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Abstract: Most current pose estimation methods have a high resource cost that makes them unusable
in some resource-limited devices. To address this problem, we propose an ultra-lightweight end-
to-end pose distillation network, which applies some helpful techniques to suitably balance the
number of parameters and predictive accuracy. First, we designed a lightweight one-stage pose
estimation network, which learns from an increasingly refined sequential expert network in an
online knowledge distillation manner. Then, we constructed an ultra-lightweight re-parameterized
pose estimation subnetwork that uses a multi-module design with weight sharing to improve the
multi-scale image feature acquisition capability of the single-module design. When training was
complete, we used the first re-parameterized module as the deployment network to retain the simple
architecture. Finally, extensive experimental results demonstrated the detection precision and low
parameters of our method.

Keywords: ultra-lightweight pose estimation; knowledge distillation; re-parameterized module;
end-to-end; feature compression

1. Introduction

Human pose estimation has been a research topic of great interest in the field of
computer vision for decades. It refers to the recognition and location of the keypoints
(e.g., head and shoulder) of each visible human body in pictures or videos captured from
image sensors, which plays a significant role in a variety of human-computer interaction
applications. Traditional approaches typically use some hand-designed features to detect
keypoints, such as tree-structured models [1–4] and graphical models [5–8]. With the rapid
development of convolutional neural networks (CNNs) [9–11], the accuracy of human pose
estimation based on CNNs has continuously improved. However, most current human pose
estimation methods [12–20] have a complex network structure and very high resource costs,
which makes them unsuitable for resource-limited devices (e.g., monitoring equipment).

Recently, researchers have conducted several studies [21–27] to achieve good perfor-
mance and decrease the computational cost of human pose estimation. Cao et al. [21] used
a two-branch multi-stage design in which the first branch of each stage generated accurate
confidence maps and the second branch of each stage generated helpful part affinity fields,
which were then parsed using a greedy inference strategy to generate good multi-person
keypoint locations to achieve real-time performance. Kato et al. [22] used the output of
the strong teacher model to improve some incomplete labels in the training dataset and
designed a label-correction model. Zhang et al. [23] established a compact hourglass net-
work and distilled knowledge of the original state-of-the-art hourglass network to achieve
highly cost-effective results, demonstrating the superiority of the knowledge distillation
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scheme. Qiang et al. [24] designed a lightweight architecture that used an efficient back-
bone network composed of modified SqueezeNet and three continuously refined stages to
improve detection speed. The above lightweight networks tend to achieve good predictive
accuracy, but the degree of reduction in the number of their model parameters have been
unsatisfactory. Thus, some researchers have attempted to achieve accurate and lightweight
detection results by applying other helpful technologies (e.g., knowledge distillation and
re-parameterized technology). Weinzaepfel et al. [25] took advantage of annotated datasets
to train some independent teacher models for each part, including body, hand, and face
teacher models, and distilled their knowledge into a single deep convolutional network
to achieve whole-body 2D-3D pose estimation. Zhong et al. [26] used a lightweight up-
sampling module and deep supervision pyramid network to enhance the multi-scale image
feature representation ability of the model, which resulted in higher detection accuracy
and lower computational costs. Wang et al. [27] used a mixed structure that consisted
of a multi-branch training network and single-branch deployment network to design an
efficient re-parameterized bottleneck block, which resulted in good performance in terms
of detection accuracy and detection speed.

Although these methods aim to improve human pose estimation performance using
the means of CNNs, the following problems still need to be solved:

(1) Existing CNN-based pose estimation methods often use a complex deployment
network that is computationally expensive;

(2) The detection results are unsatisfactory, to a certain extent, if the number of param-
eters of the pose estimation methods is low.

To address the above problems, we mainly study an ultra-lightweight end-to-end pose
distillation network (UEPDN), which applies some helpful techniques to better balance the
number of parameters and predictive accuracy of the model. The main contributions of our
study are generalized as follows:

• We design a lightweight one-stage pose estimation network, stage 1, which learns
from an increasingly refined sequential expert network in an online knowledge distil-
lation manner;

• We construct an ultra-lightweight re-parameterized pose estimation subnetwork that
uses a multi-module design with weight-sharing to improve the multi-scale image
feature acquisition capability of the single-module design. When training is complete,
we use the first re-parameterized module as the deployment network to retain the
simple architecture;

• Extensive experimental results demonstrate the superiority of our method on three
standard benchmark datasets.

