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Abstract: Radio maps, which can provide metrics for signal strength at any location in a geographic
space, are useful for many applications of 6G technologies, including UAV-assisted communication,
network planning, and resource allocation. However, current crowd-sourced reconstruction methods
necessitate large amounts of privacy-sensitive user data and entail the training of all data with large
models, especially in deep learning. This poses a threat to user privacy, reducing the willingness
to provide data, and consuming significant server resources, rendering the reconstruction of radio
maps on resource-constrained UAVs challenging. To address these limitations, a self-supervised
federated learning model called RadioSRCNet is proposed. The model utilizes a super-resolution
(SR)-based network and feedback training strategy to predict the pathloss for continuous positioning.
In our proposition, users retain the original data locally for training, acting as clients, while the UAV
functions as a server to aggregate non-sensitive data for radio map reconstruction in a federated
learning (FL) manner. We have employed a feedback training strategy to accelerate convergence
and alleviate training difficulty. In addition, we have introduced an arbitrary position prediction
(APP) module to decrease resource consumption in clients. This innovative module struck a balance
between spatial resolution and computational complexity. Our experimental results highlight the
superiority of our proposed framework, as our model achieves higher accuracy while incurring less
communication overheads in a computationally and storage-efficient manner as compared to other
deep learning methods.

Keywords: radio map; federated learning; deep learning; UAV

1. Introduction

The integration of UAVs in 6G wireless cellular communication networks has become
an increasingly popular topic of research. In dense urban areas where wireless signals may
be obstructed by buildings, UAVs can be utilized to carry wireless relays and enhance the
link quality between base stations and users with high demand for data [1]. For example,
UAVs can be deployed in a flexible manner to cover broadband gaps on the ocean that
cannot be addressed by conventional shore-based Transmitter Base Stations (TBSs) or
marine satellites [2–4]. Compared to ground-to-ground links, aerial-to-ground links with
UAVs can provide greater line-of-sight probability [5]. To maximize the potential benefits
of UAVs, researchers are studying optimal placement and trajectory design. Specifically,
UAVs can be used as flying base stations to mitigate the effects of significant channel fading
and provide enhanced coverage to ground users [6–8]. On the other hand, UAV mobility
can enable them to fly over the served ground users, leading to improved energy efficiency
and throughput by designing efficient trajectories [9–11].

However, various works have relied on the assumption of ideal pathloss models [12]
or a statistical model for line-of-sight probability. These models have been criticized as
inadequate for practical scenarios. As an alternative, the use of radio maps has been
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recommended for achieving a more realistic design in recent literature. Radio maps are
essential in accurately presenting channel qualities at every location between the transmitter
(TX) and receiver (RX). These maps play a significant role in placement design [1,13], path
planning [14], and other UAV applications [15].

1.1. Related Works

The radio map is the distribution of pathloss, which is a quantity that measures the loss
of signal strength between a transmitter and a receiver with respect to geographic location.
The spatial distribution of pathloss is affected by transmitter locations, building distribution,
signal frequency, and other factors [16]. Many other important wireless communication
applications also explicitly rely on the knowledge of the radio map, such as localization [17],
physical-layer security [18], and frequency reuse [19]. Thus, the reconstruction of the radio
map is a crucial task. However, the complex and realistic physical environment make it
difficult to estimate path loss accurately.

Many approaches for estimating pathloss have been proposed in the literature. Most
of them can be grouped into two categories, radio propagation models and data-driven
models. The former have been proposed firstly to tackle the problem of predicting pathloss,
which includes empirical models [20], ray-tracing models [21,22] and dominant path
models [23] to name a few. The propagation-based approaches often assume a certain type
of propagation. However, this general assumption may not always be accurate in specific
areas. The latter includes traditional interpolation algorithms and recent developed deep
learning models. Classical interpolation techniques, such as kriging [24], Gaussian process
regression [25] and radial basis function [26], are fast and simple. However, they commonly
rely only on distance information in the measured data and thus may not accurately
predict the complex and heterogeneous spatial patterns often observed in real-world
radio signals [27]. Recently, data-driven models, particularly deep learning, have received
increasing attention due to the inherent limitations of radio propagation models that
lack flexibility in adapting to various complex propagation environments. Deep learning
is considered the state-of-the-art approach in this field [28]. The authors in [29] firstly
described a two-step pathloss prediction by artificial neural network. In [16], RadioUNet
has been proposed to estimate the propagation pathloss from city maps and other feature
maps. In [30], for the real-time radio map, the authors proposed a fine-grained radio map
reconstruction framework called Supreme, which explores spatial–temporal relationships
within historical radio maps. In [31], the authors firstly employed a graph convolutional
neural network for radio map prediction. For the reason that radio maps are functions
of spatial coordinates, a convolutional autoencoder network was proposed for spectrum
map interpolation in [32]. Recently, the Neural Architecture Search has been employed to
optimize the Neural Network model, and additional side information (city plan, terrain
height) has been used to enhance the accuracy of radio map reconstruction [27].

