based denoising method in the SCA domain,
we first turn on/off the countermeasures deployed on the profiling device (i.e., source
domain) to collect the noisy/clean pairs for pre-training the U-Net model. In comparison
to the random variables used by the existing DL-based method, such pre-trained network
parameters (e.g., weights) would serve as a good starting point while we transfer the
generic features from the profiling device to the target device. Then, we assume that an
attacker has no active control over the target device but passively observes and collects the
noisy traces from the target device. During the fine-tuning stage, we capture these noisy
traces and generate the corresponding synthetic dataset Dt(x) for fine-tuning the DL model.
The resulting model will be finally applied for pre-processing the new SCA traces collected
from the target device for the “noise” removal. In particular, the inductive transfer learning
technique is used to optimize the parameters for efficient SCA attacks. Since the proposed
method combine the advantages of the very deep architecture (i.e., U-Net) and inductive
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transfer learning, our method can outperform the state-of-the-art work by a large margin
(i.e., a significantly reduction in the computation cost and the guessing entropy).

Algorithm 1 DCNNs Denoiser and SCA Attacks: For the datasets Ds(x) and Dt(x) from
source (i.e., profiling device) and target domains (i.e., target device), the DL models F(x)
with parameters w (e.g., weights, bias)

Input: Ds(x), Dt(x), F(x)
Output: Model parameters w

1: Divide datasets Ds(x) into different subsets.
2: Initialize DL model’s parameters with random variables
3: Pre-train an original DL model Fs(x) with dataset Ds(x)
4: Obtain the initialization parameters of DL models w0
5: while not done do
6: Generate fine-tuning set Dt(x) from the target domain.
7: Update the parameters w on Dt(x) using Equation (3)
8: end while
9: Pre-process the newly collected traces from the target device

10: Optimize the DL model with inductive transfer learning for efficient SCA attacks.

4. Experimental Results
4.1. Experiment Setup

Instead of only evaluating our approach with existing side-channel database, i.e., AS-
CAD dataset (https://github.com/ANSSI-FR/ASCAD (accessed on 9 June 2021)), we also
collect power and EM traces with our customized side-channel acquisition platform and
perform side-channel analysis with them. As shown in Figure 2, our acquisition platform
enables us to perform side-channel analysis on popular microprocessors and FPGAs while
running cryptography algorithms or hardware designs. We use Chipwhisperer UFO board
as the motherboard to provide power and data supply for our target CPU and FPGA.
The Chipwhisperer UFO board also has a shunt resister design which allows us to collect
power traces. We use our customized 3D printer controller software to automatically move
the EM probe and collect EM and power traces using a high sample rate Keysight oscillo-
scope, mso-x 4154a, which is produced by Keysight in Colorado, USA. The collected trace
is further pre-analyzed to identify the most leaked position from the CPU/FPGA package
and is then used as an instruction to guide the 3D printer in completing EM trace collection.
For microprocessor targets, we customize the popular AES algorithm, tiny-AES-c, which is
written in C language, and run such an algorithm while collecting power traces.

Figure 2. Overview of the SCA trace acquisition platform.

To further evaluate the generality of our approach, we collect power traces on different
microprocessors with respect to different microarchitecture designs. More specifically, we
run the same AES algorithm on both ARM and AVR-based microprocessors to collect the
side channel traces. For ARM based microprocessors, we further run trace acquisition on

https://github.com/ANSSI-FR/ASCAD
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different variations. As shown in Table 1, we use ARM Cortex-M0, Cortex-M3, Cortex-M4
chips, which are distributed by Future Electronics in Mississippi, USA as the evaluation
targets for ARM platforms. These different ARM architecture designs pose challenges to
regular side-channel attack methods as normally requires the attacker to specifically train
and run attack on the same platforms. For AVR-based microprocessors, we use ATXMEGA
microprocessor as it uses AVRxm architecture design, different than regular AVR which is
used by the ASCAD dataset. For the algorithm source code compilation process, we use
the same optimization option for all platforms. We also perform reverse engineering for the
object files generated for different microprocessors. Such a process provides us information
to check if all platforms run similar assembly instructions with similar control flow so that
the only variation of the acquisition comes from architecture designs.