2. Related Work
2.1. Lightweight Pose Estimation Network

Recent studies [28–34] were conducted on lightweight network design to promote
human pose estimation applications in resource-limited platforms. For example, Bulat and
Tzimiropoulos [28] used binarization technology to design a lightweight pose estimation
network for inference acceleration; however, it had low detection accuracy. Xiao et al. [29]
built a baseline model, which simply added a few deconvolutional layers to the last convo-
lutional stage of ResNet to directly generate pose heatmaps from image features. Although
this method provided some simple and effective model design ideas, its detection perfor-
mance was not satisfactory. Wang et al. [32] used explicit human estimation regions of
interest and relevant 3D directions to directly estimate a 3D pose, which addressed the prob-
lems of 2D errors propagating to 3D recovery leading to degenerated results. Li et al. [33]
built a multi-branch online knowledge distillation network to simplify the traditional distil-
lation process and improve keypoint detection performance, which they called OKDHP.
However, the multi-branch distillation network design increased the training complexity
of the model and the accuracy of the model needed improvement. Xiao et al. [34] designed
a compact single-stage pose regression method that used a new body representation to
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achieve good inference performance for multi-person pose estimation. However, the num-
ber of parameters it had was unsatisfactory. Unlike these methods, our method does
not need a multi-branch architecture to train a small network; instead, it uses a single-
branch iterative pose distillation training network. Simultaneously, we constructed an
ultra-lightweight re-parameterized pose estimation subnetwork that uses multi-module
design with weight-sharing to improve the multi-scale image feature acquisition capability
of the single-module design. This improves the performance of the model while barely
increasing the calculational costs. When training was complete, we distributed the weight
value to the ultra-lightweight target deployment network through knowledge distillation
technology and re-parameterized technology, which maintained good detection accuracy
and reduced the model parameters.

2.2. Intermediate Supervision

Intermediate supervision, also known as deep supervision, is popularly applied in
multi-stage pose estimation networks (e.g., CPM and OpenPose). It calculates the loss at
the prediction location at every stage in the multi-stage network, which has been proven to
effectively address the vanishing gradient problem that occurs in the training phase of a
deep network and improve keypoint detection performance. Generally, the output of the
last stage is used to guarantee accuracy for deployment. We also follow this strategy in our
network design, which ensures that the gradient is transferred at all stages and also helps
to compress the redundant parameters of the proposed network.

2.3. Structure Optimization

Recently, many lightweight methods based on CNNs, including knowledge distilla-
tion, re-parameterized technology, and model pruning, have been proposed to be deployed
in resource-limited devices. Li et al. [33] used online knowledge distillation technology
to build a small efficient network that distilled the trained knowledge of a multi-branch
modified hourglass network into an efficient compact network to decrease the complexity
of the traditional two-stage knowledge distillation training process and quantity of model
parameters. However, its training costs were unsatisfactory and the accuracy of the model
needed improvement. Wang et al. [27] proposed an unbiased lightweight network that con-
sisted of various branch architectures, where the multi-branch architecture, applied in the
training stage, would improve detection performance, and the single-branch architecture,
used in the deployment stage, would reduce the inference complexity of the model. It used
a re-parameterized strategy to implement the conversion of multi-branch parameters to
single-branch parameters and showed characteristics of good performance, computational
resource savings, and fast inference speed. We also adopted the design concept of the
re-parameterized structure in our method. We constructed a re-parameterized structure
that introduces the knowledge distillation technique. Our method simultaneously had a
low quantity of parameters and good detection accuracy.

