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Abstract: Pressure sensors embodied in very tiny packages are deployed in a wide range of advanced
applications. Examples of applications range from industrial to altitude location services. They
are also becoming increasingly pervasive in many other application fields, ranging from industrial
to military to consumer. However, the inexpensive manufacturing technology of these sensors is
strongly affected by environmental stresses, which ultimately affect their measurement accuracy in
the form of variations in gain, hysteresis, and nonlinear responses. Thermal stresses are the main
source of sensor behavior deviation. They are particularly insidious because even a few minutes
of high temperature exposure can cause measurement drift for many days in the sensor responses.
Therefore, conventional calibration techniques are challenged in their adequacy to achieve high
accuracy and over the entire deployment life of the sensor. To manage this, several costly and
time-consuming calibration procedures have to be performed. Machine learning (ML) techniques
are known, supported by the universal approximation theorem, to provide effective data-driven
solutions to the above problems. In this context, this paper addresses two case studies, corresponding
to post-soldering thermal stresses and exposure to moderately high temperatures, for which two
separate datasets have been built and 53 different tiny ML models (collected into a zoo) have been
devised and compared. The ML zoo has been constructed with models such as artificial neural
networks (ANN), random forest (RFR), and support vector regressors (SVR), able to predict the error
introduced by the thermal drift and to compensate for the drift of the measurements. The models
in the zoo also satisfy the memory, computational, and accuracy constraints associated with their
deployment on resource-constrained embedded devices to be integrated at the edge. Quantitative
results achieved by the zoo are reported and discussed, as well as their deployability on tiny micro-
controllers. These results reveal the suitability of a tiny ML zoo for the long-term compensation of
MEMS pressure sensors affected by drift in their measurements.

Keywords: pressure sensors; tiny machine learning; drift compensation; thermal stresses; model zoo;
long-term errors; memory and computation constraints

1. Introduction

In the current era of IoT, Industry 4.0, localization services, and humanoid robotics,
pressure sensors are essential enablers. They are deployed in a wide range of compelling
applications, including altitude localizers, industrial, biomedical, automotive, robotics,
wearable, home, AV/VR, GPS, drones, e-cigarettes, gas metering, and many more ap-
pliances. The associated market size is currently valued at USD 18.73 billion, and it is
expected to grow at a compound annual growth rate (CAGR) of 4.3% between 2023 and
2030, according to [1].

State of the art pressure sensors are based on tiny, cheap, and long-lasting micro-electro-
mechanical systems (MEMS) technology [2], which leverages the mechanical response of a
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mobile element set to produce an accurate electrical signal through an analog and digital
signal processing pipeline. More specifically, MEMS pressure sensors feature a silicon
membrane, which, when pressure is applied, deflects. This induces an imbalance in
the Wheatstone bridge piezoresistance [3]. Next, the output signal is used to infer the
pressure measurement.

Temperature sensors, usually, are super-integrated with pressure sensors in the same
sensor package. Unfortunately it is rare that this measure is available at the output of
the sensor’s interfaces to the external world. Pressure and temperature measurements
are natively analog, processed as such, and then A/D converted. This allows them to be
communicated to an external microprocessor (MPU) or controller unit (MCU) for further
processing. In many applications, MEMS-based pressure sensors are required to provide
accurate, reliable, and high-confidence measurements. This is particularly true for altitude
location-based services in which pressure is used to infer the sensor’s altitude to locate
the sensor’s owner in a building. For this purpose, they are factory-calibrated once and
immediately after they are signed off. During their deployment, however, pressure sensors
experience a broad range of stress conditions, which ultimately affect their measurements
in the form of variations in gain, hysteresis, and sensitivity [4,5].

Drops in supply voltage, exposure to high temperatures for short or long periods,
different operating temperatures, and exposure to soldering are the factors causing the
sensor to experience drift from its nominal behavior. For example, the grains created
by metal nucleation during the deposition process inside the sensor impact the metal
alloy’s stabilization by deforming the lattice. In turn, as shown in Figure 1, this creates
non-reversible thermoplastic hysteresis effects on the pressure measurements for a quite
long time. These events are responsible for consistently degrading the accuracy of the
sensor readings.

Figure 1. (a) The sensor’s metal lattice before thermal stresses; (b) the sensor’s metal lattice deformed
by the thermal stresses. Metal grains are displaced with respect to the original placement, causing
hysteresis in the measurements.

Therefore, drift compensation is needed to mitigate these systematic and time-varying
errors. Errors could be either random or systematic. The former are not addressed in
this paper. Instead, this work addresses the compensation of systematic errors, and, more
specifically, the errors caused by two factors: the inevitable soldering of the sensor on a
motherboard during, for example, smartphone manufacturing, and the long-term exposure
of the sensor to moderately high temperatures during its deployment in the field and in
a smartphone.

It is evident that calibration should not be performed only once during manufacturing.
Instead, it should be continuously performed during the entire deployment life of the
pressure sensor. However, this could be prohibitive, costly, complex, and time-consuming
to realize in practice. Indeed, the most common, fast to achieve during manufacturing,
and low-complexity technique to implement calibration is called One Point Calibration
(OPC). It takes a measurement from the sensor at 25 ◦C and compares it with the measure-
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ment from a reference, highly accurate (and very costly) barometer. Then, the calibration
offset is computed by subtracting the sensor’s reading from the reference. During suc-
cessive (in time) measurements, the offset will be added to the sensor readings in order
to compute the calibrated, error-free, value. OPC computes a non-time-varying offset
in a precise environmental condition and in one instant of time, which cannot be scaled
or generalized to other conditions that are encountered by the sensor during its lifetime.
A method like OPC has a major drawback: it requires frequent offset re-computation and
the availability of a reference barometer. Indeed, OPC assumes the calibration error to
be constant or linearly varying over time, which is usually not representative of the real
case. A more efficient alternative to OPC is based on machine learning (ML) and deep
learning (DL) techniques. The training procedures of ML/DL models take advantage of the
reference barometer to generate training data. Once these models are trained and deployed,
the pressure sensor will be able to predict nonlinear and time-varying compensations for
pressure measurements via the ML/DL inferences.

Hence, the limitations of the OPC procedure have motivated the investigation of
various calibration methods that rely on DL and ML workloads. Indeed , the establishment
of DL and ML has been transformative across a broad variety of domains [6], including, for
instance, image classification [7] and seasonal and trend time series forecasting [8,9]. Their
success is underpinned by the universal approximation theorems [10], which highlight the
ability of artificial neural networks (ANN) to approximate continuous functions to any
degree of accuracy [11], making ANNs one of the most powerful approaches to achieve
function approximation. However, they should be deployable in the resource-constrained
assets of a sensor and be useful to everyone in everyday life at a very low cost.

In this context, this paper addresses the challenge of defining several tiny ML and DL
models deployable for sensor calibration as alternatives to the OPC methodology. Moreover,
these models shall be deployable in MEMS pressure sensors with built-in ML computing
capabilities, available in a single package. The paper is organized as follows. Section 2 intro-
duces the need for accurate pressure sensors in real-life applications; Section 3 introduces
two case studies that define the acquisition process of the corresponding datasets; Section 4
describes the research question that this paper addresses through ML/DL solutions. These
solutions are intended to fulfill the corresponding requirements. Section 5 reviews related
works that have either anticipated answers to the research question or provided useful
insights; Section 6 details the datasets that shape the case studies defined in Section 3;
Section 7 describes the ML/DL models that address the research question and are trained
using the datasets described in Section 6; Section 8 reports the quantitative results achieved
by the proposed models in Section 7; Section 9 discusses the results listed in Section 8 and
provides a deployability analysis on a tiny micro-controller of the selected DL/ML models;
Section 10 concludes this work; and Section 11 introduces perspectives for future work.