Table 1. Summary of all considered SCA datasets.

Datasets Platform Nr Features Nr Traces

ATXMEGA AVRxm 700 30,000
STM32F0 ARM Cortex-M0 700 30,000
STM32F1 ARM Cortex-M3 700 30,000
STM32F3 ARM Cortex-M4 700 30,000
STM32F4 ARM Cortex-M4 700 30,000
ASCAD AVR 700 30,000

4.2. Network Architecture

In this paper, we conduct all the experiments on a server of Intel Xeon(R) E5-2623
v4 2.60 GHz CPU, NVIDIA Tesla V100 GPU, and 128GB memory. It is worth noting that
the server is built by the authors. We set the epoch and learning rate to fixed values 30
and 1× 10−3, respectively. Motivated by existing works [24,26], we use the 16-layer U-
Net-based DCNN model where symmetric skip connections, strided convolutions, and
transpose convolutions are utilized for extracting multi-scale and generic feature mappings
from SCA traces (see Figure 3). We also use rectified linear activation function (ReLU) to
down-sample the features generated by convolution operations. The pre-trained weights
are first used to initialize our DL models for noise removal. We then fine-tune the last few
layers (also called classification layers) of the DL model with our inductive transfer learning
scheme. During the pre-training and fine-tuning stages, SGD algorithms are utilized in
our method to minimize the loss function in Equation (3). Additionally, the DL model
used for SCA attacks consists of two convolutional layers and four fully-connected layers.
During the training stage, we keep the model architecture fixed and set the epoch and
learning rate to 50, 1× 10−3, respectively. The trained model would be used to recover the
secret information from the victim device at the testing stage.

Figure 3. The U-Net architecture of our denoising model.
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4.3. Cross-Device Denoising for Local and Public Datasets

To evaluate the effectiveness of our proposed scheme, we conduct extensive experi-
ments on a group of embedded devices with different micro-architectures. In our exper-
iments, we simulated four common types of countermeasures existing in side-channel
traces: Gaussian noise, random delay interrupts, clock jitters, and shuffling. For these
countermeasures, we use the same setting as mentioned in [11] so that we can make a fair
comparison in this paper. Furthermore, we consider a more complicated scenario in which
the target device is protected with a combination of all four types of countermeasures.

During the training stage, we first pre-train the U-Net model with 20,000 paired
clean/noisy traces from profiling devices. We then randomly collect 20,000 noisy traces
from target devices, which are different from profiling devices in terms of models and
instruction set architectures (ISA). The pre-trained U-Net model is further fine-tuned with
these noisy traces. During the testing stage, we utilize the trained U-Net model to denoise
the noisy traces captured from the target device. The resulting traces (i.e., denoised traces)
are used for building the DL model to recover the secret keys from the victim device. We
also apply the inductive transfer learning technique for optimizing the parameters of the
DL model for performing such attacks. The experimental results of the Gaussian noise
are demonstrated in Figure 4. As we can see from Figure 4a, with the Gaussian noise,
all DL models trained on local datasets can not even converge towards guessing entropy
of 0 within 700 traces while attacking the ASCAD dataset. We then use the proposed
U-Net-based denoiser to pre-process the noise traces from the target dataset (i.e., ASCAD
dataset) protected with the Gaussian noise. The results are shown in Figure 4b. We can
observe that all DL models can converge within 230 traces, which is much better than the
results obtained by the averaging denoising as shown in Figure 4a. Moreover, we compare
the proposed denoising method with the state-of-the-art work in [11] and the results are
shown in Table 2. As shown in the table, we can see that our results are much better than
the results achieved by the state-of-the-art work [11] in terms of computation time (by 30%
on average) and NtGE (by 5× on average).

(a) Denoising with averaging (b) Denoising with U-Net

Figure 4. Comparison with different strategies for Gaussian noise removal of ASCAD dataset.