3. Proposed Methods

In this study, we developed an ultra-lightweight end-to-end pose estimation net-
work based on online knowledge distillation technology and re-parameterized technology.
The structure of the proposed network, including the training network and deployment
network, is shown in Figure 1. First, the training images were processed through a re-
parameterized network, stage 1, where a modified PeleeNet [35] extracted rich human
body features, and re-parameterized pose estimation modules used the multi-module
design with weight-sharing to generate increasingly accurate detection results in sequence.
Then, stage s ∈ {2, . . . , S}, which included five convolutional blocks that consisted of
two 3× 3 convolutional layers, a 1× 3 convolutional layer, 3× 1 convolutional layer, and
two 1× 1 convolutional layers, predicted increasingly refined keypoint heatmaps using
an iterative sequential prediction architecture. The prediction results of the last stage
were considered to be the expert model’s outputs that were used to teach modules R1, R2,
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and stage s ∈ {2, . . . , S− 1}. Finally, the re-parameterized module R1 was used as the
deployment network to retain the simple architecture.

Figure 1. The structure of ultra-lightweight pose distillation network.

3.1. Keypoint Feature Extraction

Given the input RGB image M ∈ RC×H×W of size H×W, we first used a human body
detector to obtain human bounding boxes. Then, we cropped every box to 368× 368 from
the image and sent it to the stage 1 network. Stage 1 is a re-parameterized network that
consists of a modified PeleeNet and several re-parameterized modules. We adopted the
modified PeleeNet as the backbone network to extract rich human body features. The size of
the original feature map extracted from our modified PeleeNet was 46× 46× 128. After we
passed this result through the first re-parameterized module R1, the size of the human body
feature map was adjusted to 46× 46× 15. The re-parameterized module r ∈ {2, . . . , N}
continuously generated increasingly accurate detection results. We regarded the prediction
results of the last re-parameterized module RN as the stage 1 network’s outputs. Then,
in the proposed method, we used an iterative sequential prediction architecture in which
the keypoint heatmaps with a size of 46× 46× 15 pixels generated from the previous
adjacent stage, and feature maps with a size of 46× 46× 128 pixels generated from the
modified PeleeNet, were fused to take abundant characteristic information with learned
spatial context features to enhance the network’s cognition of multi-scale image features
and rich image-dependent spatial features.
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3.2. Re-Parameterized Structure

Due to the complex correlation of knowledge transfer from the expert model to the
target student model, the final distillation results can be unsatisfactory, to a certain extent, if
the student model is just a simplified version of the expert model. To reasonably use infor-
mation of various scales and high-value information provided by the expert network, we
designed a re-parameterized structure that introduced the knowledge distillation technique.

As shown in Figure 2, we assumed that the input feature maps were x ∈ RC×H×W ,
where C is the number of channels and H ×W represents the size of feature maps. First,
we inputted the feature maps into feature space s, and s(xi) = Wsxi, where Ws is a
weight matrix that changes with the intermediate features. We implemented Ws as a 3× 3
convolution with a single-channel to obtain spatial information. Second, we processed the
intermediate feature s(xi) using a feature compression module. The feature compression
results fi ∈ RC×H×W were generated as follows:

fi = LW(s(xi)) (1)

where LW acts on s(xi), and performs the operations of 1× 3 and 3× 1 convolutions suc-
cessively. Then, we inputted the feature compression results fi into a feature enhancement
layer, the outputs of which were vi ∈ RC×H×W . They were generated as follows:

vi = h( fi) (2)

where h represents the 3× 3 convolution operation used to enhance the representation
ability of image features. Finally, we used y ∈ RC×H×W as the final outputs of the re-
parameterized module. They were generated as follows:

yi = s(xi)⊕ vi (3)

where ⊕ represents the element addition operation. Then, the re-parameterized module
r ∈ {2, . . . , N} used image features generated from the previous adjacent re-parameterized
module to successively enhance the multi-scale image feature acquisition capability of the
single-module design.

3.3. Learning in the UEPDN

By reducing the discrepancy between the objective prediction coordinates and given
label coordinates, we obtain the optimal mapping between the human image and keypoint
coordinates. We apply the l2 loss to improve the performance of the proposed network:

L(p) =
1
n

n

∑
i=1

(p− r)2 (4)

where p is the predicted coordinate, r is the real label coordinate, and n is the number
of keypoints.