2. Pressure Sensor for Vertical Position Localization

Pressure sensors are instrumental in estimating smartphones’ vertical positions in
many application scenarios. The inverse relationship between air pressure variations
with respect to the altitude allows one to localize it vertically, as described by [12]. These
sensors, which lack any horizontal estimation capability, offer unique advantages (e.g., cost,
simplicity, small form factor, µW power consumption) compared to Global Positioning
Systems (GPS). GPS devices, which are commonly used in providing vertical location
information too, are challenged in their accuracy, as highlighted in [13].

One life-saving application is floor level localization in buildings for people rescue
under emergencies (e.g., fires, earthquakes, etc.). Current response systems often struggle
to accurately locate individuals on a specific floor in a building based solely on voice
indications provided during an emergency call.

Other than emergency situations, indoor navigation systems benefit significantly from
accurate vertical position estimation, enabling seamless movement through expansive and
intricate indoor spaces. Therefore, with such an approach, the traditional GPS limitations
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in indoor settings are overcome, opening up possibilities for navigation, for example,
through multi-level shopping malls, parking lots, busy airports, complex subway stations,
and dynamic fairs. The implications extend to enhancing the user experience by facilitating
efficient and accurate movement and aiding in locating specific points of interest, such as
booths at multi-floor conferences or trade fair venues. Moreover, the application of pressure
sensors in fitness tracking adds a new dimension to activity monitoring. By measuring the
number of floors climbed, users can gain valuable insights into the intensity and elevation
of their physical activity. The work presented in [14] offers more insights on the topic of
indoor positioning.

3. Case Studies

If a sensor measurement is not calibrated with respect to a ground truth value, an un-
calibration event is said to have occurred. At the industry level, the sensors are usually
calibrated in a half second during their manufacturing. However, when deployed in
real-world applications, various real-life conditions can cause anomalies within the sensor.
Anomalies can often take a variety of shapes, such as non-reversible deformations of the
composing materials. They typically cause hysteresis measurements and long-term drifts
affected by a variety of responses, including linear, exponential, logarithmic, or atypical
drifts [15,16].

This work is focused on piezoresistive pressure sensors that are affected by hystere-
sis phenomena due to thermal stresses, which cause time-varying drifts that affect sensor
measurements for several days after their occurrence. The inevitable soldering process of
the sensor in the application motherboard significantly impacts the measurements of the
sensors [15], as considered in this paper. A real-life scenario such as prolonged exposure to
moderately high temperatures, similar to [16], is also considered within the scope of this work.

In summary, an exemplary pressure sensor, widely used by the industry, and two
significant case studies are considered.

3.1. The LPS22HH Pressure Sensor

As a realistic, widely deployed and adopted industry example, the pressure sensor
named LPS22HH is considered in this study. It is a tiny piezoresistive absolute pressure
sensor that operates as a digital (at the output) and very cheap barometer [17]. The device
is composed of two key elements: a sensing component and an IC interface. The latter
communicates the measurements to an external MCU or MPU, through I2C, MIPI, I3CSM,
or SPI interfaces. The former is designed to sense the absolute pressure and is built with a
dedicated 130 nm silicon manufacturing process, to implement a suspended membrane.

The sensor is enclosed in a full-molded holed LGA (HLGA) package. It is designed
to operate reliably within a specified operative temperature range of −40 ◦C to +85 ◦C.
The sensor package features perforations to enable external pressure to reach sensing
element. Additionally, the sensor has an absolute maximum ratings temperature range,
which spans from −40 ◦C to +125 ◦C. It is underlined that any exposure to temperatures
beyond these limits can result in permanent damage to the device, affecting the reliability
of the measurements.

3.2. Case Study A: Soldering Drift

Reflow soldering is a technique used to create permanent solder joints between sensor
devices and a printed circuit board (PCB) using solder paste. This process involves standard
controlled heating, which can be achieved through different techniques, such as passing the
assembly through a reflow oven, using an infrared lamp, or, less conventionally, soldering
individual joints with a hot air pencil. The primary objective of the reflow process is to raise
the solder paste to its eutectic temperature, causing the solder alloy to change from a solid
to a liquid or molten state. At this specific temperature range, the molten solder exhibits
excellent adhesion properties [18]. It is important to note that the sensor device is turned
off during the reflow soldering process; therefore, no measurements can be acquired.
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The temperature profile in a reflow oven is tailored to suit the characteristics of a
particular PCB assembly, taking into account factors such as the number of PCB layers,
the quantity and size of components, and many others. According to the IPC/JEDEC
J-STD-020C Standard [18], the temperature can reach from 183 ◦C to 217 ◦C for 60 to 150 s
and 260 ◦C for 10 to 40 s. This standard temperature profile ensures that the solder reflows
onto adjoining surfaces without exceeding the temperature tolerance of the electrical
components, thereby preventing damage.

Figure 2 represents the temperature with respect to time according to the IPC/JEDEC
J-STD-020C Standard [18]. It represents the different stages during the soldering process.
Each of these stages has a specific thermal profile designed to achieve optimal soldering
results while safeguarding the components from overheating.

Figure 2. Temperature profile phases during reflow soldering according to the IPC/JEDEC J-STD-
020C Standard [18].

According to these premises, case study A investigates simulations of reflow soldering
to study the post-soldering drift, similarly to the use case in [15].

3.3. Case Study B: Normal Usage with Long Exposure to (Moderately) High Temperatures

A non-standard test has been defined in this work. Associated studies were conducted
to assess the sensor’s performance after a prolonged period of thermal stress. The study
was concerned with the sensor’s ability to function as expected outside the recommended
operating conditions—in particular, whether it would experience temperature fluctuations
between 85 ◦C and 125 ◦C, and then return to the nominal operating range. Would the
device then continue to operate correctly? Unlike the JEDEC soldering procedure, there
is no standard procedure, to the authors’ knowledge, for such a test [16]; therefore, this
work devised one. Taking into account the sensor’s nominal characteristics and considering
the average time to stress it during normal usage, the simulation of this case study was
performed by exposing the sensor to a thermal budget of 100 ◦C for two hours.

4. Research Question and Associated Requirements

The question that this study sought to answer quantitatively was the following: How
tiny can a machine learning model be designed to provide accurate drift compensation
for the use cases defined in Sections 3.2 and 3.3? To be considered a valid answer to this
question, a model should fulfill the following requirements.

1. The candidate model’s footprint should not exceed 2 MB in order to fit into the em-
bedded memory of a resource-constrained target device, such as a micro-controller or
embedded processor, which are typically employed in edge computing architectures.
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2. The number of parameters of the model should be lower than a half to one million.
3. The ratio of training samples to model parameters should not be lower than ten.
4. The model should be deployable in a low-power sensor’s built-in ML assets.
5. The model has to be accurate. There is no acceptable argument that support the

adoption of any processing solution that achieves a signal-to-noise ratio (S/N) below
the one that features the sensor data.

6. Precisely, the accuracy of the compensation should be within ±50 Pa, as defined
by [17]. Since pressure data are coded into 24 bits, the S/N is required to be 144 dB.
Hence, any solution should achieve an S/N above this value.

