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Abstract: Support vector machine (SVM) algorithms have been widely used for classification in
many different areas. However, the use of a single SVM classifier is limited by the advantages and
disadvantages of the algorithm. This paper proposes a novel method, called support vector machine
chains (SVMC), which involves chaining together multiple SVM classifiers in a special structure, such
that each learner is constructed by decrementing one feature at each stage. This paper also proposes
a new voting mechanism, called tournament voting, in which the outputs of classifiers compete in
groups, the common result in each group gradually moves to the next round, and, at the last round,
the winning class label is assigned as the final prediction. Experiments were conducted on 14 real-
world benchmark datasets. The experimental results showed that SVMC (88.11%) achieved higher
accuracy than SVM (86.71%) on average thanks to the feature selection, sampling, and chain structure
combined with multiple models. Furthermore, the proposed tournament voting demonstrated higher
performance than the standard majority voting in terms of accuracy. The results also showed that the
proposed SVMC method outperformed the state-of-the-art methods with a 6.88% improvement in
average accuracy.

Keywords: classification; ensemble learning; machine learning; support vector machine; voting

1. Introduction

Machine learning (ML) involves developing algorithms that are able to emulate hu-
man intelligence. In ML, the adaptation of processes such as data preprocessing, feature
engineering, algorithm selection, and parameter setting directly affects the performance of
the predictive model. It is expected that ML models will be effective even with small-sized
datasets gathered from various industries. Labeling data manually, protecting privacy, and
processing imbalanced, insufficient, high-dimensional, incomplete, or noisy datasets are
difficulties associated with machine learning. For this reason, research studies seeking to
develop effective ML models and increase their performance are currently ongoing.

Support vector machine (SVM) is one of the most popular ML methods due to its
impressive characteristics, including high generalization ability, efficiency in high dimen-
sions, and easy implementation [1]. SVM is a supervised machine learning technique
that usually performs well in many different areas, such as health [2,3] psychology [4]
neuroscience [5], marketing [6], biometry [7], robotics [8], food [9], the environment [10,11],
and agriculture [12].

Although SVM is effective in many situations, it has some shortcomings that reduce
its classification ability. The use of a single model is insufficient when compared to the
performance of ensemble models. There are essentially two reasons that ensemble learning
(EL) is preferred over a single model: performance and robustness. Parallel or sequential
trials increase the performance compared to a single model. Furthermore, the failure of
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one classifier can be rectified by the successes of other classifiers. In EL, the main focus is
on training multiple models and combining the results from these models. Homogeneous
ensembles can be created using the same ML algorithm or heterogeneous ensembles using
different algorithms. The power of different models can be utilized by applying the SVM
method to different subsets of the dataset. Based on this motivation, in this study, we
propose a novel ensemble learning approach that uses SVM as a base learner.

Majority voting (MV) is the most frequently used method when combining the results
of classifiers in an ensemble. In the classification problem, the class label with the majority
vote is the final prediction, while, in the regression problem, the results from the models are
averaged. A problem related to majority voting is that it ignores the fact that some learners
that lie in the minority may produce more accurate outputs, since it does not explicitly
address diversity [13].

To overcome these limitations, this paper proposes a novel voting mechanism, called
tournament voting, in which the results of classifiers compete in groups at each stage and
the process is repeated until one winner remains. It also introduces the support vector
machine chains (SVMC) method, which builds a series of learners in a special structure
and integrates their outputs via the tournament voting mechanism so as to achieve better
prediction performance than a single SVM learner.

The remainder of the article is organized as follows. In Section 2, studies on ensemble
learning are explained. Section 3 describes two novel concepts proposed in this paper:
SMVC and tournament voting. In Section 4, experimental studies and a discussion of
the findings are presented. In addition, in this section, our results are compared with the
results of state-of-the-art studies. Finally, Section 5 provides a few final observations and
future directions.

2. Related Work

Ensemble learning (EL) is an approach whereby multiple models are trained and the
results of the models are combined to obtain the final result [14]. The goal of ensemble
learning is to achieve better performance with a collection of models compared to any
individual model. This includes deciding both how to build models and how best to
combine the prediction results from ensemble elements. EL is sensitive to preprocessing
steps and parameter tuning, as with individual models, as it is a collection of basic learners.
In this context, when current studies in the field of ensemble learning are examined, it
is apparent that they generally focus on feature selection, instance sampling, or voting
methods since these play important roles in the final value estimation.