We use two types of loss functions, conventional label loss Ll and specialized distilla-
tion loss Ld, to augment training. The overall loss function L can be expressed as follows:

L = Ll + Ld, (5)

where Ll is the loss between all levels of the prediction coordinates and given label coor-
dinates, and Ld is the loss between the prediction coordinates of the student models and
prediction coordinates of the expert model. Ll is calculated as follows:

Ll = a× (
1
n

S

∑
s=1

n

∑
i=1

(pi − r)2 +
1
n

R

∑
r=1

n

∑
i=1

(pi − r)2) (6)
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where a is a hyperparameter, pi is the predicted coordinate of keypoint i, r is the real label
coordinate of corresponding keypoint i, S is the number of stages, and R is the number of
re-parameterized modules. Ld is calculated as follows:

Ld = b× (
1
n

S−1

∑
s=2

n

∑
i=1

(pi − p∗i )
2 +

1
n

2

∑
r=1

n

∑
i=1

(pi − p∗i )
2) (7)

where b is a hyperparameter, pi is the predicted coordinate of keypoint i generated from
stage s ∈ {2, . . . , S− 1} or re-parameterized module r ∈ {1, 2}, p∗i is the predicted coor-
dinate generated from the expert network, S is the number of stages, and r is the number
of re-parameterized modules. We can obtain the optimal parameters by minimizing the
overall loss function L.

Figure 2. The framework of re-parameterized modules.

3.4. Summary

The complete flow of our method is summarized in Algorithm 1. During the training
phase of the proposed model, we obtained result zi of the re-parameterized module based
on the training results of the previous iteration, and inputted the result ys−1

i and feature
map f generated from the modified PeleeNet in each subnetwork stage to obtain the result
ys

i of this iteration. We continuously optimized the model parameters by minimizing
the overall loss function L. The deployment phase of the proposed model has a simple
architecture. First, we inputted the test images into the modified PeleeNet to extract rich
human body features, and then we processed these features using the re-parameterized
module R1 to directly obtain the final detection result p.

In the proposed UEPDN model, we used a re-parameterized structure that introduced
the knowledge distillation technique to reasonably use the information of various scales
and high-value information provided by the expert network. Simultaneously, we used the
efficient overall loss function L, which consisted of conventional label loss Ll and specialized
distillation loss Ld, to augment training. Finally, we used the first re-parameterized module
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R1 as the deployment network to keep the simple architecture that resulted in good
detection performance with high accuracy and fewer model parameters.

Compared with other state-of-the-art lightweight pose estimation algorithms, the
proposed method uses an online end-to-end pose distillation architecture and several ultra-
lightweight re-parameterized modules with weight-sharing that enhance the multi-scale
image feature acquisition capability of the single-module design, while barely increasing
the calculational costs, to obtain good detection results.

Algorithm 1 Ultra-lightweight Pose Estimation Algorithm
1: Input: The human image set H = {h1, h2, . . . , hn} and the corresponding label set

L = {l1, l2, . . . , ln}.
2: Output: The predicted keypoints result p.
3: Let I denote the number of training iterations, R denote the number of the re-

parameterized module, zr denote the output results of re-parameterized module r,
S denote the number of the subnetwork stage, and ys denote the output results of
subnetwork stage s;

4: for i = 1 to I do
5: for s = 1 to S do
6: for r = 1 to R do
7: if (r == 1) then
8: zr

i = RMr(H);
9: else

10: zr
i = RMr(zr−1

i );
11: end if
12: end for
13: if (s == 1) then
14: ys

i = RMr(zR
i );

15: else
16: ys

i = STAGE(ys−1
i , f );

17: end if
18: end for
19: Calculate the overall loss function L based on Equation (5) and optimize L;
20: end for
21: Deployment: p = RM1(image).

4. Experimental Results

In this section, we compare the proposed method with excellent pose estimation
methods using the MPII [36], LSP [37], and UAV-Human [38] pose estimation benchmarks.
Additionally, we conducted extensive ablation experiments to evaluate our method.