Some of the requirements defined above are essential to achieve a tiny ML solution.
As a consequence, Table 1 highlights the three most salient requirements that are relevant
to this work.

Table 1. Essential requirements for this work.

Requirements Definitions

REQ1 The model should be deployable on the STM32U5 micro-controller series *.

REQ2 The accuracy of the compensation error achieved by the proposed model should be within the range of ±50
Pa as defined by [17].

REQ3 The ratio of training samples to model parameters should not be lower than ten.

* Features of the micro-controller are given in Section 9.2.

5. Related Works

Many ML and DL approaches have been proposed in the literature for the calibration
of pressure sensors affected by aging, environmental variations, and thermal drift. Most
of the related works, however, consider only static calibration; therefore, they do not take
into account the temporal duration of the un-calibration caused by the sensor’s exposure
to high temperatures, even if for a limited amount of time. Such exposure could generate
effects that last for several days, as observed in the post-soldering use case.

5.1. Static Calibration

The compensation of thermal drift in a silicon piezoresistive pressure sensor was
proposed in [4] by transferring an Extreme Learning Machine (ELM) trained on a personal
computer (PC) to an external MCU. The ELM improved the accuracy temperature coefficient
in the nominal −40–85 ◦C range from 2.57% FS to 0.13% FS and, due to its shorter training
time, was suitable for batch compensation.

A similar approach was embraced by [19], using an ELM that had as inputs the output
of the sensor and the non-target parameters, i.e., temperature and voltage fluctuations. It
mapped them to the true pressure value. In the experiments, the model achieved a mean
squared error (MSE) of 0.338 with a training duration of 1.35 s. Additionally, the proposed
method was compared with the backpropagated neural network (NN) and a support
vector machine (SVM). The proposed ELM achieved better accuracy and stability and had a
shorter training time and lower application costs. The ELM was deployed on a commodity
PC, which was costly compared to the low-memory budget requirements set by this work.

A new method for the calibration of micro-mechanical capacitive pressure sensors
(CPS) using an electrical-only and machine learning approach was detailed in [20]. The pro-
posed approach relied on a two-stage algorithm. The training stage established correlation
curves and coefficients between electrical and physical data for a limited set of devices.
In the testing stage, these correlations were used to reconstruct physical points for the
calibration of new devices. It achieved average absolute accuracy of 1.74 hPa within the
600–1100 hPa pressure range. The electrical-only calibration method reduced the test time
by more than 85% against traditional methods, offering a rapid and cost-effective solution
for pressure sensor calibration. The focus on capacitive MEMS pressure sensors differs
from the piezoresistive sensor considered in this study.

An ANN-based scheme for the calibration of CPS sensors in harsh environments (ex-
treme ambient temperature, pressure, humidity, etc.) was proposed in [21]. By employing
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a backpropagation ML algorithm with a variable learning rate and incorporating random
samples in the training process, a CPS calibration model was developed. Both linear and
three types of nonlinear influences of temperature on the sensor characteristics across
a temperature range from −50 to 200 ◦C were evaluated through computer-simulated
experiments. The NN model’s maximum full-scale error in pressure estimation fell within
±1.0% for the linear form and within ±1.5% for the three nonlinear influences.

An alternative approach involving the usage of a wavelet neural network (WNN) was
adopted in [22] for temperature compensation in silicon piezoresistive pressure sensors.
The model took as input temperature and pressure readings from the sensor and produced
as output the true pressure value. Furthermore, the solution was compared with standard
BP neural networks. The results revealed that the WNN achieved a 3.83 × 10−3 RMSE,
while the latter had a 9.54 × 10−3 RMSE. Ref. [23] proposed a polynomial-based adaptive
digital temperature compensation method for automotive piezoresistive pressure sensors.
The compensation technique effectively addressed the nonlinear temperature dependency of
the pressure sensor by leveraging opposite characteristics as a function of temperature. Imple-
menting the compensation polynomial in a digital system, the approach also incorporated a
scaling technique to enhance the accuracy while adopting a resource-sharing technique to min-
imize the controller area and power consumption. Additionally, the shared structure approach
integrated a high-resolution sigma-delta analog-to-digital converter (ADC) for improved
accuracy across a wide temperature range (−40 ◦C to 150 ◦C). The measured temperature
compensation accuracy was reported to be within ±0.068% with a full scale, and the entire
technique was integrated into an automotive pressure sensor signal conditioning chip using a
180 nm complementary metal–oxide–semiconductor (CMOS) process.

A CMOS analog ASIC of a feedforward NN (FFNN), based on both a conventional
neuron model and an inverse delayed function model of the neuron, was designed in [24]
for the temperature drift compensation of high-resolution piezoresistive MEMS pressure
sensors. The inverse delayed function model yielded a mean square error in the order of
10−7 for the neural network, significantly outperforming the conventional neuron model,
with a mean square error in the order of 10−3 for the same ANN architecture. This resulted
in a remarkable reduction in error, from 9% for an uncompensated sensor to only 0.1% for
a compensated sensor, within the temperature range of 0–70 ◦C, using the delayed model
of the neuron. In contrast, compensation with a conventional neuron-based ANN reduced
the error to 1%.

The escalating legal pressures from regulatory authorities have resulted in heightened
demands for resilient pressure sensors in vehicles. Consequently, ref. [25] proposed a
cost-effective smart piezoresistive pressure sensor that integrated signal conditioning, ana-
log/digital signal processing, and communication circuitry directly into the sensor element
within a single compact housing system. The smart pressure sensor offered enhanced
reliability and accuracy through built-in features such as temperature compensation, filter-
ing, and self-calibration. The latter was obtained through a two-layer feedforward ANN
architecture trained with Levenberg–Marquardt backpropagation and deployed on an
external MCU. The ANN received as input the output pressure indicated by the signal
conditioner and it output the true pressure value. After testing the sensor calibration
system, the accuracy achieved was ±0.25% FS, as opposed to ±0.4% FS indicated in the
datasheet of the bare sensor.

5.2. Dealing with Small Datasets

One of the main issues to tackle when developing an NN model for sensor compen-
sation is the small size of the calibrated data. To address this issue, ref. [26] leveraged
data augmentation by learning the calibration process of pressure sensors through the
proposed Aquila optimized mixed polynomial kernel ELM (AO-MPKELM) algorithm.
Results showed strong consistency between real and generated data, with a maximum
voltage deviation of 0.71 mV. Compensating through bilinear interpolation, measurement
errors were reduced by 78.95% with full-scale accuracy of 0.03%.
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Standard procedures for pressure sensor calibration consist of subjecting the recently
manufactured sensors to several controlled temperature and pressure set points to fit a
polynomial mapping between the sensor’s predicted value and true pressure. The large
number of pressure and temperature set points required by this approach makes it costly,
time-consuming, and impractical for industrial deployment. An alternative solution is
adopting an ML model to predict the calibration polynomial’s parameter using fewer cali-
bration data, learning from past calibration sessions [27]. The proposed solution considers
a novel polynomial hyper-network coupled with Fourier features and a weighted loss.
Extensive evaluations show that such an approach saves two thirds of the calibration time
and cost.

