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Abstract: In the food and medical packaging industries, clean packaging is crucial to both customer
satisfaction and hygiene. An operational Quality Assurance Department (QAD) is necessary for
detecting contaminated packages. Manual examination becomes tedious and may lead to instances
of contamination being missed along the production line. To address this issue, a system for con-
tamination detection is proposed using an enhanced deep convolutional neural network (CNN) in a
human–robot collaboration framework. The proposed system utilizes a CNN to identify and classify
the presence of contaminants on product surfaces. A dataset is generated, and augmentation methods
are applied to the dataset for nine classes such as coffee, spot, chocolate, tomato paste, jam, cream,
conditioner, shaving cream, and toothpaste contaminants. The experiment was conducted using a
mechatronic platform with a camera for contamination detection and a time-of-flight sensor for safe
machine–environment interaction. The results of the experiment indicate that the reported system
can accurately identify contamination with 99.74% mean average precision (mAP).

Keywords: human–robot interaction; contamination detection; computer vision; safe human–robot
collaboration; convolutional neural network; transfer learning; food contaminants detection

1. Introduction

Both food and medical products require precise packaging with special emphasis
on hygiene. Supervision to ensure that packaging is clean and neat is therefore deemed
essential in both industries. In the past, methods for evaluating and verifying the quality
of products heavily depended on human visual assessment. Current industrial output
facilities require high operating speeds and very small tolerances, in contrast to traditional
contamination detection techniques, which are slow and prone to errors [1]. These features
are now considered to be limiting issues in product inspection systems. Recently, similar
problems have been addressed via the development of inspection systems based on deep
learning, with a variety of industries adopting such technologies [2,3]. Deep learning refers
to the field of artificial intelligence that uses neural networks to automatically learn and ex-
tract complex patterns from data. Recently, deep learning has allowed developers to create
more all-encompassing computer vision solutions. The field of image recognition and detec-
tion has achieved significant advancements due to the introduction of convolutional neural
networks (CNNs) [4,5]. A CNN processes images without combining different feature
extraction techniques and can automatically train a model to identify image features [6,7].
Results in recognition tasks undertaken using CNNS seem to be getting close to human
levels of accuracy [8,9]. Since image processing methods have better levels of precision and
speed, they are frequently used in studies and approaches in the packaging sector to detect
faults in products [10,11]. A thorough description of CNNs and their uses in tasks such
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as image recognition can be found in [12], which includes a discussion of popular CNN
architectures. CNN is also discussed, and several models are applied in [13] to measure
the engagement of students in E-Learning assignments. The work of Zhou et al. [14] in-
troduces the application of deep learning to food science and covers the construction of
some prominent deep neural network architectures, as well as methodologies for training
an algorithm in the food science domain. The authors reviewed dozens of studies that
employed machine learning as a data analysis method to handle food-related problems and
challenges, such as food identification; calorie calculation; detecting the freshness of fruit,
meat, vegetables, and aquatic goods; and detection of food contamination. A significant
part of the manufacturing process is quality assurance of the finished product, as shown by
the extensive studies that have been undertaken on inspection techniques [7,8]. Similarly,
Vaadi et al. developed a hyperspectral image classification technique to detect objects
using CNN, which is capable of classifying objects of three different datasets [15]. Ng at al.
leveraged CNNs to examine soil samples and identify different levels of contamination de-
pending on their concentration [16]. They investigated the CNN model itself to understand
its inherent use of spectral data and applied transfer learning techniques to improve the
performance of their model [9,10].

More recently, the introduction of transfer learning techniques has made it possible
to adapt pre-trained neural network models to new problems and use cases [6]. Such a
technique eases the necessity of a sufficiently large pool of labeled data, and has been
proved beneficial in [12–19], creating accurate damage detectors [20–22]. Liu et al. applied
a transfer learning approach in [23] to build an object detection technique for crop pest
detection. Their solution is based on a multilayer network model, and Inception-ResNet-v2
and VGG16 feature extractors guarantee the accuracy of the detection model.

Popular object detectors are built with region-based CNN models and single shot
detectors (SSDs). Region-based CNN models, such as Mask R-CNN [24], require huge
amounts of GPU memory for processing. Conversely, SSDs [21] proved to need less
memory and can be implemented using less powerful hardware (e.g., mobile phones,
embedded computing boards). Sharma et al. surveyed the accuracy, memory and parameter
count of popular state-of-the-art micro-architectures. These served as a baseline for the
progressive CNN Slim Module they proposed, which features low memory expansion,
high computational efficiency, and a high feature count [25].