4.1. Pose Estimation on the MPII Dataset
4.1.1. Dataset and Performance Metric

The MPII dataset consists of a series of photos of human activities. It contains ap-
proximately 25,000 human images, which include 40,000 human instances with 16 labeled
keypoints. We used 14 labeled keypoints of each person for our model. We used the
same dataset partitioning method as other state-of-the-art pose estimation methods [13,39].
Specifically, we used 25,000 human instances in the training dataset and 3000 human
instances in the validation dataset. We used the official evaluation measure, which repre-
sents the standard percentage of correct keypoints (PCK) metric, to evaluate the proposed
method. It can be given as follows:

PCK =
Tp

Tp + Fp
(8)
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where Tp represents the number of correct human keypoints predictions and Fp represents
the number of incorrect human keypoints predictions. A type of PCK is PCKh@a, which
represents the percentage of keypoints placed at a required distance defined as a of the
human head ground-truth length. We used the official evaluation measure, PCKh@0.5, to
evaluate the proposed method on the MPII dataset. Additionally, we used the quantity
of parameters in the entire network (#Params) and floating-point operations (FLOPs) to
measure the deployment cost, and used the area under the curve (AUC) to evaluate the
authenticity of the proposed method.

4.1.2. Training and Deployment Details

We conducted all the experiments for the proposed method in a server environment
based on Ubuntu 16.04, an NVIDIA GTX1080Ti GPU, and Intel Xeon(R) CPU E5-2603 v2.
We implemented our method in Caffe [40]. We cropped all the training images based on
the ground-truth box and resized them to 368× 368. We used the pre-training PeleeNet
model at the beginning of training to accelerate the convergence of model training. We
used the Adam [41] optimizer to optimize the entire network during the training process.
We initialized the learning rate to 8 × 10−5 and weight decay to 5 × 10−4. We used
200 epochs for the MPII training dataset. When training was complete, we used the first
re-parameterized module as the deployment network to retain the simple architecture. We
used the universal testing strategy and the ground-truth boxes of people provided in the
datasets. Our trained model generated accurate prediction results for every person in the
MPII validation dataset.

4.1.3. Results on the MPII Dataset

Figure 3 shows the visualized predicted key part (right elbow) heatmaps for various
stages and re-parameterized modules. We note that the re-parameterized module r = 1
produced initial keypoint heatmaps, and module r ∈ {2, . . . , 5} and stage s ∈ {1, . . . , 5}
produced increasingly refined keypoint heatmaps. Table 1 shows the PCKh@0.5 prediction
accuracy, AUC, #Params, and FLOPs of our method and current state-of-the-art methods
on the MPII validation dataset. Our proposed network UEPDN achieved a good result:
89.3 mean PCKh@0.5 score. The accuracy of UEPDN was slightly lower than that of the top-
performing methods (e.g., FPD); however, FPD is a knowledge distillation network that is
trained twice, which is cumbersome and not always available. Additionally, the parameter
quantities and FLOPs of our method were low. As our model used a re-parameterized
structure that barely increased the amount of calculational costs while helping the model to
be trained and flexibly deployed, it achieved a good balance between model accuracy and
deployment costs. The visualized pose estimation results on the MPII dataset are shown in
Figure 4. We clearly observe that the proposed UEPDN model achieved robust and exact
detection results in images with various human poses and various complex backgrounds.

Table 1. PCKh@0.5, AUC (%) rates, #Params, and FLOPs on the MPII validation dataset.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Mean AUC #Params FLOPs

Hourglass [14] 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 – 25.6 M 55 G
SimCC [42] 97.2 96.0 90.4 85.6 89.5 85.8 81.8 90.0 – 25.7 M 32.9 G
PRTR [43] 97.3 96.0 90.6 84.5 89.7 85.5 79.0 89.5 – 57.2 M 21.6 G

TokenPose [44] 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2 – 21.4 M 9.1 G
OKDHP-bran2 [33] 96.7 95.4 89.9 84.1 89.0 84.7 81.1 89.2 – 15.5 M 47 G
OKDHP-bran1 [33] 96.7 95.3 89.2 84.0 87.8 83.9 79.5 88.6 – 13.0 M 41 G

DSPNet-B1 [26] 97.1 96.1 89.7 84.8 89.6 85.5 81.3 89.7 – 12.6 M 1.6 G
DSPNet-B0 [26] 96.7 95.7 88.9 82.6 88.7 84.1 78.7 88.5 – 7.6 M 1.2 G

FPD [23] – – – – – – – 90.1 62.4 3.0 M 9 G
PCT [45] 97.5 97.2 92.8 88.4 92.4 89.6 87.1 92.5 – 221.5 M 15.2 G

Openpose [31] 96.2 95.0 87.5 82.2 87.6 82.7 78.4 87.7 – – –
UULPN [27] 96.0 93.6 85.3 78.7 86.2 80.4 75.6 85.7 – 2.8 M 2.23 G

Lite-HRNet-30 [46] – – – – – – – 87.0 – 1.8 M 0.42 G
UEPDN-R1 (Ours) 98.1 96.7 91.0 84.4 90.3 83.8 76.3 89.3 64.3 2.75 M 6.2 G
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Figure 3. The visualized part (right elbow) heatmaps of six stages and five re-parameterized modules.