1.2. Motivations

The studies above suggest that certain deep learning models have the capacity to
accurately and efficiently predict pathloss after the completion of comprehensive training,
with the caveat being access to sufficient amounts of input data. However, data acquisition
is a crucial factor that requires careful consideration in UAV-assisted communication
areas. Firstly, it is difficult for UAVs to collect data from users centrally to train with
deep learning models due to limited resources. Secondly, the data used for radio map
reconstruction usually contain sensitive user positions. Therefore, users prefer to retain
the data locally instead of uploading it to the UAVs due to privacy concerns. These
factors make it challenging to reconstruct the radio map, which is essential for UAV-
assisted communication. A potential solution to overcome these limitations is federated
learning, which is an innovative approach that enhances data privacy in deep learning by
utilizing a distributed learning system and centralized aggregation [33]. Recent studies
have supported the FL-based approach as a popular and efficient way to facilitate privacy
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preservation in UAV applications [34,35]. FL enables clients (users) to keep their private
data and train the model locally in limited epochs before sending only the model parameters
to the aggregation server (the UAV). This method eliminates the need for UAV’s deep
learning model training and consequent resource consumption.

1.3. Contribution

Storing user data locally in an FL is a viable method to ensure user privacy. However,
it can lead to client drift [36], which occurs when the local dataset of a specific user does
not represent the entire data distribution [37], resulting in lower model performance in
predicting pathloss. To address this issue, our proposed FL architecture incorporates non-
sensitive global information to improve information sharing among clients and ensure the
model gradient is updated toward the global optimal direction. To reduce communication
overhead, we incorporate training with feedback. This approach significantly reduces
learning difficulty and allows us to design a lighter and more efficient model. Referring
to the decoder structure of the autoencoder [32] and attention mechanism [38], a radio
map reconstruct network in an image super-resolution (SR) manner (RadioSRNet) is firstly
designed with fewer parameters and lower complexity. Then, considering the limited
computing resources of clients, we design an arbitrary position prediction (APP) module
based on the local implicit image function (LIIF) [39] to alleviate the trade-off between
spatial resolution and computational complexity. Combined with the APP module, a
network that predicts pathloss with a continuous position has been proposed in our paper,
which is called RadioSRCNet. Additionally, we include a feature fusion module (FF) in
our APP module that introduces external features such as the position of TX to enhance the
model’s scalability and accuracy. In brief, our contribution can be summarized as follows:

• We propose a federal learning architecture for radio map reconstruction in UAV-aided
communication based on training with feedback. This architecture reduces the risk
of privacy breach, mitigates client drift [36] by incorporating non-sensitive global
information and speeds up the convergence.

• We propose a lightweight and efficient client model to reduce communication over-
head between the FL server (UAVs) and clients (users) while maintaining a high level
of accuracy in pathloss prediction despite the limited storage and computing resources.

2. System Model
2.1. Preliminaries

For a single sample at the RX baseband output, denoted as Y, the signal is affected by
three factors: large-scale signal attenuation (P), small-scale fading (modeled as a normalized
Gaussian random variable H with a unit second moment), and additive noise (Z). Therefore,
we can express Y as shown below [16]:

Y =
√

PHX + Z. (1)

Here, the symbol X represents the transmitted signal sample. The objective of radio
map reconstruction is to estimate the pathloss (P), which refers to the large-scale signal
attenuation in the area of interest.

