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Abstract: Gait recognition is a behavioral biometric technology that aims to identify individuals
through their manner of walking. Compared with vision and wearable solutions, millimeter-wave
(mmWave)-radar-based gait recognition has drawn attention because radar sensing is privacy-
preserving and non-contact. However, it is challenging to capture the motion dynamics of walking
people from mmWave radar signals, which is crucial for robust gait recognition. In this study, a novel
spatial–temporal gait recognition network based on mmWave radar is proposed to address this prob-
lem. First, a four-dimensional (4D) radar point cloud video (RPCV) was introduced to characterize
human walking patterns. Then, a PointNet block was utilized to extract spatial features from the
radar point clouds in each frame. Finally, a Transformer layer was applied for the spatial–temporal
modeling of the 4D RPCVs, capturing walking motion information, followed by fully connected
layers to output the identification results. The experimental results demonstrated the superiority
of the proposed network over mainstream networks, which achieved the best human identification
performance on a dataset of 15 volunteers.

Keywords: millimeter-wave radar; gait recognition; point clouds; Transformer

1. Introduction

Human gait, which is defined as the manner of walking, is a behavioral biometric trait
that is unique for each person and can be used to authenticate individuals [1]. Compared
with other biometrics, such as faces, fingerprints, DNA, and irises, gait signatures can
be captured from a distance and without cooperation from individuals, and it is hard to
conceal and disguise gait characteristics [2,3]. These advantages make gait recognition
a promising human identification technology for diverse applications, including public
security, forensics, and healthcare [4,5]. Vision- and wearable-sensor-based methods are the
two main categories of gait recognition techniques used in the community [6,7]. However,
vision sensors are limited by the illumination conditions, and people may feel constrained
by wearable devices and find them inconvenient. More importantly, vision-based devices
may raise privacy concerns in non-public scenarios, such as home and office, which can
result in the leakage of private or confidential information (e.g., human habits, relationships,
visited places, and so on).

mmWave-radar-based human sensing has attracted extensive attention in recent years
for its high sensing sensitivity [8]. Radar sensors are non-contact devices, can work under
any lighting conditions, and do not infringe on the privacy of monitored individuals [9].
Therefore, mmWave-radar-based gait recognition can be a promising option for insensitive
human identification compared to vision and wearable solutions.

To achieve accurate gait recognition, it is crucial to capture walking dynamics that
produce inter-personal differences in walking patterns [7]. Most existing radar-based gait-
recognition methods exploit micro-Doppler signatures from radar echoes to characterize
the micro-motion patterns of human gait, combined with machine learning or deep learning
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technologies for human identification [10–12]. Micro-Doppler signatures are induced by the
motions of different body parts (e.g., the torso and limbs), embodying the unique kinematic
patterns of differently walking individuals [13]. However, micro-Doppler signatures are
not robust against viewpoint changes [14], which is limited when people walk in a wide
field of view.

Radar point clouds are collections of reflection points representing the target surface,
which are generated by performing a series of target-detection algorithms on multiple-
input multiple-output (MIMO) radar echoes, containing spatial coordinates and velocity
information [8]. Radar point clouds across consecutive frames can be regarded as a radar
point cloud video (RPCV). Time-varying radar point clouds reveal motion dynamics, as
well as the physical shape of a walking human [15], which are also more resilient to
changes in viewpoints than micro-Doppler signatures. Therefore, RPCV with spatial–
temporal signatures have been taken into consideration for gait recognition in some related
studies [16–18].

Nonetheless, 4D-radar-point-cloud-based solutions still pose challenges for high-
performance gait recognition. First, the limited numbers of antennas on commercial
mmWave radars result in sparse radar point clouds that exhibit a lack of appearance
or geometric information [19]. Second, due to the specular reflection phenomenon of
mmWave signals, only parts of human body reflections propagate back to the received
antennas [20,21]. Consequently, radar point clouds emerge inconsistently across different
frames, resulting in difficulty in modeling the spatial–temporal signatures and motion
dynamics of human gait.