Figure 4. Visualized results on the MPII dataset.
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4.2. Pose Estimation on the LSP Dataset
4.2.1. Dataset and Performance Metric

The LSP dataset consists of a series of images of human sports activities. We evaluated
the proposed method on its extended version, the extended Leeds Sports dataset, which
includes 12,000 human instances with 14 labeled keypoints. We used the same dataset
partitioning method as that of other state-of-the-art pose estimation methods [13,23]. Specif-
ically, we used 11,000 human instances in the training dataset and 1000 human instances in
the testing dataset.

We applied PCK@b, which represents the percentage of keypoints placed at a required
distance defined as b of the human trunk ground-truth length, to evaluate the proposed
method on the LSP dataset. We used PCK@0.2. Additionally, we used #Params, FLOPs,
and FPS to measure deployment performance, and used AUC to evaluate the authenticity
of the proposed method.

4.2.2. Training and Deployment Details

We used 150 epochs for the LSP training dataset. The other details of the training
process were the same as those for the MPII. When training was complete, we used the
first re-parameterized module as the deployment network to retain the simple architecture.
We also used the universal testing strategy, which used the person boxes provided in the
datasets. Our trained model generated accurate prediction results for every person in the
LSP test dataset.

4.2.3. Results on the LSP Dataset

Table 2 shows the PCK@0.2 prediction results, AUC, #Params, FLOPs, and FPS of our
method and other top-performing methods on the LSP test dataset. The proposed network
UEPDN-R1 and UEPDN-Stage 1 achieved 87.5 and 91.1 mean PCK@0.2 scores, respectively.

Table 2. PCK@0.2, AUC (%) rates, #Params, FLOPs, and FPS on the LSP testing dataset.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Mean AUC #Params FLOPs FPS

CNGM [12] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3 – – –
ECN [47] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8 56.9 56.0 M 28 G –
CPM [13] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 65.4 31.0 M 351 G 3.5

KGDFNN [48] 98.2 94.4 91.8 89.3 94.7 95.0 93.5 93.9 – 53.1 M 124 G –
FPD [23] 97.3 92.3 86.8 84.2 91.9 92.2 90.9 90.8 64.3 3.0 M 9 G –

UEPDN-Stage 1 (Ours) 97.3 92.8 88.8 86.1 91.2 91.5 89.9 91.1 66.3 3.8 M 8.4 G 4.0
UEPDN-R1 (Ours) 96.5 91.8 86.0 80.3 88.4 88.4 80.8 87.5 62.9 2.75 M 6.2 G 5.3

At the same time, they had low deployment costs. As our model used a re-parameterized
structure and knowledge distillation technology to help the model be efficiently trained
and flexibly deployed, we achieved good detection performance and deployment perfor-
mance while minimally increasing the calculational costs. The visualized pose estimation
results on the LSP dataset are shown in Figure 5. We clearly observe that our model ob-
tained robust and exact detection results for images with various human poses and various
complex backgrounds.

4.3. Pose Estimation on the UAV-Human Pose Estimation Dataset
4.3.1. Dataset and Performance Metric

The UAV-Human pose estimation dataset contains a total of 22,476 human images.
Each image has 17 major body labeled keypoints. Specifically, we used 14 labeled keypoints
for our model. At the same time, we used 16,288 human instances from the dataset for
training and 6188 human instances for testing.

We applied the mean average precision (mAP) to evaluate the proposed method
on this dataset. Additionally, we used #Params and FLOPs to measure the deployment
performance of the proposed method.
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Figure 5. Visualized results on the LSP dataset.