2.2. Problem Formulation

This paper considers one UAV as a server and n users as clients, each actively op-
erating in a corresponding area A = {A0, A1, . . . , An−1} with corresponding pathloss
measurements consisting of datasets D = {D0, D1, . . . , Dn−1}. The objective is to estimate
pathloss in any RX location x across the entire area using FL methodology. To ensure data
privacy and deal with limited resources in UAV, it is preferable for the server to not have
access to user metadata or training models directly. Therefore, each individual client (repre-
sented by i) maintains their private data Di locally for training purposes and subsequently
uploads the trained model parameters to the server for aggregation. We try to find the best
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reconstruction function F along with parameters θ to estimate pathloss P̂ at any Rx location
x, which is [31]:

ˆP(x) = F(θ, x, D). (2)

It is worth noting that deep learning methods typically require a substantial amount of
data to train models and find the optimal parameter θ. For this reason, Nx × Ny rectangular
grids are commonly used for the spatial discretization of radio maps in order to facilitate
computation. Radio maps can be represented with tensors, and the estimated pathloss
of RX is determined by the value of its nearest grid point on the radio map [16,30,32].
Prediction errors caused by spatial discretization are generally tolerable provided that the
grids are fine enough (i.e., the spacing along the x- and y-axes, ∆x and ∆y, are sufficiently
small). Discretization makes sense and can alleviate the effects of small-scale fading to some
extent [32]. The information for radio map reconstruction, such as pathloss measurements
or city maps, can also be represented as tensors. However, different regions may require
various grid sizes, which should be carefully considered. Excessive grid spacing can
result in low resolution (LR), which inevitably reduces the accuracy of pathloss prediction.
Conversely, using overly fine grids with high resolution (HR) can be highly computationally
expensive, particularly for CNN-based models.

3. Proposition

In this section, we present the methodology, the architectural design of FL, and the
local models proposed.

3.1. Methodology and Architecture

As mentioned earlier, FL makes users keep their private data locally for model training,
which significantly reduces the risk of privacy leakage. This paper proposes a method to
enhance FL by integrating it with a feedback training strategy. This method reduces the
learning complexity of the models, thereby making them more lightweight. Additionally, it
introduces global radio maps, which stabilize the direction of gradient descent and improve
the accuracy of FL.

3.1.1. FL Clients

Although our paper strictly limits the local training epochs for clients (e.g., 10), the
process of radio map reconstruction still requires a significant amount of computing re-
sources. This is due to the fact that the server’s original training task is distributed among
each client using FL. Therefore, in addition to data privacy concerns, it is important to
minimize the number of parameters(params) and Floating-point Operations (FLOPs) in
order to incentivize clients to participate in our task. However, this presents a challenge to
the learning ability of models, making it necessary to design a lightweight and efficient
model with FL.

3.1.2. FL Server

The FL server performs not just weight aggregation from clients but also generates
non-sensitive global radio maps. This mechanism ensures user privacy protection while
indirectly promoting client information sharing. Meanwhile, thanks to training with
feedback, the global radio maps inferred from the last communication round are also used
as the models’ inputs in the current communication round, which retains historical learning
results to some extent. Thus, the learning difficulty of local models is reduced, which makes
models of clients lightweight and possibly efficient.

According to traditional methods, such as large-scale fading models in free space (as
discussed in [40]), or historical radio maps, the FL server initializes global LR radio maps
and model weights. These are then sent to selected clients who individually train local
models with their own data and upload their weights to the server. Once received, the
server combines the received weights and global LR radio maps to infer the models and
update different regions of the global HR map corresponding to each client. An average is
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taken if there is overlap. The global LR maps are updated by applying average pooling
for the global HR radio map. After weight aggregation from selected clients, the FL server
sends back the aggregated weights and updated global LR maps to clients in the next
communication round. Figure 1 and Algorithm 1 illustrate the process.

Algorithm 1: FL-based radio map reconstruction with training feedback strategy
Input :The initial global model weights θ0, the initial global LR radio map RM0,

the local client datasets D = {D0, D1, · · · , Dn−1} and the client activity
areas A = {A0, A1, · · · , An−1}

Output : The trained global model weights θT and global LR radio map RMT
Initialize θ0, RM0;
for each round t = 0, 1, . . . , T − 1 do

SM ← (randomly select M clients);
// The server download θt RMt to selected clients
for each client i ∈ SM in parallel do