To address the problem mentioned above, a 4D-RPCV-based spatial–temporal net-
work for gait recognition is proposed in this study. In our proposed network, PointNet [22]
was adopted to extract the spatial features from sparse radar point clouds in each frame.
In PointNet, shared multi-layer perceptrons (MLPs) are utilized to extract high-level repre-
sentations from point clouds. Furthermore, a max pooling operation is applied to process
an unordered set of point features. After being processed via the PointNet block, 4D RPVs
are transformed into point feature sequences. To capture the motion dynamics of human
gait, a Transformer layer is deployed to perform multi-head attention on point feature
sequences. Transformers [23] have dominated the field of natural language processing in
recent years and have been extended to the computer vision community for their capacity
to capture global correlations [24]. Inspired by Transformers and self-attention mechanisms,
a Transformer layer is employed in the proposed network to further exploit the spatial–
temporal correlation across the 4D RPCVs, thereby capturing the motion dynamics of
human gait. Finally, fully connected layers are utilized to output the identification results.

The gait-recognition method in this study can be formulated as follows: (1) First,
mmWave radar signals reflected from walking human subjects are transformed into 4D
RPCVs through a series signal-processing algorithms, which can be used to characterize
walking patterns. (2) Second, a PointNet block was adopted to extract spatial features from
the radar point clouds in each frame of the 4D RPCVs, followed by a Transformer layer for
the temporal modeling of features from consecutive frames, capturing the motion dynamics
of walking individuals. (3) Third, the class token in the output of the Transformer layer
is fed into fully connected layers to predict the identities. After training and evaluation,
the experimental results demonstrated the effectiveness and robustness of the proposed
spatial–temporal gait recognition network, which achieved the best performance in the
case of identifying 10 and 15 subjects.

The main contributions of this study are summarized as follows:

• A 4D-RPCV-based spatial–temporal network is proposed to better capture the motion
dynamics of gait for accurate human identification, which is capable of modeling
walking motion from time-varying sparse radar point clouds.

• A Transformer encoder architecture is introduced in the proposed network to learn
radar point features’ sequences, capturing the spatial–temporal dependencies that
contribute to accurate gait recognition.
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• A 4D RPCV human gait dataset was built on real mmWave MIMO frequency-modulated
continuous wave (FMCW) radar measurements, which involved 15 volunteers walk-
ing along different paths. Furthermore, experiments on this dataset showed that
the proposed spatial–temporal network effectively improved the accuracy of gait
recognition.

The remainder of this paper is organized as follows. Section 2 reviews the related
works on radar-based human sensing and gait recognition research. Section 3 introduces
the 77 GHz radar system used in this study. Section 4 describes the proposed radar-
based gait-recognition method, including the generation of 4D RPCVs and the spatial–
temporal network. In Section 5, the performance of the proposed gait recognition network
is evaluated. The conclusion and future works are provided in Section 6.

2. Related Works

With the rapid development of mmWave radar technology, radar sensors have been
widely explored for various human sensing tasks. In 2016, Google designed the mmWave
radar sensing module Soli, which supports gesture recognition [25]. Various radar-based
human activity recognition methods have been studied in recent years, involving many
kinds of radar representations such as range–time maps, range–Doppler maps (RDM),
micro-Doppler signatures, and radar point clouds [26]. Radar-based human recovery is
also a field that attracts attention. Ref. [27] estimated 25 human skeletal joints from radar
point clouds, and Ref. [19] reconstructed a three-dimensional human mesh by combining
mmWave sensing and the SMPL model. In summary, mmWave radar is suitable for human
sensing tasks, including gait recognition.

In [28], a micro-Doppler signature-based multi-branch convolutional neural network
(CNN) for human gait recognition was proposed. However, micro-Doppler signatures are
limited due to their poor robustness to viewpoint changes, which is also computationally
demanding in a multi-person scenario. Ref. [17] designed a sequence radar point network
combining PointNet and bidirectional long short-term memory (Bi-LSTM) to learn on 4D
radar point cloud sequences. Similarly, the researchers in [29] proposed a gait recognition
network combining PointNet and a temporal convolution network (TCN). However, the
networks of these methods are based on the recurrent neural network (RNN) architecture,
which does not consider global dependencies related to walking motion dynamics with
time-varying sparse radar point clouds.