The ensemble learning model can be supported by active learning. For example, in a
study conducted in 2022 [15], an ensemble learning model based on active learning was
developed for heterogeneous data analysis using different feature extraction methods.
The researchers trained the model with datasets from five different fields and compared
them with traditional machine learning models. In another study [16], feature selection
techniques were emphasized since they are a significant issue, and a hybrid model was
proposed using bagging, boosting, and stacking ensemble learning approaches. The authors
selected the most important features with the linear discriminant analysis (LDA), principal
component analysis (PCA), and isomap techniques. They tested the successes of these
alternative feature selection methods on the performance of the model on the datasets.
They used the majority voting technique for the outcome estimation of the hybrid model.
While working with the features obtained by feature extraction, it can also been seen that
feature selection is performed using different metrics. As an example, in a study [17],
features were selected according to the F-Score. The authors proposed a new ensemble
learning algorithm, called the F-Score Subspace Method (FsBoost), by emphasizing the
importance of feature selection. They tested two versions of their proposed method. In the
first version, k-nearest neighbors (kNN), SVM, and probabilistic neural networks (PNN)
were run on homogeneous ensemble groups for each feature selection. After this, the result
was then obtained by ensemble members. In the second version, heterogeneous ensemble
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groups were created. The result from each heterogeneous group was once again assessed
for the final result. Thus, it was possible to observe how the stages of feature selection and
ensemble creation affected the success of the study.

Another important criterion that increases the success rate in ensemble learning is how
to combine the results of the models. A study [18] addressed this issue and proposed that
the true positive rate could be used as a weight value and combined with a cost-sensitive
probability value to guide community learning on a class basis. The focus was on the
combination strategy that was combined with a weighted voting mechanism. In another
study combining the results by giving weights to the models [19], a deep learning method
was used as a basic learner, instead of classical machine learning methods. The final class
label was assigned as the category that obtained the maximum number of votes from these
learners. To demonstrate the success of the proposed ensemble, a comparison was made
with the transfer learning model and convolutional neural network model.

Parameter tuning is an effective way to increase the success of an ensemble. Shahhos-
seini et al. [20] proposed an optimization-based method that found the optimal weights
and the optimal hyperparameter set (GEMITH) for each classifier in the ensemble. Their
algorithm selected a set of combinations from the input hyperparameter sets of a basic
learner using Bayesian search. For each combination, the optimal objective value and
ensemble weights were found using estimates from the hold-out sets of cross-validation.
Another study [21] emphasized that the issue of combining models should be addressed
more carefully, especially in studies with unbalanced datasets. It reported that the curse
of correlation caused correct predictions to be often overridden by incorrect ones when
deciding the final outcome in ensemble learning. Therefore, solutions were sought for the
“correlation curse” and imbalanced classification problems. They proposed the Ranked-
Based Chain-Mode Ensemble (RBCM) algorithm as a solution to these problems. They
divided the dataset into three separate subsets: training, sorting, and test sets. Base learners
were trained with the training set, validated with the sorting set, and evaluated with the
test set according to their precision values. The group with low precision on a class basis
was selected, and, if none of the models in this group could tag the incoming sample, the
other class label was assigned; in this way, the result was reached.