θi
t ← ClientTrain(θt, RMt, Di);

end
// Clients upload θi

t to the server
for i ∈ SM do

RMi
t ← ServerInfer(θi

t, RMt, Ai);
end
RMt+1 = 1

M ∑M
i=1 RMi

t;
θt+1 = 1

M ∑M
i=1 θi

t;
end

Training with feedback is an important part of our proposal. After receiving the
weights, the server performs inference on the model to reproduce the learning results of
selected clients for the new global HR map. The updated global LR maps are generated
using average pooling and are sent back to be shared with other clients. The global radio
map is both the learning results of selected clients in the last round and the same input
in the next round. Average pooling is necessary in the FL server because it reduces the
size of the global HR radio map and makes global LR maps less related to any particular
client’s prediction, which can be seen as non-sensitive global information. The same input
for all selected clients allows each one to indirectly make use of others’ pathloss prediction,
which alleviates the problem that the gradient is hard to decrease stably in FL, which is
known as client drift [36]. The global LR maps represent the last round’s learning results to
some extent, giving our FL architecture some kind of memory, where users’ models not
only learn from local data but also use global LR maps as a reference. For FL with training
feadback strategy, Equation (2) can be rewritten as:

ˆP(x) = F(θ, x, ˆRMt, D) (3)

where ˆRMt is the estimated global radio map in round t. The new estimated radio map
ˆRMt+1 in round t + 1 can be easily achieved with x ∈ A, where A is the area of interest. It

allows users’ models to pay attention to how to improve the performance on the basis of
existing radio maps with local data. The models are then trained to reconstruct a better
radio map ˆRMt+1 from the previous map ˆRMt. This approach greatly reduces the difficulty
of learning and enables the users’ models to require fewer parameters, making them more
lightweight and efficient.
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Figure 1. Overview of FL architecture.

3.2. Design of Models

In our proposal, we include average pooling in the FL server to encode the learning
results from the previous round. The clients’ models are used to decode the radio maps
received from the FL server and train using local data. We begin by introducing RadioSRNet,
which is based on the decoder architecture of the autoencoder [32]. We then enhance
RadioSRNet by incorporating the Arbitrary Position Prediction (APP) module inspired by
LIIF [39], resulting in RadioSRCNet, as proposed in this paper.

3.2.1. RadioSRNet

The architecture of RadioSRNet is illustrated in Figure 2a, which is composed of
two fully connected (FC) layers, several denseSR blocks and the attention module. The
denceSR block aims to extract features and enhance the spactial resolution, consisting
of several convolution layers which are connected densely [41], and one convolution
transpose layer [42] for upsampling with a scale ×2. Thus, the upsampling scale of the
models depends on the number of denseSR blocks n. Here, the first FC layer encodes the
global LR radio maps to latent variables of which the code length is 12, and the other FC
layer decodes it for recovery. Taking communication cost into consideration, instead of
sending the weights of the first FC layers, the code is sent to the FL server to update the
global HR radio map. The compression of FC layers is beneficial to lower noise, exchange
spatial information and enhance the model’s learning ability. In addition, an attention
module is incorporated into our model to enhance accuracy by attending to significant
features or grid points [38].
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Figure 2. (a) RadioSRNet, based on the architecture of decoder in the autoencoder [32] and combined
with attention mechanism [38]. (b) RadioSRCnet, predicting pathloss in a continuous manner with
the proposed APP module based on RadioSRNet.

3.2.2. RadioSRCNet

As depicted in Figure 2b, the APP module plays a crucial role in RadioSRCNet, as
it leverages the high-dimensional feature maps extracted by the aforementioned decoder
module as well as RX positions and other relevant information. It utilizes these inputs
to make continuous predictions of pathloss. The APP module is composed of two main
components: the Feature Fusion (FF) module and the Multi-Layer Perceptron (MLP). The
FF module is responsible for combining the feature maps and the additional information,
while the MLP carries out the actual prediction process. The m in Figure 2b is the number
of layers of MLP, which is 5 in our paper. The design of the APP module is based on the
rationale that relying on the resolution of pre-defined grids for pathloss prediction accuracy
is unreasonable. Additionally, estimating pathloss based on the value of the closest grid
point is inadequate. Therefore, it is highly recommended to leverage the full information
of RX positions and additional features to predict pathloss, regardless of the resolution
of radio map grids. One approach, as described in [16,32], is to represent extra features
as tensors and concatenate them with feature maps. However, this may be inefficient,
particularly when the number of TX is small and the tensors are sparse. Furthermore, using
RX positions in grids directly is challenging, as their coordinates are mostly non-integer
values. To solve the problems above, MLP may be a more flexible choice, which is the
basic module in APP. Specifically, when the high-dimensional feature maps are available,
we select features around the RX positions, which are believed to be most related with
RX pathloss considering radio propagation. The features, the relative coordinate distance
between RX positions and grid points of selected features, and extra features (TX positions,
etc.) are concatenated as local features for prediction. However, the local features from
multiple sources are various in scale and importance, which need attention and scaling.
Thus, a feature fusion module is introduced in our paper to adjust the weights of each
feature adaptively. Then, an MLP after the FF module is used for pathloss prediction with
the adjusted feature weights.