3. Frequency-Modulated Continuous Wave-MIMO Radar System

This study utilized a mmWave FMCW-MIMO radar that transmits linear chirp se-
quences. The frequency of transmission is linearly increased over time through the transmit
(TX) antenna. A single chirp with the carrier frequency fc can be expressed as [30]

S(t) = ej2π
(

fc+
1
2

B
Tc

t
)

t, 0 ≤ t ≤ Tc. (1)

where B is the bandwidth and Tc is the chirp duration.
Denoting c as the speed of light and R and v as the range and velocity of the target,

the time delay of the received signal can be expressed as

τ =
2(R + vt)

c
. (2)

The received (RX) signal is mixed with the TX signal and, subsequently, filtered by a
low-pass filter, generating the intermediate frequency (IF) signal.

A radar frame is a sequence of consecutive chirps that can be structured as a two-
dimensional waveform across two temporal dimensions. In a frame with M chirps, each
chirp is sampled with sampling rate fs to obtain N points (fast time dimension), while M
samples, corresponding to the number of chirps, are obtained with sampling period Trep
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(slow time dimension). Thus, the IF signal of the target in a frame across these two time
dimensions can be approximately expressed as [30]

d(n, m) ≈ exp
{

j2π

[
( fb+ fd)

n
fs
+ fdmTrep+

2 fcR
c

]}
. (3)

where n indicates the index of fast time samples within each chirp and m is the index
of slow time samples across successive chirps. The beat frequency fb = 2BR/cTc and
Doppler frequency fd = 2 fcv/c reveal the range and velocity of the target, respectively.
The information can be extracted by a two-dimensional fast Fourier transform (FFT) along
the fast and slow time dimensions.

Because each antenna’s received signal has a different phase, a radar with a linear
antenna array can be used to estimate a target’s azimuth. Denoting by d the distance
between two adjacent antennas and λ = c/ fc the base wavelength of the transmitted chirp,
the phase shift between the received signals from these two antennas is [31]

∆φ = 2π
dsinθ

λ
. (4)

where θ denotes the azimuth of the target. For Q number of targets, the three-dimensional
(3D) FMCW-MIMO radar IF signal can be represented as [30]

d(n, m, l) ≈
Q

∑
q=1

αq exp
{

j2π

[(
fbq + fdq

) n
fs

+
ld sin θq

λ
+ fdqmTrep +

2 fcRq

c

]}
. (5)

where l indicates the index of the receiving antenna and αq is the complex amplitude of the
qth target. The samples of the IF signal can be arranged into a 3D matrix across fast time,
slow time, and channel dimensions, forming the Raw Data Cube. Range, velocity, and angle
estimation can be achieved by applying FFT along these three dimensions, respectively.

4. Method
4.1. Four-Dimensional Radar Point Cloud Videos

Four-dimensional RPCVs are introduced to characterize human walking patterns. In
comparison to 3D point clouds obtained from Lidar or depth cameras, 4D radar point
clouds include velocity information, providing benefits for modeling human walking
patterns. The generation of 4D radar point clouds involves using a frequency-modulated
continuous-wave (FMCW) multiple-input multiple-output (MIMO) radar with antennas
placed both horizontally and vertically. This configuration enables the estimation of the
azimuth and elevation of scatter points from walking human targets.

The steps for generating 4D radar point clouds from IF signals are shown in Figure 1.
First, a 2D-FFT is applied to the raw radar data to obtain a range–Doppler matrix (RDM).
Here, the 2D-FFT involves applying the FFT along the fast time and the slow time di-
mensions sequentially. Subsequently, a moving target indication (MTI) filter is utilized
to remove static clutter caused by the environment. Following this, a two-dimensional
constant false alarm rate (2D-CFAR) is applied on the RDM to select prominent range–
Doppler pixels as potential scattering points, using a threshold that varies according to the
noise level. For each potential scatter point in the range–Doppler domain, the signal along
channel dimension is arranged into a 2D matrix based on the antenna array positions. The
spatial spectrum in the horizontal and vertical directions can be obtained by performing
the 2D-FFT on this 2D matrix. The angle of arrival (AoA) in the horizontal and vertical
directions of each scattering point can be estimated by applying peak searching to the
spatial spectrum. A 4D detected scattering point can be expressed by p = [r, v, θ, φ], where
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θ and φ are the azimuth and elevation angles, respectively. After coordinate transformation,
p = [x, y, z, vs.], and the transformation is

x = rsinθcosφ,

y = rcosθcosφ,

z = rsinφ.