In this study, we tested the standard SSD-based you-only-look-once (YOLO) tiny
CNN architecture as our baseline (labeled “default CNN model” hereafter) for detecting
food packaging contamination and classifying the corresponding contaminants. For the
contamination detection task, this model resulted in insufficient mean average precision
(mAP). We then proposed a modified architecture, referred to as the “Enhanced CNN
model”. Through the addition of six convolutional layers to the standard convolutional
network and the implementation of the Mish activation function [26] in the initial five
layers, we improved the detection performance. In a real-world scenario, detection of a
contamination event also involves the action of removing the contaminated object from the
production line and, in an Industry 4.0 scenario, in which automated machines increasingly
interact with humans, it is necessary to pair sophisticated and accurate contamination de-
tection techniques with safe machine–environment interaction [27–29]. To achieve this, our
enhanced CNN-based detection method pairs proximity sensors with model optimization
to achieve instantaneous recognition of coffee, spot, chocolate, tomato paste, jam, cream,
conditioner, shaving cream, and toothpaste.

This paper is divided into the following sections. In Section 2, we define our paradig-
matic use case, introduce the proposed solution, and describe the experimental setup.
In Section 3, we describe the experimental analysis along with dataset creation, results,
performance metrics, and loss function. Finally, in Section 4, we conclude our study and
discuss future lines of research.
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2. Use Case and Proposed Solution

Food contamination such as coffee, chocolate, and other stains must be quickly iden-
tified at the packaging stage. The frequency with which packaged food arrives on the
Quality Assurance floor is too high for manual detection, and therefore it requires a smart
solution for detecting contamination related to outer surfaces of the product. When a
product is not clean, the buyer will avoid purchasing it, creating a poor impression in
the customer’s mind about that product. Before goods are permitted to hit the market,
they must undergo thorough and accurate inspection. The proposed algorithm is set up
to raise the alarm when contamination is detected, at which point the Quality Assurance
Department (QAD) personnel must remove the contaminated object from the conveyor
belt for detailed cleaning. To ensure safe machine–environment interaction, it is proposed
that a proximity sensor be used to detect unwanted human intervention and raise the
alarm if it occurs. The experimental setup and the proposed algorithm are discussed in the
following paragraphs.

2.1. Experimental Setup

The mechatronic platform used in this study utilized motorized translation which
allowed the sample to move along the z-axis. The motorized platform (8MVT-120-25-4247,
STANDA, Vilnius, Lithuania) was utilized to move the sample along the z-axis with a travel
range of 2.5 cm and 5 µm resolution. A proximity sensor (VL53L5CX, ST Microelectronics,
Geneva, Switzerland) used with a development board (STM32F401 Nucleo board, ST
Microelectronics) was attached in an inverted position on top of the mechatronic platform
for intervention detection. This sensor incorporates an array which allows it to achieve the
best performance in a variety of ambient lighting situations with a variety of cover glass
materials. It is the quickest, multizone, compact ToF sensor on the market; offers an accurate
range of up to 400 cm; and operates at high speeds (60 Hz) with a large 65◦ diagonal field
of view (FOV) that can be decreased. Multizone distance calculations are achievable up to
8 × 8 zones. The sensor is a multizone proximity sensor with either 8 × 8 or 4 × 4 zones,
and, for this research, the 8 × 8 zone was utilized. The sensor uses diffractive optical
elements (DOE) on both the receiver and transmitter. The purpose of using the proximity
sensor was to ensure safe human–machine interaction because the proximity sensor is able
to detect and calculate distance in real-time. The proximity sensor was programmed to
detect distance and integrated with the mechatronics platform program. The mechatronics
platform code was responsible for the movement of the platform and the proximity sensor
code was responsible for receiving real-time sensor values. The code was written such
that the mechatronics platform moved back to its default position (0 mm, z-axis) when the
sensor value decreased to less than 70 mm.