As the use of ANNs for calibration processes has been limited due to issues like lower
training speeds, local minima, and overfitting due to few data available, an SVR model was
adopted in [28] to compensate for the pressure sensor’s nonlinearity influenced by temper-
ature and voltage fluctuations. The proposed model established a mapping relationship
between the actual voltage output characteristics and pressure sensor nonlinearity, reducing
the error from 22.2% to 0.64% in the proposed experiments. The SVM’s calibration model,
applied to the CYJ-101 Pressure Sensor, demonstrated improved accuracy and stability,
offering a viable solution for sensors affected by temperature and voltage fluctuations.
The self-adaptive adjustment of parameters further enhanced the model’s effectiveness.

A similar approach was adopted by [29], which modeled the complex hysteresis of a
diffused silicon pressure sensor through a Preisach model obtained by regression analysis
from experimental data. Considering the limited amount of samples, the SVR approach
led to better results with respect to BP neural networks, as the latter overfitted. This
corroborated the superiority in terms of accuracy of SVM, in comparison with NNs, when
operating in a few-samples regime.

5.3. Evolutionary Algorithm Approaches

An alternative approach to avoid overfitting and local optima due to the small amount
of available calibrated data consists of the use of evolutionary algorithms. Ref. [30] adopted
three different types of swarm optimization algorithms in combination with ML models for
the temperature compensation of three different ranges of sensors. It achieved a zero-drift
coefficient of 2.88 × 10−7/◦C and a sensitivity temperature coefficient of 4.52 × 10−6/◦C.
In another study, ref. [31] presented adaptive mutation particle swarm optimization opti-
mized support vector regression (AMPSO-SVR) integrated with an improved version of
AdaBoost. The RT algorithm was used to calibrate the ambient temperature nonlinearity
in a silicon piezoresistive pressure sensor. Results were superior compared to other methods
and the AMPSO algorithm successfully avoided local optima in the model parameters.

5.4. Temporal Dependence of Sensor Drift

The aforementioned methods do not address the temporal-dependent aspect of the
sensor drift. A candidate solution is to use sequential DL models such as a gated recurrent
unit (GRU) and long short-term memory (LSTM). In such a context, ref. [32] proposed a
multi-class classifier model based on the combination of an improved LSTM and SVM
for drift compensation in gas sensors. The higher classification accuracy, however, was
achieved at the price of high model complexity. Similarly, ref. [33] adopted an LSTM for
the calibration of air pressure sensors in order to account for the temporal characteristics of
the measurement data. The test outcomes on the pressure sensor dataset within the range
of [0 kPa, 1100 kPa] and [−30 ◦C, 30 ◦C] indicated that, in comparison to other sensor cali-
bration methods, such as BP and radial basis function (RBF) networks, the pressure sensor
error was decreased from 1.4 kPa to approximately 0.55 kPa, while the overall calibration
speed was not improved. On the other hand, ref. [34] adopted a deep sequential model
named Concatenated GRU and Dense Layer with Attention (CGDA) for environmental and
time drift compensation in economic gas sensors. The hourly drift sequence was predicted
with mean accuracy of over 93% by the model for an entire day.
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As an alternative to sequential models, the time dimension as an input to the model
has been considered. This is somewhat similar to the approaches proposed by this work.
Ref. [35] proposed a real-time self-calibration process based on the Levenberg–Marquardt
backpropagation ANN model for pressure estimation in a grasped object using a wearable
robotic hand glove. In the experimental setup, a load cell force sensor was used as a refer-
ence for the calibrated data obtained during 20 min dynamical loading with 28 repetition
cycles. To capture the time dependence of the calibration error, the inputs to the model
were the registered voltage and the number of pulses. The method achieved a maximum
mean square error of 0.17325 and an R-value over 0.99 for the total response of training,
testing, and validation. Unfortunately, the use of a load cell force sensor is not within the
scope of this work.

6. Datasets

Datasets for the case studies in Sections 3.2 and 3.3 were generated in the STMicro-
electronics MEMS Sensor Characterization and Measurement Laboratory, by collecting
and analyzing several product batches. A collection of recorded pressure and temperature
measurements was carefully acquired. They were obtained using the temperature sensor
integrated into the LPS22HH [17]. As result of this work, four different datasets were
generated: one for Section 3.2 and three for Section 3.3.

6.1. Dataset A for Soldering Drift Case Study

Pressure data were collected from 80 LSP22HH sensors, sampled randomly from
several production batches. They underwent the soldering type of thermal stress, compliant
with the IPC/JEDEC J-STD-020C Standard [18]. These measurements were collected for
246.5 h after the soldering process was completed, in ambient temperature conditions.
The reference barometer measurements were subtracted from the sensor measurements
(Psensor − Pref), to derive the accuracy pressure curves plotted in Figure 3.

0 50 100 150 200 250
Hours

−75

−50

−25

0

25

50

75

100

Ps
en

so
r-P

re
f  

[P
a]

Mean + 2.5×std

Mean

Mean - 2.5×std

Accuracy pressure in case of Soldering
Mean
Maximum
Minimum
Average Mean= 24.04
Average Maximum= 62.55
Average Minimum= -19.9

Figure 3. Post-soldering accuracy pressure curves: reference measurements were subtracted from
pressure measurements of 80 devices (Psensor−Pref) for 246.5 h and after the soldering stress was
completed. Pressure accuracy curves of different colors represent Psensor − Pref of different sensors.
This stress was compliant with the IPC/JEDEC J-STD-020C Standard [18].
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Each sensor contributed 250 data, one sample per hour, which formed a curve rep-
resenting the accuracy of the pressure measurements. Figure 3 graphically displays the
80 curves as well as three key measures:

• The mean—it represents the instantaneous average or central tendency of the pressure
accuracy measurements;

• The maximum—this curve illustrates the highest accuracy pressure value recorded by
the sensors at each hour;

• The minimum—this curve shows the lowest pressure accuracy value recorded by the
sensors at each hour.

Additionally, the standard deviation, denoted as std in Figure 3, was computed to
quantify the degree of variation or spread in the pressure accuracy data. The generated
curves are within a range that extends the values 2.5 times std below and above the mean
pressure accuracy curve. The averages for the maximum, mean, and minimum curves
across all 250 samples are represented.

6.2. Dataset B for Normal Usage of Long Exposure to (Moderately) High Temperatures Case Study

To collect data, six LPS22HH sensors, named Devices Under Test (DUT), precisely
called DUT1, DUT4, DUT9, DUT12, DUT18, and DUT23, were exposed to prolonged
thermal stress of 100 ◦C for two hours. After this time passed, pressure data were collected
over approximately 25 days at ambient temperature.

A seventh DUT (named DUT17) was calibrated and adopted as the reference to
compute the accuracy curves (Psensor−Pref). They represented the pressure measurements
of the reference subtracted from the pressure measurements of DUTi, with i taking values
of 1, 4, 9, 12, 18, and 23, as depicted in Figure 4.

Figure 4. Accuracy pressure for dataset B: prolonged exposure (2 h) to moderately high temperatures
(100 ◦C). The data acquisition took 596 h (approximately 25 days), after the thermal stress was
completed. The data belonged to six DUTs that were classified into three main groups based on
the standard deviations of the measures at their outputs, and then augmented in order to compile
three different datasets.
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Differently from dataset A, the accuracy curves exhibited notable variations in their
shapes, influenced by the tolerances inherent to the fabrication process of the DUTs. By ob-
serving these variations, the accuracy curves were categorized into three main groups
based on their standard deviations relative to the curves of their mean values.

In Figure 4 are represented the original data measurements, where

1. DUT4 and DUT9 formed the first group;
2. DUT1, DUT12, and DUT18 formed the second group;
3. DUT23 formed the third group.