(6)

where x, y, and z are the 3D coordinates in the Cartesian coordinate system and v is the
radial velocity.

2D-FFT

Fast Time

Channel

Slow Time

Raw Data

Fast Time

Channel

Slow Time

Raw Data

RDM

AoA 

Estimation

2D-CFAR

MTI

Radar Point Clouds

DBSCAN

Target Cluster

Figure 1. Flowchart of generating radar point clouds.

Finally, to remove clutter points and cluster the scattering points belonging to the
same target, the density-based spatial clustering of applications with noise (DBSCAN)
algorithm [32] is employed. A cluster consisting of multiple scattering points in frame k
can be expressed as

Ck =

{
pi = [xi, yi, zi, vi]

∣∣∣∣i = 1, . . . . . . , I
}

. (7)

Furthermore, a 4D RPCV can be constructed by combining clusters belonging to the
same target from consecutive frames, which can be expressed as C1:L = [C1, C2, . . . , CL]

T.
A short 4D RPCV sample is shown in Figure 2, and the cluster with the most scattering
points is regarded as the human target. Radar point clouds emerge inconsistently across
multiple frames due to the specular reflection phenomenon of mmWave signals. The 4D
RPCVs were taken as the input of the spatial–temporal network introduced in Section 4.2
for human identification.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. A 4D RPCV sample lasting 8 frames. (a) Frame 1; (b) Frame 2; (c) Frame 3; (d) Frame 4;
(e) Frame 5; (f) Frame 6; (g) Frame 7; (h) Frame 8.

4.2. Spatial–Temporal Network

The key factor for the recognition network is extracting person-specific gait features,
which are related to both spatial and motion patterns. The proposed network was designed
to exploit time-varying sparse 4D radar point clouds and capture unique spatial information
and walking motion dynamics. It consists of three modules, termed the PointNet block,
Transformer layer, and Output layer, as shown in Figure 3.

…
…

4D Radar Point 

Cloud Video

…
…

PointNet Block

PointNet Block

PointNet Block

…
…

Class Token

T
ra

n
sf

o
rm

er
 L

a
y

er

(L, 64, 4) (L, 512)

(1, 512)

O
u

tp
u

t 
L

a
y

er

First State

(1, 512)

SoftMax

Subject 1

Subject 2

Subject 3

…
…

×

√

×

Frame 1

Frame 2

Frame L

Figure 3. Architecture of the spatial–temporal network.

4.2.1. PointNet Block

L identical PointNet encoders are applied to process the input of 4D RPCVs, which
consists of radar point clouds in L frames. As shown in Figure 4, for radar point clouds in
each frame, the PointNet block implements MLPs in parallel to extract pointwise features,
and all the MLPs in parallel share the same weights. In the MLP layer, each MLP extracts
high-dimensional features from a single 4D radar point through a linear transformation.
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Compared to the original PointNet, the T-Nets for the input and feature transform are
removed for better consistency of the point clouds from consecutive frames, as well as an
easier training phase.

MLP

(4, 64)

MLP

MLP

…

Shared

Weights

N
×

4

MLP

MLP

MLP

(64, 128)

…
Shared

Weights

MLP

MLP

MLP

(128, 256)

…

MLP

MLP

MLP

…

(256, 512)

N×512

Max Pool

1×512

Gait Feature

Shared

Weights

Shared

Weights

Figure 4. Architecture of the PointNet block.

After extracting high-level human walking motion and appearance-related representa-
tions from radar point clouds, a max pooling operation is applied to the unordered set of
pointwise features to obtain a global spatial feature in a single frame. Specifically, the 4D
RPCV C1:L ∈ RL×Num×4 is transformed to a feature sequence F1:L = [ f1, f2, . . . , fL]

T, F1:L ∈
RL×Dim by the PointNet block, where L is the length, Num is the number of points in each
frame, and Dim is the dimension of the global spatial feature.