4.3.2. Training and Deployment Details

We used 180 epochs for the UAV-Human pose estimation training dataset. The other
details of the training process were the same as those for the MPII. When training was
complete, we used the first re-parameterized module as the deployment network to retain
the simple architecture. Our trained model generated good prediction results for every
person in the UAV-Human pose estimation testing dataset.

4.3.3. Results on the UAV-Human Pose Estimation Dataset

Table 3 shows the mAP prediction results, #Params, and FLOPs of our method and
two prevalent methods on the UAV-Human pose estimation testing dataset. The proposed
network UEPDN-R1 and UEPDN-Stage 1 achieved 54.8 and 56.3 mAP scores, respectively.
Although the accuracy of our method was slightly lower than that of top-performing
methods (e.g., HigherHRNet), our methods had lower deployment costs. At the same
time, because our model used a re-parameterized structure and knowledge distillation
technology to help the model be efficiently trained and flexibly deployed, it achieved
good detection performance and deployment performance while minimally increasing
the calculational costs. The visualized pose estimation results on the UAV-Human pose
estimation dataset are shown in Figure 6. We clearly observe that our model obtained good
detection results for images with various human poses.

Table 3. The mAP, #Params, and FLOPs on the UAV-Human pose estimation testing dataset.

Methods mAP (%) #Params FLOPs

HigherHRNet [18] 56.5 28.6 M 47.9 G
RMPE [15] 56.9 59.7 M –

UEPDN-Stage 1 (Ours) 56.3 3.8 M 8.4 G
UEPDN-R1 (Ours) 54.8 2.75 M 6.2 G



Electronics 2023, 12, 2593 12 of 17

Figure 6. Visualized results on the UAV-Human pose estimation dataset.

4.4. Ablation Experiments

To illustrate the effectiveness of the proposed ultra-lightweight pose distillation
method, we conducted ablation experiments based on the same hardware, software envi-
ronment, and LSP test dataset used previously in this section.

4.4.1. Effect of Pose Distillation and Re-Parameterized Modules

The effect of using our pose distillation (PD) method and re-parameterized modules
(RM) on detection results are displayed in Table 4. It clearly shows that our ultra-lightweight
end-to-end pose distillation architecture helped the lightweight re-parameterized modules
to achieve good detection performance. The reason for our good detection results were that
our proposed pose distillation architecture learned extra helpful image feature information
in cases with an incorrect image label and deficient image annotation, making model
deployment more flexible. This suggests that the generic theory of knowledge distillation
and the re-parameterized technique were effective in their application to the field of
structured pose estimation.

Table 4. PCK@0.2 of the proposed pose distillation and re-parameterized modules on LSP test dataset.

PD RM R1 R2 R3 R4 (R5) Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

× × – – – – 89.5 91.1 91.8 92.1 92.1 92.1√
× – – – – 90.7 91.4 91.8 92.1 92.2 92.1

×
√

85.0 88.3 90.0 90.6 90.9 91.1 91.7 91.9 92.1 92.1√ √
87.5 88.8 90.2 90.6 91.1 91.2 91.2 91.4 91.6 91.2

√
means that it is used. ×means that it is not used.
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4.4.2. Effect of Training Stage Size

The effects of the training stage size on detection performance are displayed in Table 5.
We selected three teacher models, stage size s ∈ {4, 5, 6}, to teach module R1, R2, and stage
s ∈ {2, . . . , S− 1}, and used the re-parameterized module R1 as the deployment network
to retain the simple architecture. We clearly observed that when training stage size s = 6,
UEPDN obtained good results in terms of its deployment cost and detection accuracy. This
suggests that a powerful teacher network substantially helps in training the target student
model and obtaining good detection results.

Table 5. PCK@0.2 and #Params of module R1 based on different training stage size on the LSP
test dataset.

Training Stage Size Mean #Params

Stage size s = 6 87.5 2.75 M
Stage size s = 5 87.2 2.75 M
Stage size s = 4 87.1 2.75 M

4.4.3. Effect of Deployment Network

The effects of the deployment network on the detection performance are displayed in
Table 6. We set the deployment stage size from 1 to 6 and deployment re-parameterized
module number from 1 to 4. We clearly observed that when the re-parameterized module
number r = 1, UEPDN achieved good performance in terms of its deployment cost and
detection accuracy.