Next, each of them was used for data augmentation to generate 100 curves. Random
pressure accuracy curves were produced within a range that spanned 2.5 times the standard
deviation both below and above the mean curve of the accuracy pressure.

DUT12, DUT18, and DUT23 deviated from the accuracy specifications reported in the
LPS22HH sensor datasheet [17] (cf. REQ2 in Table 1). Due to their poor performance, they
should have been discarded by the established product quality verification procedures.
Instead, this study devised ML/DL models that aimed to provide corrections to compensate
for their performance.

Table 2 provides details regarding the number of measured and generated data sam-
ples for both the datasheets for Sections 3.2 and 3.3.

Table 2. Measured and generated pressure and temperature data for both datasets A and B.

Dataset Measured Data Generated Data

Number of DUTs Quantities Acquisition Time

A 80 Pressure,
Temperature 249.5 h 1 set: 80 curves of pressure accuracy

with 250 samples

B 7 Pressure,
Temperature 600 h 3 sets: each one is 100 curves of pressure

accuracy with 596 samples

7. Proposed Machine Learning and Deep Learning Model Zoo

The proposed ML/DL model zoo allowed a performance comparison of 53 different
topologies designed to be regressors and to output the error in compensating for the sensor
measures under drift. In particular, the models output only the systematic errors following
the two scenarios as defined in Section 3. The model zoo included ANNs, random forest re-
gressors (RFR) [36], and support vector regressors (SVR) [37]. The latter used the principles
of support vector machines to find the hyperplane that best fit a given set of data points for
regression tasks, with the aim of minimizing the error within a certain threshold, and it
has proven to be effective in a broad variety of applications [37,38], including time series
prediction [39]. On the other hand, RFR is an ensemble learning method that instantiates a
multitude of decision trees at training time and outputs the mean prediction of the individ-
ual trees during inference. The use of decision trees for regression tasks has been already
adopted for a wide range of purposes, such as critical temperature estimation in supercon-
ductors [40] and precipitation forecasting [41]. To effectively capture the time-dependent
aspects of the datasets under consideration, the ANNs proposed in this work were pri-
marily recurrent-based, complemented by temporal convolution networks (TCNs). TCNs
utilize convolutions applied to time series data, enabling them to hierarchically capture and
analyze relationships across low, intermediate, and high-level time scales [42]. Among the
recurrent-based models employed, basic recurrent neural networks (RNNs) were consid-
ered [43]. Moreover long short-term memory (LSTM) networks were utilized [44]. LSTMs
are known by their ability to learn long-term dependencies through their inner gating
mechanism, which controls the flow of temporal information and mitigates the vanishing
gradient problem. Instead, gated recurrent units (GRUs) [45], which also feature gating
mechanisms, offer a more streamlined architecture that simplifies the processing while
maintaining efficacy, often performing on par with LSTMs in various tasks. In addition,
a relatively recent development in this domain was considered. The Lagrange Memory
Unit (LMU) [46] represents a significant evolution in RNN design. LMUs incorporate
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principles from the calculus of variations, offering a sophisticated approach to managing
internal yet compact memory states, which enhances the network’s capability to process
and remember information over extended time periods.

A more detailed discussion of the design approach and training and testing method-
ologies is provided in the subsequent Section 7.1.

7.1. Design Approach for the Model Zoo: Topology and Number of Parameters

The approach entailed the design of

• 31 TCN models;
• 15 RNN, including 6 LSTMs, 7 GRUs, and 2 LMUs;
• 6 RFRs;
• a single SVR.

Several configurations of these models were built by combining different numbers
and types of layers, such as convolution (Conv), LSTM, GRU, LMU, and dense layers.
The ANN models also varied in terms of the activation functions used and the number of
filters in each Conv layer. The RFR models differed in terms of the number of estimators
and the maximum depth, and 6 combinations were produced.

The exploration was not only limited to different typologies, but it also examined
different model footprints, by changing the number of their parameters. These variations
were instrumental to investigate their deployability on resource-restricted processors, as
per the requirements in Table 1 set in this work.

7.2. Training and Testing Methodology

Following the design of the model zoo, the train and test steps were performed for each
dataset independently and for each ML/DL model. Since a single dataset was generated for
case A and three datasets for case B, a total of 212 train and test iterations were performed
to complete the comparison between the ML/DL models in the zoo.

The training process involved splitting the datasets as follows: 80% for training, 10%
for validation, and 10% for testing, as shown in Table 3.

The training optimized the mean square error (MSE) loss function through the ADAM [47]
optimizer. Parameters such as the input shape, data split, loss function, optimizer, learning
rate, batch size, and training epochs are reported in Table 4.

While the same ML/DL models were trained and tested for both case studies A and B,
there was a subtle difference in the shape of their inputs. A more detailed explanation is
provided in the two following sub-sections.

Table 3. Summary of the data splits and input shapes for the ML/DL model zoo.

Datasets Split Ratios
Train, Validation, Test

Split DUTs
Train, Validation, Test

Training
Samples

Testing
Samples

A 80%, 10%, 10% 64, 8, 8 16,000 2000
B 80%, 10%, 10% 80, 10, 10 47,680 5960

Table 4. List of training parameters for ANN models.

Datasets Input
Shape

Loss Optimizer Learning
Rate

Batch Size Epochs

A (2,1) MSE ADAM [47] Dynamic 32 150
B (1,1) MSE ADAM [47] Cosine decay 32 25

7.2.1. Case Study and Dataset A

For Section 3.2, the experimentation was conducted using the dataset of pressure
accuracy, described in Section 6.1. The model inputs were time and the accuracy pressure
that was measured at one time immediately after the soldering process was concluded.
The input tensor was of shape (2,1). Splitting the dataset according to the ratios specified in
Table 3 resulted in using 64 DUTs for training, 8 DUTs for validation, and an additional
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8 DUTs for testing. Considering that each DUT in the dataset had 250 samples, the number
of training samples was equal to 16,000. The different training parameters are reported in
Table 4. The learning rate was dynamically scheduled by monitoring the validation loss
(MSE) such that, when no improvements were observed for consecutive epochs, the learning
rate was reduced by a factor of 0.5.

7.2.2. Case Study and Dataset B

For the use case in Section 3.3, the training was separately performed for the three sub-
datasets corresponding to the three groups of DUTs, as explained in Section 6.2. The model
input was only the time, starting from the end of the thermal stress, which meant that the
models were trained given an input tensor of shape (1,1).

Each one of the three datasets underwent the same splitting ratios as in the previous
case study, which led to the use of 80 DUT curves for training, 10 for validation, and
10 for testing. It is important to note that each of the 100 DUT curves within each
dataset contributed 596 data points. As a result, the training phase involved 47,680 sam-
ples in total, corresponding to the 80 curves of the training set, as reported in Table 3.
Table 4 summarizes the parameters used during the training phase. In this case, the dy-
namic learning rate was gradually reduced following a cosine decay function.

8. Experimental Results

In this section, the results of the testing performed using the model zoo are described.
The assessment was based on two metrics: the MSE and mean absolute error (MAE).
In addition, a ratio was computed to evaluate whether any ML/DL model was potentially
overfitting the datasets: the ratio between the number of training samples and the number
of the model parameters.