When current ensemble learning studies are examined, it is seen that the generation of
the training sets from the original dataset directly affects the success rate. Bagging, which
is one of the ensemble learning techniques, randomly selects samples when creating the
training sets. The same sample may be selected more than once, or it may not be selected
at all. In order to improve the random selection stage and make predictions with high
accuracy, Tuysuzoglu and Birant [22] proposed a new approach, called enhanced bagging
(eBagging). In their approach, the training set is created by giving a higher possibility of
selection to the samples that are misclassified and difficult to classify by the initial learner.
Their results showed that the proposed eBagging technique reduced the disadvantages of
the classical bagging method. Similarly, sample selection for the creation of the training sets
is very important, especially in studies with unbalanced datasets. Random over-sampling
and random under-sampling methods are frequently used methods to select equal numbers
of samples from minority and majority classes in unbalanced datasets. In a study [10]
that analyzed an unbalanced dataset, a hybrid sampling method was tested, in which the
minority class was reproduced by over-sampling, and, after this, the samples in the majority
class were down-sampled. Ensemble models and traditional machine learning models were
tested with the training sets with and without preprocessing (balanced and unbalanced
forms). The study clearly showed that the models were sensitive to this imbalance and
the over-sampling method produced better results overall. Another work [23] focused on
the same problem. Automatic credit scoring work also usually has an unbalanced dataset.
To deal with this, the Bagging Supervised Autoencoder Classifier (BSAC) method was
proposed. In their method, firstly, the subsets of balanced data were randomly generated
from unbalanced training data. After this, each subset was given to the algorithm as a
training set. The estimates of the base classifiers were finally reduced to a single class label
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by majority voting. The proposed model used an autoencoder network as a base learner to
embed the underlying information of heterogeneous data into a lower-dimensional space
and reduce the adverse impacts of class imbalance. Compared to the classical ensemble and
machine learning models, the results showed that the proposed model achieved a higher
success rate.

Our method differs from the previous works in many aspects. First, a general structure
is created that covers all the stages of feature selection, sample selection, and model
assembly. Second, the information carrier of the features is considered one-by-one, instead
of random feature selection methods or metrics that can be used as threshold values. Third,
this study proposes a new voting mechanism, called tournament voting, in which the
results of classifiers compete in groups at each stage and the process is repeated until one
winner remains.

3. Proposed Method
3.1. Support Vector Machine Chains (SVMC)

This paper proposes a novel method, support vector machine chains (SVMC), which
has a structure in which a set of models are trained by reducing the attributes at each stage.
The predictions of each learner in the chain are aggregated using a novel voting mechanism
(tournament voting). The proposed voting mechanism is executed through the division
of the results of classifiers by the tournament size, and then a selection approach is used
based on the class labels in the groups for further processes; it gradually moves on to the
next round, and, at the end of the tournament rounds, the winning class label is assigned
as the final prediction.

Figure 1 shows a general overview of the proposed SVMC method. First, the rela-
tionships between the features and the target are revealed using mutual information. All
features are listed from the most informative to the least. At each stage, the feature with
the lowest value is eliminated and the model to be trained with the remaining attributes
is added to the chain. In other words, a Mutual Information-Based Feature Elimination
method is performed to reduce attributes iteratively. In order to increase the speed and
improve the performance in high-dimensional datasets, m features to m/2 features in
descending order are evaluated when creating an ensemble. Each classifier is built on a
bootstrapped training set. For a given query instance in the test set, each classifier provides
a vote to a class. After this, tournament voting is used to combine the results. The results
from the models are divided into groups of the desired number and compete among them-
selves. The label that emerges successfully from each group is grouped again in the next
level and this process is repeated until only one finalist remains.

Majority voting (MV) is a simple and straightforward method for classification prob-
lems as it selects the class with the most votes. However, it has some drawbacks. A class
label supported by many learners does not necessarily mean that it is the correct answer
because the learners’ ability highly determines the quality of the final output. This paper
proposes a novel voting mechanism, called tournament voting.

In the proposed tournament voting method, the results of the models compete in
groups. The label that moves up from each group is the dominant class label in the group.
Labels for all groups are promoted to the next round according to their dominance and
continue to be evaluated according to their dominance in the following rounds.

An example of tournament voting is illustrated in Figure 2. In this example, the
predicted values coming from the classifiers are gradually evaluated in groups of three.
There are three class labels: “0”, “1”, and “2”. The dominant class label in each group is
determined as the winner. For example, the winner of the first group [1 0 0] in the first
round is determined as label “0” and fed to the next round to compete again with the
results of other groups. In the figure, the winners of groups are shown below the round.
In the first round, there are 9 groups, and the winners of these groups are [0 0 1 2 0 2 0 1
0], respectively. These winners compete once again in the second round. The winner of a
group is the class label that achieves the highest number of votes from each classifier in
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the group. Therefore, the winners of the groups in the second round are “0”, “2”, and “0”,
respectively. This voting continues until a single result is achieved. In the last round, the
class label “0” is handled as the final prediction.
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Suppose that we run the same example with majority voting. The label “0” has 10
votes, the label “1” has 10 votes, and the label “2” has 7 votes. In such equality situations,
majority voting will assign the first label that it sees as the final label and return the label
“1” as a result. As can be seen, the result of majority voting is different from the result
obtained by tournament voting.