Table 6. PCK@0.2, #Params, FLOPs, and FPS of different deployment networks on LSP test dataset.

Method R1 R2 R3 R4 (R5) Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Mean 87.5 88.8 90.2 90.6 91.1 91.2 91.2 91.4 91.6 91.2
#Params 2.75 M 3.00 M 3.27 M 3.52 M 3.82 M 5.90 M 7.90 M 10.00 M 12.00 M 14.10 M
FLOPs 6.20 G 6.75 G 7.30 G 7.85 G 8.40 G 12.90 G 17.32 G 21.74 G 26.16 G 30.58 G

FPS 5.3 4.9 4.7 4.5 4.0 3.3 2.6 2.0 1.7 1.4

5. Discussion

Our proposed ultra-lightweight end-to-end pose distillation network architecture
explores how to achieve good detection accuracy while compressing the model parameters
as much as possible. We summarize the strengths of our approach in three points. First,
we designed a lightweight end-to-end pose estimation network that learned from an
increasingly refined sequential expert network in an online knowledge distillation manner,
which reasonably used high-value information provided by image labels and the expert
network to increase the training efficiency of the model. Second, we constructed an ultra-
lightweight re-parameterized pose estimation subnetwork that used multi-module design
with weight-sharing to improve the multi-scale image feature acquisition capability of
the single-module design. Finally, when training was complete, we used the first re-
parameterized module as the deployment network to retain the simplest architecture. As
our model used a re-parameterized structure, flexible deployment was achieved using
various numbers of re-parameterized modules, depending on actual requirements.

Extensive experimental results demonstrated the detection precision and low number
of parameters of our method. This suggests that a novel network design based on a re-
parameterized structure and online knowledge distillation technique is very helpful for
obtaining good detection accuracy, compressing the model parameters, and improving the
training efficiency of the model.

Although our ultra-lightweight model achieved good detection performance on three
standard benchmark datasets, there were also some limitations to this study. Due to some
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occluded keypoints and instances where people were close to each other, a few failures of our
model on the MPII, LSP, and UAV-Human datasets occurred, which are displayed in the top,
middle, and bottom rows of Figure 7, respectively. For images with complex scenes, such as
overlapping people, cluttered backgrounds, and severe occlusion, it may be insufficient to
only use the spatial context features extracted from keypoint features. Our proposed method
is not in real-time and has not been deployed in realistic resource-limited devices. As real-
time performance is necessary for multi-person pose estimation and human pose estimation
in the field of video, our method is more suitable for single-person pose estimation and
human pose estimation in the field of images captured from image sensors. Additionally,
there have been some studies on distilling knowledge from other modalities, and they have
achieved good performance. However, for the convenience of training on three standard
benchmark datasets consisting of RGB images, our proposed method only focuses on
distilling knowledge from RGB modalities to RGB modalities, and cannot deal with other
modalities to RGB modalities. In the future, we plan to extend our work on distilling
knowledge from other modalities to RGB modalities for good detection performance in
complex scenes, and explore applications in realistic resource-limited devices.

MPII

LSP

UAV-Human

Figure 7. Examples of failures on MPII (top), LSP (middle), and UAV-Human dataset (bottom).
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6. Conclusions

In this paper, we proposed an ultra-lightweight end-to-end pose distillation network
to improve human pose estimation performance. By learning from an increasingly re-
fined sequential expert network in an online knowledge distillation manner, our one-stage
lightweight pose estimation network achieved good detection results. We designed an
ultra-lightweight re-parameterized pose estimation subnetwork that used multi-module
design with weight-sharing to improve the multi-scale image feature acquisition capability
of the single-module design. Finally, we used the first re-parameterized module as the
deployment network to retain the simple architecture. Extensive experimental results
demonstrated the detection precision and low quantity of required parameters of our
method. Although the number of parameters was lower for UEPDN than other current
lightweight pose estimation methods, we found that the prediction accuracy of the pro-
posed model on primary datasets was slightly lower than that of current state-of-the-art
human pose estimation methods. We hope that a re-parameterized structure introducing
the knowledge distillation technique can make a contribution to applications in human
pose estimation.
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