The number of model parameters was computed and is reported as Params
in Tables 5 and 6. For ANN models (i.e., TNN, LSTM, GRU, and LMU), the parame-
ters were the weights and biases learned by any of these NN models after training.
Meanwhile, for RFR models, the number of parameters was computed assuming that
Params = estimators × (2max_depth−1 − 1), with estimators, max_depth, and 2max_depth−1 − 1
being, respectively, the number of decision trees, the number of nodes excluding the leaf in
each of them, and the number of thresholds for each of them. Since SVR is a linear function
(hyperplane) defined by a weight vector and a bias scalar, for dataset/case A, the number
of parameters of the SVR model was 3, whereas, for B, it was 2.

Although the topology of the models was the same, the different input shapes between
datasets A and B resulted in a subtle difference in the number of parameters of the models.
This is why, in Tables 5 and 6, the column Comments is only once reported, whereas
the column Params is reported in each table. The models presented in the tables are
separated to form four main groups of models: TNN, RNN, RFR, and SVR.

Table 5. Case study A: Test results on the soldering dataset.

Models MSE MAE [Pa] Params Ratio Comments
model_1_TCN 421.1 16.85 101 158.42 1 dense + 2 conv layers (sigmoid + ReLU)
model_2_TCN 457.95 18.44 1192 13.42 1 dense + 2 conv layers
model_3_TCN 476.42 18.45 1234 12.97 8 dense layers
model_4_TCN 486.56 18.87 1656 9.66 1 dense + 3 conv layers
model_5_TCN 476.15 18.66 1752 9.13 2 dense + 1 conv + 1 dense layers
model_6_TCN 470.39 18.69 2340 6.84 2 dense + 2 conv layers
model_7_TCN 399.37 16.35 1992 8.03 3 dense layers
model_8_TCN 474.42 18.82 2200 7.27 2 dense + 3 conv layers
model_9_TCN 476.46 18.74 3370 4.75 6 dense layers
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Table 5. Cont.

Models MSE MAE [Pa] Params Ratio Comments
model_10_TCN 489.35 18.91 3448 4.64 2 dense + 3 conv + 1 dense layers
model_11_TCN 504.89 19.31 8784 1.82 2 dense + 3 conv + 1 dense layers
model_12_TCN 498.8 19.32 11,144 1.44 4 dense layers
model_13_TCN 471.73 18.85 13,172 1.21 2 dense + 2 conv + 1 dense layers
model_14_TCN 477.16 18.66 18,288 0.87 2 dense + 2 conv + 1 dense layers
model_15_TCN 489.83 18.57 18,440 0.87 2 dense + 2 conv + 1 dense + 1 conv layers
model_16_TCN 447.4 17.91 42,712 0.37 21 dense layers
model_17_TCN 532.05 19.92 56,540 0.28 1 dense + 2 conv + 1 dense + 1 conv layers
model_18_TCN 501.23 19.4 78,018 0.21 6 dense layers (LeakyReLu)
model_19_TCN 493.21 19.13 79,090 0.2 6 dense layers
model_20_TCN 514.32 19.51 83,616 0.19 7 dense layers
model_21_TCN 491 19.31 99,772 0.16 1 dense + 6 conv + 2 dense layers
model_22_TCN 480.82 19.02 132,524 0.12 1 dense + 4 conv + 2 dense layers
model_23_TCN 518.39 19.22 144,106 0.11 5 dense layers
model_24_TCN 479.76 19.02 298,796 0.05 5 dense layers
model_25_TCN 485.35 19.06 309,936 0.05 6 dense layers
model_26_TCN 468.35 18.65 320,736 0.05 11 dense layers
model_27_TCN 455.53 18.51 563,912 0.03 3 dense layers
model_28_TCN 531.5 19.85 647,148 0.02 1 dense + 2 conv + 1 dense layers
model_29_TCN 479.25 18.87 684,420 0.02 7 dense layers
model_30_TCN 483.86 19.08 824,076 0.02 9 dense layers
model_31_TCN 434.8 17.29 1,041,734 0.02 9 dense layers

model_32_LSTM 461.39 17.56 112 142.86 LSTM
model_33_GRU 1307.27 30.54 100 160 GRU
model_34_GRU 504.24 18.99 3449 4.64 GRU
model_35_LSTM 471.86 18.38 4526 3.54 TCN + Bidirectional GRU
model_36_GRU 433.6 17.18 4441 3.6 LSTM
model_37_GRU 525.09 19.47 4654 3.44 Bidirectional GRU
model_38_LSTM 454.35 18.59 5726 2.79 TCN + Bidirectional LSTM
model_39_LSTM 495.65 19.21 5854 2.73 Bidirectional LSTM
model_40_LSTM 517.1 19.97 7408 2.16 TCN + LSTM
model_41_GRU 480.77 18.69 144,912 0.11 TCN + GRU
model_42_GRU 502.7 19.3 289,360 0.06 TCN + Bidirectional GRU
model_43_GRU 478.61 18.86 305,692 0.05 deep Bidirectional GRU
model_44_LSTM 481.25 18.57 307,676 0.05 deep Bidirectional LSTM
model_45_LMU 393.07 16.28 308 51.95 LMU
model_46_LMU 502.62 19.19 94,592 0.17 LMU + TCN
model_47_RFR 714.74 22.65 51,100 0.31 estimators = 100, max_depth = 10
model_48_RFR 713.41 22.61 102,200 0.16 estimators = 200, max_depth = 10
model_49_RFR 716.07 22.65 255,500 0.06 estimators = 500, max_depth = 10
model_50_RFR 750.41 22.8 >1 M * 0 estimators = 100, max_depth = 100
model_51_RFR 750.6 22.8 >1 M 0 estimators = 200, max_depth = 100
model_52_RFR 750.75 22.8 >1 M 0 estimators = 500, max_depth = 100
model_53_SVR 450.19 17.44 3 5333 Linear kernel

* Million.



Electronics 2023, 12, 4819 15 of 22

Table 6. Case study B: Test results for normal usage on three datasets (3 groups of DUTs: (4,9),
(1,12,18), and (23)).

Models MSE (DUT) MAE [Pa] (DUT) Params Ratio

(4,9) (1,12,18) (23) (4,9) (1,12,18) (23)
model_1_TCN 80.33 390.19 164.09 7 17.8 10.92 88 541.82
model_2_TCN 78.95 387.35 162.68 6.92 17.72 10.87 1172 40.68
model_3_TCN 85.19 387.67 167.2 7.22 17.73 10.98 1,214 39.28
model_4_TCN 77.55 386.64 159.49 6.87 17.7 10.81 1620 29.43
model_5_TCN 79.86 389.08 157.62 6.97 17.79 10.72 1740 27.4
model_6_TCN 79.18 390.21 168.13 6.94 17.79 10.99 1980 24.08
model_7_TCN 82.02 390.59 168.39 7.05 17.83 10.99 2180 21.87
model_8_TCN 80.98 390.36 164.83 7.03 17.82 10.9 2328 20.48
model_9_TCN 80.98 390.13 166.63 7.04 17.82 10.97 3362 14.18