Table 2. A comparison to current state-of-the-art DL-based denoising method. ITL—Inductive
Transfer Learning. The summary of the training and inference time is reported (on average). NtGE

represents the number of traces required to recover the secret key from the target device (on average).
min—minutes.

Method Scenario Pre-Train Fine-Tune Model Time NtGE

State-of-the-art [11] Identical 3 7 Autoencoder 22 min 136
This Work Non-Identical 3 3 (ITL) U-Net 15 min 25
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In our experiments, we also test the effectiveness of state-of-the-art single- and/or
cross-device attacks on the target device, which are protected with the Gaussian noise,
including DL-SCA [3], FL-SCA [7], TL-SCA [27], CD-PA [28] and MTL-SCA [8]. The experi-
mental results are shown in Table 3. We can see that, with the proposed denoising method,
we improve the performance of these attacks by a large margin, i.e., significantly reducing
the number of traces required to recover the secret information from the victim device.
For example, in our evaluation, we build the DL model with the traces denoised by our
method and find that such a DL model can break the cryptographic implementation with
only 8 traces, which is much better than the results achieved by the current state-of-the-art
MTL-SCA attack (i.e., 35 traces). These experimental results further demonstrate that by
leveraging the advantages of both very deep architecture (i.e., U-Net) and inductive transfer
learning, our denoising model can lead to a better signal-to-noise ratio (SNR), making
cross-device attacks more efficient than state-of-the-art works.

Table 3. A comparison to related works with/without our U-Net-based denoising model. NtGE

represents the number of traces required to recover the secret key from the target device (on average).
FFT—Fast Fourier Transform.

Method Cross-Device Pre-Processing NtGE

DL-SCA [3] 7 7/U-Net 300/120
FL-SCA [7] 3 FFT/ U-Net 210/98

TL-SCA [27] 3 7/U-Net 180/72
CD-PA [28] 3 7/U-Net 57/32

MTL-SCA [8] 3 7/U-Net 35/8

In this paper, we further evaluate the performance of our proposed U-Net-based
denoiser on the target devices protected with other complex types of countermeasures,
including random delay interrupts, clock jitter, and shuffling. The experimental results
are shown in Figure 5. Upon quantitative analysis, we observe that for the individual
countermeasure (see Figure 5a–c), our denoising model can effectively remove noises from
the traces and therefore is able to help an attacker build a DL model with the high accuracy.
Take the clock jitter as an example (see Figure 5b), we apply the traces denoised by our
method to train the DL model for cross-device SCA attacks. We find that such a trained
model can break the victim device with less than 50 traces, which is much better than the
results achieved by the DL model trained with noisy only traces. Further, we consider a
more complicated situation in which a vendor deploys the combined countermeasures (i.e.,
Gaussian noise, random delay interrupts, clock jitter, and shuffling) on the target device
to keep its secret and privacy. During the evaluation, we find that, even in this difficult
scenario, the denoising model proposed in this paper is still efficient. That is, the DL model
trained with the denoised traces can converge within only 100 traces, which is much better
than existing works.

(a) Random Delay (b) Clock jitters (c) Shuffling

Figure 5. Guessing entropy: denoising different types of noises with our U-Net-based model.
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5. Conclusions

In this paper, we propose a novel denoising method that applies the U-Net model to
remove noises from the measured SCA traces. To the best of our knowledge, this is the first
time such DL techniques are used in the SCA community. During the evaluation, we vali-
date our proposed method on various widely-used countermeasures, including Gaussian,
random delay, clock jitters and Shuffling. Our experimental results show that, in com-
parison to existing works, the proposed method can effectively denoise the SCA traces
even in the black-box setting. Consequently, the DL models trained with such denoised
traces can recover the secret information from the victim device with fewer SCA traces and
lower computing costs, while existing works fail in at least one or two of these aspects.
In the future, we will mainly focus on developing more effective and efficient methods to
remove the noses (i.e., countermeasures) from the SCA traces. As a result, an attacker, who
wants to target the victim device, can create the DL model with fewer computation costs
(e.g., training, inference) while maximizing the denoising performance simultaneously.
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