The platform position for sample inspection was set at 12.5 mm on the z-axis. The
height of the sample was 66 mm and the value of the proximity sensor at this height was
120 mm. In the event of a person body moving between the sample and the proximity
sensor, the value of the sensor readings would decrease. If this value was below 70 mm then
the platform would move back to its default position (0 mm, z-axis). The code and interface
were developed using graphical programming (LabVIEW, National Instruments, Austin,
TX, USA). Furthermore, any instance of movement between the sample and proximity
sensor would trigger an alarm to avoid any accidents. This alarm would also be triggered
in the event of contamination being detected using the reported CNN algorithm. A laptop
equipped with an Nvidia RTX 3060 GPU linked to a camera was used to perform the
CNN-based object detection and training. A high-resolution phone camera (Samsung S10
plus) was used to create a dataset. The block scheme of the experiment is shown in Figure 1.
The flowchart of the detection model is shown in Figure 2. The flowchart of the safety
algorithm is illustrated in Figure 3.
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Moreover, the CNN model was enhanced by increasing the number of convolutional
layers and using a combination of the Mish and leaky rectified linear unit (ReLU) activation
functions for deep propagation and to improve the mAP.

2.2. Enhancements in the CNN Model

To evaluate alternative solutions for effectively extracting the features, default and
enhanced versions of CNN are compared in the present study. The default CNN model
architecture can be seen in Figure 4. This architecture consists of seven convolutional layers
interspersed with leaky ReLU activation layers. The architecture mimics that introduced
in [30]. The leaky ReLU activation function is a modified version of the classical ReLU
activation that allows for small negative outputs for negative inputs:

f (x) = max(ax, x)

where x is the input and a a small coefficient, typically 0.01.
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Our enhanced CNN model architecture is shown in Figure 5. Both the simple and
enhanced models of YOLO’s CNN model are trained on the same dataset. The difference
between these architectures is the addition of the Mish activation function to the leaky
ReLU activation function. The Mish function has the form:

f (x) = xtanh(so f tplus(x))

where so f tplus(x) = x tanh(ln(1 + ex)). Similar to the Swish activation function [31],
Mish is unbounded above and bounded below within a certain range of [≈−0.31, ∞)
and possesses the self-gating property, which involves multiplying the non-modulated
input by the outcome of a non-linear function of the input. Mish purposely eliminates the
requirements for the dying ReLU phenomenon by preserving a tiny quantity of negative
information. This characteristic contributes to improved information flow and expressivity.
The default model cannot produce the desired mAP since it only uses the leaky ReLU
activation function. The experiment was effective at increasing the mAP via the addition
of extra layers and the Mish activation function, which produced higher mAP. In [32], the
Mish activation function is utilized for performance improvement and effective intrusion
detection and significant performance improvement is demonstrated. Similarly, the Mish
activation function is used in [33] to enhance license plate detection performance and
the model is tested with several datasets and also with a self-created dataset, providing
better results when compared to the published results in the literature. The purpose of
enhancing the CNN is to enable more accurate and faster object detection. This is an option
for devices with lower processing power, because of its lower convolutional layer count.
However, this may decrease the mAP at the cost of speed. In deep learning, a variety of
activation functions have been created and employed depending on the type of problem
statement. There are studies in the literature which report that the Mish activation function
outperforms ReLU in specific cases [34,35]. Mish is preferable when the goal is to improve
mAP, while leaky ReLU is better when the target is to enhance speed; indeed, the default
model, which solely uses the leaky ReLU activation function, is fast but has a lower mAP.
We increased the number of layers and employed both activation functions to enhance
the overall performance of the model. The fact that mAP increased during the training
of the enhanced model supports the claim that employing both activation functions and
increasing the number of layers results in better deep propagation and enhanced mAP.
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In order to increase the model’s mAP, six convolutional layers were added. The first
five of these layers rely on the Mish activation function. The output layer presents a softmax
function. The Mish activation function replaced ReLU in the first five layers to achieve deep
propagation, as proposed in [26] and illustrated in Figure 6. The Mish activation function
was added to produce deeper propagation of object information, self-regularization, and
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enhanced capping avoidance. Although adding extra layers can improve the mAP, it
adds more model parameters, which utilizes more memory and causes the network to
perform more calculations. Resnet [36] suggests adding a 1 × 1 CNN layer to lessen
computation in order to decrease superfluous processing. We used this method to suggest
a 1 × 1 convolution kernel. By maintaining memory, this method not only shortens the
computation time but also improves the extraction of features.
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3. Experimental Analysis

This section discusses the details regarding dataset creation/augmentation, along with
the results achieved using the enhanced model, and compares them with the default model.