4.2.2. Transformer Layer

To model person-specific walking motion dynamics with feature sequences obtained
from the PointNet block, a Transformer layer with a multi-head attention mechanism is
applied in the spatial–temporal network.

The feature sequences are regarded as gait embeddings in this Transformer layer.
A learnable vector, termed as the class token, is initialized and concatenated with the gait
embeddings, as shown in Figure 3. The class token interacts with the features in all states,
avoiding preference for motion information in specific states. Compared to simply pooling
features from all states, using the class token for further classification is a better way to
aggregate gait information across the entire RPCV. The input of the Transformer layer can
be expressed as

F = [ fcls, f1, f2, . . . , fL]
T, F ∈ R(L+1)×Dim (8)

where fcls is the class token.
The architecture of the Transformer layer is shown in Figure 5a, consisting of a multi-

head attention block and a positionwise feed-forward block with layer normalization
applied and residual connections used. First, F is projected to the Query, Key, and Value by
linear transformation, which can be expressed as

Q = Wq(F);

K = Wk(F);

V = Wv(F).

(9)

where Wq, Wk, and Wv are the weights of the linear transformation.
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Gait Embeddings

Multi-Head

Attention

Add & 

Layernorm

Feed Forward

Add & 

Layernorm

(L+1, 512)

(a)

QueryKeyValue

Linear

Scale Dot-Product Attention

Linear Linear Linear…… Linear Linear

Scale Dot-Product Attention

Concat

Linear

(b)

Figure 5. Architecture of Transformer layer and multi-head attention. (a) Transformer layer; (b) multi-
head attention.

Multi-head attention then divides Q, K, and V into different representation subspaces
by linear projection and aggregates features from all the representation subspaces to capture
various dependencies within the 4D RPCVs, as shown in Figure 5b. The process of this
transformation can be expressed as

Qh = Wqh(Q) = [qcls, q1, . . . , qL]
T;

Kh = Wkh(K) = [kcls, k1, . . . , kL]
T;

Vh = Wvh(V) = [vcls, v1, . . . , vL]
T.

(10)

where h represents the index of the representation subspace (termed as the head) and Qh, Kh,
Vh ∈ R(L+1)× Dim

H . Furthermore, H is the number of heads. The scaled dot-product attention
for each head is calculated as

Atth = so f tmax(
QhKT

h√
Dim

H

)Vh ∈ R(L+1)× Dim
H . (11)

Attention from all heads is concatenated and processed by linear projection. Finally,
the positionwise feed-forward block applies an identical MLP to each state for further
feature extraction. In addition, the use of layer normalization and residual connections
facilitates building a deeper architecture.

4.2.3. Output Layer

In the output layer, the feature vector corresponding to the class token in attention is
extracted, and FC layers are applied to reduce the dimension of the gait feature. A dropout
layer is used to prevent overfitting problems. Afterward, a softmax layer is applied to
predict the human identity ŷ. The categorical cross-entropy loss function compares ŷ
with the ground-truth label y of the walking human, instructing the optimization of the
spatial–temporal network. The loss function can be expressed as

Loss = −
P

∑
p=1

yplog(ŷp) (12)
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where p is the number of people registered in the gait-recognition system.

5. Experimental Results and Analysis
5.1. Data Collection

A mmWave FMCW-MIMO radar platform developed by Texas Instruments was
utilized for evaluation in this study. The radar platform comprises an RF module and a
DSP module, implementing a four-device cascaded array of AWR1243 chips, as shown
in Figure 6. The radar, equipped with a two-dimensional antenna array, can be used
for azimuth and elevation estimation. It employs the time-division multiplexing (TDM)
technique to achieve waveform orthogonality. The virtual RX antenna array is shown in
Figure 7. The detailed parameters of the radar system can be found in Table 1.

Table 1. Parameters of the radar FMCW-MIMO system.