As shown in Figure 3, there are usually four grid points (top-left, top-right, bottom-left
and bottom-right sub-spaces) around RX (padding zero-vectors if none). Each of them
would predict pathloss in RX with its own features, relative distances and extra features as
mentioned above. Inspired by [39], we employ local ensemble learning to aggregate predic-
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tions based on their relative distance, thereby determining the ultimate result. Specifically,
the longer the distance, the smaller the contribution. Let c∗t (t ∈ {00, 01, 10, 11}) denote the
features in the top-left, top-right, bottom-left, and bottom-right sub-spaces, respectively.
Let x be the coordinate of RX, and let ex represent the extra features. The area of the
rectangle bounded by the coordinate x and the point on the diagonal of the grid point c∗t is
represented by St. The formulation of pathloss prediction P̂ with local ensemble learning
can be defined as

P̂ = ∑
t∈{00,01,10,11}

St

S
f (θ; x, ex, ; c∗t ). (4)

Figure 3. Pathloss prediction with local ensemble.

The weights are normalized by S = ∑t St. The greater the value of St, the shorter the
distance and the greater the contribution to P̂. It is important to note that we use unfolding
to enrich information and enlarge receptive fields as depicted in Figure 2b. Specifically, the
feature unfolding is formally defined as [39]

c∗jk = Concat({cj+l,k+m}l,m∈{−1,0,1}), (5)

where Concat is short for concatenation, and cj+l,k+m refers to decoder outputs without
unfolding. Zero-vectors are padded if they are outside the border. The proposed APP
module makes the model remain highly accurate with limited computing resources, which
will be demonstrated in the following section.

4. Experiment and Results

In this section, the dataset used in the experiments and relevant experimental parame-
ters are described. Subsequently, the baseline models and evaluation metrics are briefly
introduced. Finally, the proposed approach is thoroughly examined in terms of its specific
performance from multiple perspectives.
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4.1. Dataset and Parameter Setting

Recently, an open-source dataset named as WAIR-D was proposed to support related
research, which is used in our paper [43]. The dataset in our paper contains 4 base stations
and 90 clients which are grouped into 9 groups. Each group includes 10 clients that are
active in the same area with different data samples. The dataset consists of 90 client records,
totaling 398,041 samples that include RX locations and corresponding pathloss. These
records are associated with four base stations. The training and testing sets are divided
at a ratio of 8:2. Specifically, a Cartesian coordinate system is established with the corner
of the area as the origin. The RX position is represented as a two-dimensional coordinate,
while the pathloss of each base station is determined by the signal strength received. The
base stations do not interfere with each other in our experiments. To be detailed, Table 1
summarizes the parameters and their settings.

In our experiment, Pytorch was used as the model training framework, and the
training and testing were completed on an NVIDIA 3090 GPU. The mean absolute error
(MAE) was adopted as the loss function, and the Adam optimizer was utilized for local
training. The initial learning rate was set to 0.005, and after 80 rounds, the learning rate
was reduced to 75% of the previous value every 18 rounds. The number of local training
epochs was set to 10, and the upper limit of total federated learning rounds was set to 180,
with a batch size of 150 and early-stop rounds of 9. There are only differences in the grid
sizes of the global HR radio map, and the grid size of the global LR radio map is identical
(which is 50× 50) if the tensors are used in models to represent radio maps, as depicted in
Equation (3).

Table 1. Implementation parameters.