3.1. Dataset Specification and Augmentation

For the self-created dataset, several products such as coffee, spot, chocolate, tomato-
paste, jam, cream, conditioner, shaving cream, and toothpaste) were chosen as contaminants
and then applied to several different packages to contaminate and/or stain them. The nine
classes of contaminants represent a selection of the most common packaging contaminants
among everyday objects and were chosen as a proof of concept for our proposed approach
to successfully detecting contaminants which vary in size, shape, texture, and color. For
example, chocolate and spot stains differ in size and color, while cream and conditioner vary
in texture even if they share the same color. The dataset generated was initially produced as
a video, and then a frame was taken from the video using a Python script for labeling. The
labeling was performed manually and different augmentation techniques were applied,
such as rotation (−15 to +15 degrees), flip (vertical, horizontal), saturation (25%), brightness
level (−25% to 25%), noise, and blur (2%). Overall, 2700 RGB (red, green, blue) images
were generated for the nine classes, 70% of the images were utilized for training, 20% of
the images were utilized for validation, and 10% were utilized for testing. The dataset
creation process was challenging and time-consuming because we meticulously prepared
the dataset and re-checked it multiple times to avoid bad results during the training phase.
Furthermore, sufficient attention was necessary to label thousands of images because
labeling the class name incorrectly would have reduced the model’s mAP. After finishing
all of the class labeling, we inspected all of the labeled images before training to ensure that
our model learned appropriately.
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3.2. Training and Results

In the training phase, the algorithm was programmed to produce weights after every
1000 iterations. The model was trained for 10,000 iterations and also programmed to output
the best weight at the end of a training period. All nine classes (coffee, spot, chocolate,
tomato paste, jam, cream, conditioner, shaving cream, and toothpaste) were trained using
transfer learning techniques [37,38].

The backbone model was selected from among the YOLO [30,39,40] tiny networks.
The reason for using the tiny backbone was to achieve the desired speed and mAP. Both
models were trained by means of a stochastic gradient descent (SGD) approach with a
momentum of 0.9 and a weight decay of 0.0005. The learning rate was set to 0.001 and
the batch size was 32. Other parameters are mentioned in Table 1. Both models were
trained until 10,000 iterations had been completed and took the same training time; the best
output weights were used for testing. The training phase was automatically terminated
after 10,000 iterations, and both models were then tested using test images that had not
been used during training. The achieved mAP was 99.74% using the enhanced model.
The default model was able to achieve only 93.21% mAP. The real-time training stage
for the enhanced model is shown in Figure 7, while Figure 8 shows the default model
training stage. After experimentation with higher and lower thresholds, the threshold was
set at 0.7 in the model configuration. The model was able to detect contaminants every
time—even incorrect detections—when the threshold was set to less than 0.5; however, it
also produced numerous bounding boxes and was unable to precisely localize the object’s
correct position. To resolve this problem, we changed the threshold to 0.7. After that, the
model was able to precisely recognize and localize each object with a single bounding box.
The objective of this project was to accurately detect contaminants and alert the operator.
In keeping with this, the model ignored the object every time when the threshold was set
higher than 0.7. Therefore, we empirically assessed that 0.7 was an appropriate threshold
value for the proposed application and experimental protocol.

Table 1. The parameters utilized in both models.

Parameters Values

Learning rate 0.001

Optimizer SGD

Batch size 32

Subdivisions 4

Input dimension 416 × 416

Exposure 1.5

Saturation 1.5

Channels 3

Hue 0.1

Momentum 0.9

Decay 0.0005

The inference time of both models was also calculated and is shown in Figure 9.
The enhanced model detected the object in 41.40 ms and the default model detected it in
37.29 ms. These results confirmed that, when enhancing a model more deeply, not just
increase mAP but also increase the inference time. The difference between both models’
inference time was only 4.17 ms, which is acceptable because the enhanced model achieved
much higher mAP. A laptop equipped with an Nvidia RTX 3060 GPU linked to a camera
was used to perform the CNN-based object detection and training. Both models were
trained until 10,000 iterations were complete. The training took 1 h and 44 min on a
personal gaming laptop (Asus TUF F15), and the best output weights were used for testing.
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The results achieved after testing are shown in Figure 10. The default version of CNN was
unable to effectively extract the features since the layers were inadequate and the model
was not deep. However, the enhanced CNN showed marked improvements in object
detection. A model with a greater number of layers can enhance the mAP and extract more
features from images while only marginally increasing the inference time. Higher mAP is
what this research aims to achieve, which is why layer increments and the combination of
two activation functions were taken into consideration. The model can accurately recognize
objects when the mAP is higher. A comparison of the performance of both models is shown
in Table 2 and mAP is shown in Table 3.
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Table 3. Results comparison of both CNN models.