Parameters Value

Start frequency 77 GHz
Chirp bandwidth 2529 MHz

Chirp duration 32 µs
Frame duration 62 ms

Number of samples per chirp 256
Number of chirps per frame 128

Number of TX antennas 12
Number of RX antennas 16

Range resolution 5.93 cm
Velocity resolution 0.0311 m/s
Azimuth resolution 1.4◦

Elevation resolution 18◦

The data were collected in an open area, as shown in Figure 8, with a sensing area
measuring 10 m × 15 m. The radar platform was placed 3 m away from the sensing area
and mounted on a tripod stand at a height of 1 m. We recruited 15 volunteers for the
experiment, with heights ranging from 160 cm to 183 cm and weights from 51 kg to 75 kg,
as detailed in Table 2. Each volunteer was instructed to walk within the sensing area from
six different viewpoints relative to the radar platform. For each viewpoint, we collected
five sequences, each lasting 100 frames. Four of these sequences were allocated for training,
while the remaining one was used for testing. In total, we collected 45,000 radar frames.

(a) (b)

Figure 6. Radar platform for evaluation. (a) Radar RF module; (b) radar DSP module.
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Table 2. Information about the subjects.

Height
(cm)

Weights
(kg) Gender Ages Height

(cm)
Weights

(kg) Gender Ages

Person 1 172 65 male 41 Person 9 171 66 male 22
Person 2 177 66 male 25 Person 10 166 52 female 23
Person 3 165 56 female 26 Person 11 177 83 male 22
Person 4 172 52 male 23 Person 12 160 51 female 26
Person 5 168 64 male 24 Person 13 169 66 male 35
Person 6 183 61 male 23 Person 14 171 69 male 23
Person 7 170 62 female 22 Person 15 180 74 male 21
Person 8 178 70 male 24

5.2. Implementation Details

The size of the 4D RPCVs was set to 50× 64× 4. For the implementation of DBSCAN,
the radius and minimal number of points in the neighborhood were set to 0.8 m and 10,
respectively. The hidden dimension Dim was set to 512, and the number of heads H in the
multi-head attention block was set to four. The data of 10 volunteers were used for the
basic evaluation, and the data of all 15 volunteers were used for further stability analysis
of the networks. In the training phase, Adam was chosen as the optimizer, with a batch
size of 32 and a learning rate of 0.0001. We trained the networks for 250 epochs. All the
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training and evaluating processes of the networks were implemented using PyTorch with
an NVIDIA A40 GPU.

5.3. Performance Analysis
5.3.1. Comparison of Performance

To verify the effectiveness of the proposed spatial–temporal gait-recognition network,
we compared it with several gait-recognition benchmarks based on radar point clouds or
micro-Doppler signatures. A combination of PointNet and an RNN-based temporal block
is the mainstream for radar-point-cloud-video-based gait recognition. In this experiment,
we compared the proposed network with “PointNet + BiLSTM” and “PointNet + TCN”,
both of which use PointNet to extract radar point cloud features and employed an RNN-
based temporal block to capture the time-varying characteristics. mmGaitNet [16] uses
2D convolutional kernel to extract spatial–temporal features from the RPCVs. The Multi-
Channel CNN [28] captures gait Doppler features from the micro-Doppler signature using
an Inception and residual-connection-based network.

As shown in Table 3, the proposed spatial–temporal network achieved the best identi-
fication performance with an accuracy of 94.44% on the test set, showcasing the capacity
of our model in capturing human walking dynamics. The spatial–temporal network was
8.33% more accurate than “PointNet + BiLSTM” and 6.94% more accurate than “PointNet
+ TCN”, respectively, demonstrating the effectiveness of using the Transformer layer to
model the temporal correlation from the 4D RPCVs. In the case of 4D-RPCV-based gait
recognition, mmGaitNet achieved a higher accuracy than that of “PointNet + BiLSTM” and
“PointNet + TCN”, showcasing the potential of the 2D CNN in capturing spatial–temporal
human gait features from time-varying radar point clouds. Since the samples in our dataset
were collected from different viewpoints relative to the radar, the micro-Doppler signa-
tures were affected, resulting in the lowest accuracy among all the compared networks for
the Multi-Channel CNN. The confusion matrices of the proposed network, mmGaitNet,
“PointNet + TCN”, and Multi-Channel CNN are shown in Figure 9. All the networks in this
experiment exhibited poor recognition accuracy for certain users. However, the spatial–
temporal network achieved more than 92% accuracy for all subjects except ‘Subject 1’, an
outcome that other networks could not achieve.