Dataset

Size of area (m) 400× 400
Coordinates of base stations (m) (200 + j, 200 + k)j,k∈{−100,100}
Size of area for each group (m) 240× 240

Centroidal coordinates for each group (m) (200 + j, 200 + k)j,k∈{−80,0,80}
Training set 318, 397
Testing set 79, 644

Federated Learning

FL server 1
Number of clients 90

Clients used in federated updates 5
Local training epochs 10

Communication rounds 180

4.2. Baseline and Metrics

MLP [29] and kriging [24] are classic models in deep learning and traditional inter-
polation, respectively. They are often compared in radio map construction [16,32]. The
completion autoencoder [32] is one of the state-of-the-art models in this field and has been
used as a comparison to our proposition, with a code length of latent variables equal to
32 in our paper. The model structure of the MLP is identical to the one described in [29].
Additionally, the ordinary kriging interpolation method is also compared in our paper [24].
The metric of accuracy in our paper is normalized mean squared error (NMSE), which is
defined as follows

NMSE = E{
‖P− P̂‖2

2
‖P‖2

2
}, (6)

where P is the true pathloss and P̂ is the estimated pathloss, both of which are in the unit
of dB.

In FL, the uplink and downlink communication overheads are also important met-
rics [37]. The uplink communication overheads refer to the number of model parameters
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to be sent to clients and other necessary information, so as to downlink communication
overheads. The total communication overheads of all rounds are considered in our paper.
Given that user resources are also limited, storage and computing resources (i.e., the param-
eters of the whole model and the FLOPs for training with one batch) are also considered as
performance metrics of FL for radio map reconstruction.

4.3. Results

In this subsection, we investigate the effects of model design and FL architecture,
which are APP modules and feedback training strategy, respectively. Additionally, we
compare the performance of the proposed approach with FL and non-FL baseline models
using the aforementioned metrics.

4.3.1. Impact of Client Model Architectures

The impact of the global HR radio map with different grid sizes on model perfor-
mances is presented in Table 2. It can be seen that regardless of the proposed RadioSRCNet,
RadioSRNet or the autoencoder [32], as the grid size increases, i.e., as the the spatial res-
olution increases, the FLOPs, params, and prediction accuracy all increase. It is worth
noting that FLOPs are the ratio to the grid size for CNN-based models. Because we only
use decoder-based networks (RadioSRCNet and RadioSRNet) in clients, these networks
require approximately 50% fewer FLOPs compared to the autoencoder [32] implemented
in the same grid size. Furthermore, both RadioSRCNet and RadioSRNet require signifi-
cantly fewer parameters than the autoencoder [32]. This reduction in parameters is not
solely attributed to the decoder-based architecture but also to the training process involv-
ing feedback, which helps alleviate learning difficulties and consequently requires fewer
parameters for model design.

Table 2. The impact of different grid sizes on model performance.

Size of Grid Model NMSE (dB)
Complexity

Params (M) FLOPs (G)

200× 200
RadioSRCNet −38.99 0.33 5.50
RadioSRNet −33.00 0.20 5.54

Autoencoder [32] −33.63 5.31 8.59

400× 400
RadioSRCNet −39.72 0.37 18.89
RadioSRNet −36.58 0.27 22.91

Autoencoder [32] −36.89 5.37 35.95

800× 800
RadioSRCNet −40.18 0.41 72.45
RadioSRNet −39.05 0.33 92.42

Autoencoder [32] −39.54 5.42 145.42

To verify the effectiveness of each component in our proposed model, we conduct the
ablation investigation where RadioSRCNet-rf is RadioSRCNet without FF and
RadioSRCNet-ra is RadioSRCNet without APP (i.e, RadioSRNet, where we put the FC
layers after input layers rather than directly remove them with the APP module for fair
comparison, which accounts for too many parameters). As depicted in Figure 4, for
RadioSRCNet-ra, we can see that NMSE almost decreases by 3 dB as the grid area of the
global HR radio map doubles, as shown in the autoencoder [32] in Table 2. Indeed, the
trade-off between computational complexity (FLOPs) and prediction accuracy (NMSE) re-
sulting from spatial resolution is determined by the gridding and convolution methods, as
explained in Section 2.2. To address this issue, we propose the APP module, which aims to
mitigate this trade-off. The goal of the APP module is to provide the model with a relatively
high spatial resolution while keeping the computational complexity low. It can be seen that
the accuracy of RadioSRCNet varies less with grid size compared to the RadioSRNet-ra and
the autoencoder [32] in Figure 4 and Table 2, indicating a weak correlation between accuracy
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and spatial resolution. Specifically, for a grid size of 200× 200, RadioSRCNet achieves an
NMSE estimation accuracy that is only about 0.6 dB worse than RadioSRNet-ra and the au-
toencoder [32] with a grid size of 800× 800, while requiring FLOPs that are only about 5.95%
and 3.78% of the latter two, respectively. This suggests that RadioSRCNet provides a favor-
able trade-off between accuracy and computational complexity, allowing for high accuracy
with significantly reduced computational requirements. For the FF module, it is used to fuse
features with extra useful information (TX location in our paper). Obviously, extra features
are unrelated with the size of the grid, which further mitigates the trade-off. As shown in
Figure 4, compared with the grid size of 800× 800, the performace gap between RadioSRC-
Net and RadioSRCNet-rf is much larger in the grid size of 200× 200, indicating that the
FF module contributes more significantly to accuracy in low spatial resolution especially,
which is beneficial for limited storage and computing resources.