model_10_TCN 78.1 387.52 153.93 6.87 17.76 10.66 3436 13.88
model_11_TCN 81.52 386.88 157.6 7.06 17.68 10.75 8772 5.44
model_12_TCN 80.58 389.48 159.83 6.99 17.81 10.82 11,132 4.28
model_13_TCN 81.58 384.88 164.54 7.07 17.65 10.92 13,164 3.62
model_14_TCN 82.01 383.05 161.86 7.1 17.6 10.84 18,280 2.61
model_15_TCN 80.46 388.01 165.33 6.99 17.74 10.94 18,432 2.59
model_16_TCN 84.19 387.6 171.46 7.19 17.7 11.08 42,196 1.13
model_17_TCN 81.54 386.35 152.37 7.06 17.71 10.6 56,408 0.85
model_18_TCN 79.71 390.45 158.94 6.97 17.8 10.79 78,006 0.61
model_19_TCN 80.63 395.52 161.91 6.99 17.9 10.86 79,070 0.6
model_20_TCN 81.02 385.29 162.56 7.04 17.65 10.86 83,604 0.57
model_21_TCN 79.19 387.28 159.88 6.95 17.74 10.8 99,704 0.48
model_22_TCN 79.77 387.55 160.66 7.01 17.74 10.82 132,456 0.36
model_23_TCN 83.16 394.95 169.18 7.03 17.82 10.98 144,098 0.33
model_24_TCN 79.89 387.85 153.75 7.01 17.75 10.66 297,768 0.16
model_25_TCN 80.75 391.18 159.79 7.01 17.87 10.8 309,900 0.15
model_26_TCN 80.66 386.67 163.84 7.03 17.69 10.91 320,604 0.15
model_27_TCN 80.14 389.32 154.89 6.98 17.81 10.67 563,876 0.08
model_28_TCN 81.79 389.96 159.26 7.05 17.83 10.78 646,888 0.07
model_29_TCN 79.46 386.87 165 6.95 17.73 10.92 684,412 0.07
model_30_TCN 85.16 402.83 165.69 7.13 17.98 10.88 824,064 0.06
model_31_TCN 81.82 388.16 170.71 7.06 17.72 11.06 1,041,727 0.05

model_32_LSTM 86.723 387.37 172.23 7.17 17.68 11 108 441.48
model_33_GRU 82.873 407.33 173.96 7.04 18.03 11.03 96 496.67
model_34_GRU 83.03 389.86 164.89 7.06 17.73 10.85 3437 13.87
model_35_LSTM 83.29 390.65 162.48 7.07 17.76 10.75 4429 10.77
model_36_GRU 82.3 390.82 162.11 7.09 17.84 10.84 4513 10.57
model_37_GRU 79.14 391.28 160.54 6.95 17.85 10.8 4618 10.32
model_38_LSTM 79.48 390.49 161.85 6.94 17.77 10.85 5713 8.35
model_39_LSTM 80.46 393.67 162.56 7.02 17.88 10.85 5818 8.2
model_40_LSTM 79.47 386.78 158.76 6.95 17.7 10.78 7340 6.5
model_41_GRU 80 388.88 163.29 6.99 17.77 10.87 144,892 0.33
model_42_GRU 79.09 387.85 162.46 6.95 17.76 10.86 289,340 0.16
model_43_GRU 79.75 389.84 162.82 6.96 17.83 10.88 304,664 0.16
model_44_LSTM 80.8 389.62 161.53 7 17.82 10.84 306,648 0.16
model_45_LMU 80.42 398.97 160.4 6.99 17.9 10.79 300 158.93
model_46_LMU 79.47 388.94 162.4 6.96 17.8 10.87 94,572 0.5
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Table 6. Cont.

Models MSE (DUT) MAE [Pa] (DUT) Params Ratio
(4,9) (1,12,18) (23) (4,9) (1,12,18) (23)

model_47_RFR 74.49 383.79 158.98 6.69 17.72 10.77 51,100 0.93
model_48_RFR 74.53 383.74 159.1 6.69 17.72 10.77 102,200 0.47
model_49_RFR 74.5 383.72 159.09 6.69 17.72 10.77 255,500 0.19
model_50_RFR 73.41 383.27 158.35 6.61 17.72 10.76 >1 M 0
model_51_RFR 73.43 383.21 158.45 6.61 17.72 10.76 >1 M 0
model_52_RFR 73.4 383.2 158.46 6.61 17.72 10.76 >1 M 0
model_53_SVR 87.12 385.64 241.889 7.29 17.41 12.8 2 23,840

8.1. Dataset A: Performance Achieved in Case Study A

The results achieved according to the training approach explained in Section 7.2.1
are reported in Table 5. The MSE and MAE reported were computed on the test samples
of each dataset. Additionally, the MAE was measured in Pascal [Pa], matching with the
pressure accuracy of the dataset. The ratio was computed with regard to the 16,000 training
samples, as reported in Table 3.

8.2. Dataset B: Performance Achieved in Case Study B, Prolonged Exposure to (Moderately)
High-Temperature

Table 6 reports the performance of the model zoo with the training approach explained
in Section 7.2.2. The MSE and MAE in Pa are reported on the test sets of the three groups
of DUTs describing the datasets in Section 6.2. The number of 47,680 training samples
reported in Table 3 was used to compute the ratio of each model.

9. Discussion of the Results and Deployability in Tiny Processor Studies
9.1. Selection of the Models

From the model zoo and considering the performance achieved, a subset was derived
under the primary criterion REQ3 of Table 1 in Section 4. Tables 7–10 report the MAEs
and ratios of the selected models. For each type of model (TCN, RNN, RFR, and SVR),
two candidates were selected: one achieving the highest ratio and another scoring the
lowest MAE. The RFR models were not selected due to their low ratio, which was against
requirement REQ3 of Table 1. The model_1_TCN of Table 10 achieved, at the same time,
the highest ratio and the lowest MAE among all the TCN models. The models model_1_TCN
and model_33_GRU were the ones with the highest ratios among, respectively, the TCN and
RNN models. Since model_53_SVR was the single SVR of the model zoo, it was considered
in all the case studies.

Table 7. Case study A: Candidate models.

Model MAE [Pa] Ratio

model_1_TCN 16.85 158.42
model_7_TCN 16.35 8.03

model_33_GRU 30.54 160
model_45_LMU 16.28 51.95

model_53_SVR 17.44 5333

Table 8. Case study B: Candidate models with regard to dataset of DUTs (4,9).

Model MAE [Pa] Ratio

model_1_TCN 7 541.82
model_4_TCN 6.87 29.43

model_33_GRU 7.04 496.67
model_38_LSTM 6.94 8.35

model_53_SVR 7.29 23,840
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Table 9. Case study B: Candidate models with regard to dataset of DUTs (1,12,18).

Model MAE [Pa] Ratio

model_1_TCN 17.8 541.82
model_14_TCN 17.6 2.61

model_33_GRU 18.03 496.67
model_32_LSTM 17.68 441.48

model_53_SVR 17.41 23,840

Table 10. Case study B: Candidate models with regard to dataset of DUT (23).

Model MAE [Pa] Ratio

model_1_TCN 10.92 541.82

model_33_GRU 11.03 496.67
model_35_LSTM 10.75 10.77

model_53_SVR 12.8 23,840

9.2. Deployability Analysis on Tiny Micro-Controllers

The selected models, listed in Section 9.1, were deployed on tiny MCUs. An automatic
tool, STM32Cube.AI Developer Cloud developed by STMicroelectronics, (https://stm3
2ai-cs.st.com/home, accessed on 27 November 2023) was used. It enabled the automatic
mapping and execution of pre-trained ML/DL models on a broad range of ARM Cortex-M
MCU series. This process started from a pre-trained Keras model and ended by producing
ANSI C code. Next, the latter was compiled, installed, and executed by the MCU. In
particular, STM32U5 was used, featuring the following:

• Arm Cortex-M33, running at 160 MHz;
• Total embedded RAM: 786 KiB;
• Embedded FLASH: 2048 KiB;
• Off chip FLASH: 64 MB;
• Energy efficiency: 19 µA/MHz.