Model mAP% F1-Score%s Average Recall%

Default Model 93.21 93.00 94.00
Enhanced Model 99.74 98.00 98.00

3.3. Performance Metrics for Model Evaluation

To evaluate the performance metrics for recognition of coffee, spot, chocolate, tomato
paste, jam, cream, conditioner, shaving cream, and toothpaste, the following significant
parameters were used.

True Positive (TP): When the centroid is within the boundaries of the specified objects,
it is determined to be a true positive. True positives are considered unique when numerous
true output detections take place within a frame.

True Negative (TN): This applies when recognition is negative but not false, indicating
that there are no defined objects in the specified frames.

False Positive (FP): The identified centroid in the class’s ground-truth is not categorized
in the designated objects.

False Negative (FN): The class’s declared objects are not present in the frame.
The following parameters are used to effectively assess how well an enhanced

model performs.
Precision: This is utilized to determine how well the enhanced model can identify the

class’s declared objects [41].

Precision (Pre) =
TP

TP + FP
× 100 (1)

Sensitivity: This metric assesses the proportion of the real class the target object
belongs to. It is also called the true positive rate or recall [41].

Sensitivity (Sen) =
TP

TP + FN
× 100 (2)
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It is worth noting that sensitivity with respect to the contaminated spots is the most
important metric for our predictive approach. Indeed, it is generally a more costly error to
mis-identify a stained package as pristine than vice versa. Sensitivity allows us to monitor
this aspect of our model. Table 2 shows a general improvement in the sensitivity of eight
out of nine of our contaminants.

F2-score and F1-score: Both are determined by the mean of precision and sensitivity
within a certain range of [0, 1]. Both of these scores were taken into consideration to
maintain precision and sensitivity. Below is the F1-score [41]:

F1− score =
2× Sen× Pre

Sen + Pre
× 100 (3)

3.4. Loss Function

The sum square error loss evaluation is used throughout the object detecting
method [42,43]. The CNN end-to-end network is prone to basic addition problems, includ-
ing coordinate error, classification error and IOU error. The given formula can be utilized to
determine the loss function. The loss function is discussed in detail in [44], which includes
a summary of different loss functions.

loss = ∑g2

i=0 coordErr + iouErr + clsErr (4)

To obtain the overall loss, the output weight of each loss function is determined. When
a prediction error and a continuous coordinate error occur during training, the model flags
chaotic action and divergence. As a result, the location error weight value is λ = 5. YOLO
assigns no-object for the IOU error to escape confusion between the grids that include
objects and those that do not.

loss = λcoord ∑
g2

i=0 ∑B
J=0 lobj

ij

[
(ai − âi)

2 +
(

bi − b̂i

)2
]
+ λcoord ∑

g2

i=0 ∑n
j=0 lobj

tj[(√
wi −

√
ŵi
)2

+

(√
hi −

√
ĥi

)2
]
+ ∑

g2

i=0 ∑B
j=0 tobj

ij (ci − ĉi)
2 + λnoobj ∑

g2
i=0 ∑B

j=0 lobj
ij (ci − ĉi)

2

+∑
g2

i=0 lobj
i ∑c ∈ class

(
Ri(c)− R̂i(c)

)2

(5)

In Equation (6) [44] above, B is utilized to indicate every number of cells associated
with the prediction boxes, and g is utilized to indicate the number of grids. The coordinate
origin of each cell is indicated using the symbols (a, b). Moreover, its height and width are
denoted by the letters w and h, respectively. The detection confidence is denoted as c, and
the object confidence is labeled using R. The λcoord is utilized to show the weight of the loss
function place. λnoobj shows the classification weight of loss function. If an object from the
class that has been trained is available, the value of cell is set to one; otherwise, it is zero.

4. Conclusions

The coffee, spot, chocolate, tomato paste, jam, cream, conditioner, shaving cream,
and toothpaste classes were detected by implementing the reported CNN architecture
with safe human–robot collaboration using a proximity sensor on a mechatronic platform.
Results were compared with the default CNN architecture. The purpose of this work was
to achieve high-quality inspection to reveal contamination of packaged products with quick
and automated instruments. Future work may focus on adding more contamination classes
to develop a more complete and enhanced contamination detection system. Also, the
algorithm could be implemented in a real robot with a conveyor belt to create an industrial
setup for quality inspection.
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