size of grid

N
M

S
E

(d
B

)

RadioSRCNet

RadioSRCNet-rf

RadioSRCNet-ra

Figure 4. Performance comparisons over our proposed model and its variants.

4.3.2. Impact of Training with Feedback

We discuss the impact of the feedback training strategy on the prediction accuracy of
FL learning for radio map construction. The experimental results are shown in Figure 5.
We can see that the feedback training strategy has a certain degree of improvement on the
accuracy of models. However, the effect of improvement varies among different models.
Specifically, the improvement effect is significant for RadioSRCNet, which is 9.15 dB, while
it is marginal for RadioSRNet and the autoencoder [32], which are 0.14 dB and 0.30 dB,
respectively. Obviously, it is the architecture of models that determines the improvement
effect of the feedback training strategy. Compared with RadioSRCNet, both of the other
models will first compress the global LR radio map to latent variables (the code length
is 12 for RadioSRNet and 32 for autoencoder [32]) and then recover it through FC layers
and convolution layers. This coding compression structure has to some extent weakened
the impact of the previous learning results on the training of this round. Without the
compression of FC layers, RadioSRCNet can retain more information with the previous
learning results. As inputs, the information can significantly enhance the high-dimensional
features extracted by the decoder and thus fully leverage the advantages of the feedback
training strategy. Therefore, RadioSRCNet benefits most significantly in terms of accuracy.
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N
M

S
E

(d
B

)

training with back

taining without back

Figure 5. The impact of training with feedback on model performance where the size of the grid is
400× 400, Autoencoder from [32].

4.3.3. Comparison with FL Models

In this section, we mainly compare the performance of various models in FL from two
aspects: prediction accuracy of pathloss (measured by NMSE) and communication over-
heads (uplink and downlink). The global HR radio maps of kriging [24], autoencoder [32],
RadioSRNet, and RadioSRCNet all utilize a grid size of 400× 400. The corresponding
global LR radio maps have a grid size of 50× 50, resulting in a scale of 3 for the upsampling
process in the decoder. In this experiment, each round of selected clients train their local
models and then upload the weights to the FL server. In addition to the differences in
model structure, the FL architecture is consistent with Section 3.1.2. Only the two models
designed in this paper adapt a feedback training strategy. The experiment results are shown
in Table 3.

Table 3. The performance of our model against other models in FL.

Models DL Overheads
(G)

UL Overheads
(G) NMSE (dB) Epochs

RadioSRCNet 0.34 0.33 −39.72 180
RadioSRNet 0.25 0.24 −36.58 180

Autoencoder [32] 5.41 5.41 −36.89 180
MLP [29] 0.12 0.12 −22.11 180

Kriging [24] 0 0.058 −17.12 18

Compared to traditional kriging interpolation [24], deep learning models generally
exhibit higher estimation accuracy, they but come with significantly larger communication
overheads. There is a notable distinction between the classical deep learning model, namely
MLP [29], and other CNN-based models. This discrepancy highlights the critical importance
of a well-designed model structure. Comparing RadioSRCNet, RadioSRNet, and the
autoencoder [32], it is evident that model lightweightness and efficiency are essential for
reducing parameters and minimizing communication overheads. Specifically, the average
uplink and downlink communication overheads of RadioSRCNet and RadioSRNet are
approximately 6.28% and 4.62% of the autoencoder [32] respectively, while still achieving
superior or comparable estimation accuracy. These ratios closely resemble their respective
numbers of parameters. It can be observed that RadioSRCNet boasts the highest prediction
accuracy. Moreover, as depicted in Table 2 and Figure 4, with a grid size of 200× 200,
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RadioSRCNet improves the NMSE compared to RadioSRNet and the autoencoder [32]
with a 400× 400 grid size by approximately 2.41 dB and 2.1 dB, respectively, while the
computational complexity measured in FLOPs of RadioSRCNet is only 18.94% and 6.15%
of the latter two methods. This may be attributed to the feedback training strategy and the
APP module, which have been discussed in the details above.