Tables 11–14 report the performance of the trained candidate models. Specifically,
the cloud-based deployment service was used to optimize and benchmark the models on
STM32U5 and to evaluate the following:

• Number of multiply-accumulate (MACC) operations for each model inference;
• Inference time;
• Random access memory (RAM) size;
• Flash memory size.

The optimization option, which affected the quality of the ANSI C code generated by
the automatic tool, was a trade-off between reducing the inference time and the RAM size.

Table 11. Case study A: Deployment on STM32U5 of candidate models.

Model MACC Inference
Time [µs]

RAM [KiB] Flash [KiB] MAE [Pa]

model_1_TCN 146 51.31 2.36 13.34 16.85
model_7_TCN 1673 95.71 2.23 16.72 16.35

model_33_GRU 145 50.52 1.8 19.13 30.54
model_45_LMU - - - 19.23 16.28

model_53_SVR 47,844 2,973 0.852 195.09 17.44

https://stm32ai-cs.st.com/home
https://stm32ai-cs.st.com/home
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Table 12. Case study B: Deployment on STM32U5 of candidate models with regard to dataset of
DUTs (4,9).

Model MACC Inference
Time [µs]

RAM [KiB] Flash [KiB] MAE [Pa]

model_1_TCN 137 50.30 2.36 13.31 7
model_4_TCN 7601 949 4 17.66 6.87

model_33_GRU 75 32.27 1.74 19.06 7.04
model_38_LSTM 27,432 2538 4.47 44.19 6.94

model_53_SVR 23,304 1,619 0.848 99.23 7.29

Table 13. Case study B: Deployment on STM32U5 of candidate models with regard to dataset of
DUTs (1,12,18).

Model MACC Inference
Time [µs]

RAM [KiB] Flash [KiB] MAE [Pa]

model_1_TCN 137 50.68 2.36 13.31 17.8
model_14_TCN 147,789 10,170 12.21 85.29 17.6

model_33_GRU 75 32.72 1.74 19.06 18.03
model_32_LSTM 107 41.67 1.85 17.35 17.68

model_53_SVR 21,504 1494 0.848 92.2 17.41

Table 14. Case study B: Deployment on STM32U5 of candidate models with regard to dataset of
DUTs (23).

Model MACC Inference
Time [µs]

RAM [KiB] Flash [KiB] MAE [Pa]

model_1_TCN 137 50.53 2.36 13.31 10.92

model_33_GRU 75 31.64 1.74 19.06 11.03
model_35_LSTM 35,121 3324 2.81 34.92 10.75

model_53_SVR 7,118 495.5 0.848 36.01 12.8

The deployment of the model_45_LMU on STM32 by the automatic tool was not yet
supported, which explains the missing entries for the MACC, inference time, and RAM
size in Table 11. However, the flash memory size was computed by adding the sizes of
the weights and the STM32U5 runtime library. Precisely, the weight size was 1232 bytes
considering that the number of parameters of the model was 308, and each parameter was
4 bytes. Additionally, the STM32U5 runtime library size was 18 KiB, resulting in a total
flash memory size of 19.2 KiB.

9.3. Discussion of the Results

The selection process in Section 9.1 helped to identify the models, out of the 53 present
in the ML/DL zoo, that satisfied the requirements set in Table 1. Once the models were
selected, they were deployed on the STM32U5 to assess their deployability costs, as reported
in Section 9.2.

In particular, this section is focused on a detailed cross-comparison for the two more
accurate models model_1_TCN and model_33_GRU. Figure 5 provides a cross-comparison of
the compensation errors between the models, measured in terms of the MAE, across the four
datasets corresponding to case studies A and B. The two models demonstrated comparable
MAE values on the three datasets of case study B, showcasing their similar accuracy in the
scenario of long-term exposure to high temperatures. However, a noteworthy distinction
emerges when examining the models’ performance in the post-soldering scenario of case
study A.

Figure 5 shows clearly that, for case A, model_1_TCN outperforms model_33_GRU,
achieving a lower MAE of 16.85 Pa. In contrast, model_33_GRU exhibits a higher degree
of error, with an MAE of 30.54 Pa. This discrepancy underscores the superior accuracy
of model_1_TCN in the challenging post-soldering scenario, emphasizing its efficacy in
handling drifts introduced by soldering processes.



Electronics 2023, 12, 4819 19 of 22

Figure 5. Performance comparison of model_1_TCN and model_33_GRU.

10. Summary of This Work

This work proposes an answer to the original research question, “How tiny can a
machine learning model be designed to provide accurate drift compensation for the use
cases in Sections 3.2 and 3.3?”. In total, 53 different ML/DL models, including TCN, RNN,
LSTM, GRU, LMU, RFR, and SVR, have been devised and analyzed. These models were
trained and tested on four sets of sensor data generated in STMicroelectronics Laboratories
for two case studies: soldering drift and normal usage. For each ML/DL model, two candi-
dates were selected on the basis of the highest ratio between training samples and model
parameters and the lowest MAE. The model_1_TCN, model_33_GRU, and model_53_SVR
models are present in Tables 7–10 since they exhibited the lowest MAE values and the
highest ratios. In particular, model_1_TCN performs much more accurately than the other
TCN models in terms of ratio both for cases A and B, while its MAE remains slightly higher
and comparable. Among the RNNs, model_33_GRU performed significantly better than the
alternatives and exhibited an MAE slightly greater than model_1_TCN and an approximately
10% lower ratio for case B. Finally, model_53_SVR outperformed all the other models, with
ratio values for all the tests that were two orders of magnitude greater and a slightly higher
and comparable MAE. However, model_1_TCN and model_33_GRU demonstrated their
cheap costs when they were deployed on the STM32U5 tiny MCU, as shown in Tables 11–14.
The TCN and GRU models, indeed, require a number of MACC operations and an inference
time two orders of magnitude lower than those of the SVR model, meaning significantly
cheaper deployability on resource-constrained devices and usability in tiny applications.
The importance of achieving high pressure accuracy with scarce implementation resources
is proven, for example, by the model_1_TCN model, so as to be considered within altitude
localization applications. It can be approximately calculated that, in the first 1500 m, the
pressure decreases by 1 hPa every 8.3 m; at 3000 m, by 1 hPa every 10 m; and at 9000 m,
by 1 hPa every 50 m. Since the Burj Khalifa, the highest building in the world, in Dubai, is
828 m tall, the rule of 1 hPa every 8.3 m can be applied. The accuracy of 16.85 Pa for the
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model_1_TCN model in case study A translates into accuracy of 1.4 m, which is essential for
precise sensor localization.

11. Future Perspectives

Although this study focused on devising pre-trained ML/DL solutions suitable to
address the drift effects of the thermal stresses affecting pressure measurement accu-
racy, the achieved results enable accurate re-calibration during the operative life of the
MEMS sensor. It has been demonstrated that very tiny ML/DL models can be successfully
deployed on low-power and resource-constrained platforms. Given their limited com-
putational complexity and small memory footprint, these results pave the way to cheap,
affordable unsupervised learning performed on either sensors or MCUs. These will allow
us to reduce the complexity and the effort of generating and handling enormous datasets
during the sensor manufacturing, characterization, and validation processes performed in
the STMicroelectronics MEMS Sensor Characterization and Measurement Laboratory.
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