Table 3. Comparison of the proposed spatial–temporal network with different gait recognition
networks.

Input Network Accuracy

4D Radar Point Cloud Videos

Spatial–Temporal Network (Ours) 94.44%
PointNet + BiLSTM 86.11%

PointNet + TCN 87.50%
mmGaitNet 90.88%

Micro-Doppler Signatures Multi-Channel CNN 83.33%

As shown in Figure 10, as the number of subjects increased, the performance of all
networks degraded. However, the proposed spatial–temporal network still achieved the
highest accuracy, demonstrating the robustness and stability of our network in the gait
recognition task. The proposed network captured the motion dynamics of the human gait
by combining PointNet and the Transformer encoder, fully exploiting the spatial–temporal
structure of the 4D RPCVs.
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Figure 9. Confusion matrices of different gait recognition networks. (a) Spatial–temporal network;
(b) mmGaitNet; (c) PointNet + TCN; (d) Multi-Channel CNN.
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Figure 10. Comparison of different networks with the increase of the number of subjects.

5.3.2. Impact of Hidden Dimension

The hidden dimension Dim is correlated with the size and performance of the network,
and we compared different sizes of a hidden dimension in this experiment. As shown
in Table 4, with the increase of the hidden dimension, the size of the network increased,
which was not conducive to the deployment of the network. It is worth noting that the
performance of the network with a hidden dimension of 1024 slightly degraded compared
to that with 512, potentially due to overfitting. After considering both the performance and
computational complexity of the network, the hidden dimension was set to 512.
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Table 4. Performance of network with different hidden dimensions.

Hidden dimension 256 512 1024

Accuracy 92.71% 94.44% 94.17%

Parameters 0.540 m 1.656 m 6.447 m

5.4. Discussion

This sub-section discusses the potential applications in real-time scenarios, as well
as the limitations of the proposed radar-based gait-recognition method. The designed
spatial–temporal gait recognition network, with 1.656 million parameters and 1.158 billion
FLOPs, can be deployed on many commercial AI edge computing devices for real-time
processing. The gait-recognition method in this study can be applied in many real-world
scenarios. It has great potential application over traditional vision solutions in personalized
surveillance systems such as smart homes and enterprise settings, where the number of
individuals involved is a few tens. The sensing device used in the proposed method is
a single radar module, making it easy to deploy with edge computing devices in most
practical scenarios without requiring extensive additional hardware deployment in the
environment.

Although radar-based gait recognition offers a non-invasive way of human identifica-
tion, it is limited in certain cases. As a soft biometric, gait cannot be used to identify subjects
within very large groups, since it is hard to separate each subject’s gait representation from
the radar echoes of a large crowd. In addition, abnormal walking patterns due to injuries
may lead to poor gait recognition performance.

6. Conclusions

In this article, a 4D-RPCV-based spatial–temporal network for gait recognition was
proposed. The 4D RPCV was introduced to characterize human gait. In the proposed
network, PointNet was adopted to extract spatial features from sparse radar point clouds in
each frame. Furthermore, a Transformer layer was employed to further exploit the spatial–
temporal correlation across the 4D RPCVs, enabling the capture of motion dynamics in
human gait. The experimental results demonstrated the effectiveness and robustness of
the proposed spatial–temporal network, achieving an accuracy of 94.44% in identifying 10
subjects and 90.76% for 15 subjects.

In the future, related research will be continued from two aspects. On the one hand,
to make the proposed network more general and robust, we will increase the number
and diversity of the subjects in the experiment, as well as evaluate the network with
various environmental settings. On the other hand, we will study the radar-based gait
recognition network that is robust to environment changes. Radar sensing is easily affected
by interference associated with the surroundings, for which it is important to enhance
the environment adaptivity of the radar-based gait-recognition model. The potential of
meta-learning methods in radar-based gait recognition will be explored, with the goal of
rapid adaptation to new environments with minimal observations.
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