Considering the limited resources on the clients and the server, it is preferable to
achieve high prediction accuracy with as few communication rounds as possible. This
requires the model to converge relatively quickly. Figure 6 depicts the impact of communi-
cation rounds on the performance of the FL model. In this figure, RadioSRCNet-rb refers to
RadioSRCNet without the training feedback strategy. It can be observed that RadioSRCNet
can achieve a decrease of−30 dB within approximately 30 rounds and a decrease of−35 dB
within about 70 rounds. This indicates faster convergence compared to other deep learning
baselines, such as the autoencoder [32] and MLP [29]. We can also see that the performance
of RadioSRCNet is greatly influenced by the feedback training strategy, which not only
improves accuracy but also accelerates convergence. This is because the strategy reduces
learning difficulty and mitigates client drift [36], as explained in more detail earlier.

communication rounds

N
M

S
E

 (
d

B
)

RadioSRCNet
RadioSRCNet-rb
Autoencoder(Teganya,2022)
MLP(Saito,2019)

Figure 6. Effect of communication rounds on the FL model performance [29,32].

4.3.4. Comparison with Non-FL Model

As we can see in Figure 7, RadioSRCNet achieves the best accuracy no matter whether
FL or Non-FL. It is worth noticing that the performance gap between FL and Non-FL
caused by client drift [36] varies with different models. As mentioned before, to alleviate the
problem, we use a feedback training strategy to narrow the performance gap by introducing
global information (global radio maps) shared by all users. In our experiment, compared
to other models without this training strategy, RadioSRCNet and RadioSRNet both have
the smallest performace gaps, which are 0.23 dB and 1.25 dB, respectively. However, as
we have discussed in detail in Section 4.3.2, the feedback training strategy has a greater
impact on RadioSRCNet due to the differences in model structure, which is reflected not
only in the improvement of accuracy but also in the reduction of performance gap between
FL and Non-FL.
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N
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(d
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FL
Non-FL

Figure 7. The accuracy of our model against other models in FL and Non-FL, Autoencoder from [32],
MLP from [29].

5. Conclusions

Radio maps play a crucial role in various applications of 6G, such as UAV-assisted
communication, network planning, and resource allocation. However, existing methods
for crowd-sourced reconstruction suffer from several drawbacks. First, they require vast
amounts of privacy-sensitive user data, which raises concerns about user privacy and
reduces the data contribution. Second, these methods heavily rely on training large models,
particularly in the context of deep learning, which places significant demands on server
resources. As a result, reconstructing radio maps on resource-constrained UAVs becomes a
challenging task. In order to address these limitations, we propose a self-supervised fed-
erated learning model called RadioSRCNet. This model utilizes a super-resolution-based
network and feedback training to accurately predict continuous position pathloss. In our
approach, users retain their original data locally and act as clients for training, while the
UAV serves as a server to aggregate non-sensitive data and perform radio map reconstruc-
tion using federated learning. To expedite convergence and ease training difficulties, we
adopt a feedback training strategy. Additionally, we introduce an Arbitrary Position Predic-
tion (APP) module that reduces resource consumption in clients. This innovative module
strikes a balance between spatial resolution and computational complexity. Experimental
results demonstrate the superiority of our proposed framework, as our model achieves
higher accuracy with lower communication overheads, all while being computationally
and storage-efficient compared to other deep learning methods.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
SR Super-resolution
APP Arbitrary position prediction
TX Transmitter
RX Receiver
FL Federated learning
LIIF Local implicit image function
FLOPs Floating-point Operations
FF Feature fusion
HR High-resolution
LR Low-resolution
CNN Convolutional neural network
FC Fully connected
MLP Multi-layer perceptron
MAE Mean absolute error
NMSE Normalized mean squared error
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