3.2. Formal Description

Suppose a dataset D with n instances such that D = {(xi, yi)}n
i=1, where xi ∈ X

denotes the input vector, yi ∈ Y = {c1, c2, . . . , cr} is the class label associated with
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instance xi, and r is the number of class labels. Let F = { f1, f2, . . . , fm} be the set of
features; each instance is a point in the m-dimensional feature space. The importance score
of each feature F is calculated by the mutual information measure.

Mutual Information-Based Feature Elimination is an effective approach that selects a
subset of features S that shares the highest MI with Y, i.e., max

S⊂F
I(S ; Y). Mutual information

(MI) is a measure used to rank and evaluate the features of data with respect to their
relevance to the target class variable. The information (I) between two variables X and Y
is defined as the extent to which knowing Y reduces the uncertainty about X, as given in
Equation (1).

I(X ; Y) = H(X)− H(X | Y) (1)

where I(X ; Y) is the mutual information for the variables X and Y, H(X) is the entropy
for X, and H(X | Y) is the conditional entropy for X given Y. MI is always greater than or
equal to zero, I(X ; Y) ≥ 0, with a higher value indicating a stronger link between these
two variables. If the computed result is zero, the variables are considered independent.
The measure is symmetrical, i.e., I(X ; Y) = I(Y ; X). A conventional choice of entropy is
Shannon entropy with the logarithmic information gain with a probability mass function
(p), as given in Equation (2).

I(X ; Y) = ∑
x∈X

∑
y∈Y

p(x, y)log2
p(x, y)

p(x)p(y)
(2)

After the ranking process, features are arranged from the highest to the lowest
based on the amount of discriminative information that they carry, i.e., they are ranked
as follows: (F1, F2, . . . , Fm). Afterward, the algorithm generates a collection of datasets
{D1, D2, . . . , Dm/2} from the original data such that the first one (D1) is composed of
instances with m features (F1, F2, . . . , Fm), the second one (D2) includes instances with
m-1 features (F1, F2, . . . , Fm−1), and so on, until the final dataset (Dm/2) involves instances
with m/2 features (F1, F2, . . . , Fm/2). The main idea behind this approach is that higher
classification accuracy can be achieved with features of higher importance. After this, a
collection of training sets is created from Di with the bootstrap resampling technique and
each one is used to train an individual SVM learner Li. In this way, an ensemble is created
of s classifiers such that {SVM1, SVM2, . . . , SVMs}. The same process is repeated m/2
times with each dataset Di, i = 1, 2, . . . , m/2, to build SVM chains.

Definition 1. SVM chains are a collection of SVM models that have been trained on bootstrap
samples drawn from the datasets, which are generated by removing one feature in each iteration
based on the mutual information values.

Given a new data tuple to classify, each classifier in the SVM chain independently
votes for a specific class, and, therefore, a set of predictions (P1, P2, . . . , Pm/2∗s) is obtained.
Afterward, a novel voting mechanism, called tournament voting, is used to combine the
predictions and determine the final output.

Definition 2. Tournament voting is a meta-algorithm that divides the predictions of classifiers into
groups, which compete among themselves, by identifying the class with the highest number of votes
in the groups, and the winners proceed to the next round until only one finalist remains.

Algorithm 1 presents the pseudocode of the proposed SVMC approach. In the
first loop, mutual information values are calculated for each attribute fi, where i =
1, 2, . . . , m. According to the MI values, attributes are arranged in decreasing order such
that (F1, F2, . . . , Fm). In the outer loop, the algorithm generates a dataset Di from the
original data D = {(xi, yi)}n

i=1 by removing the feature with the lowest MI value in each
iteration. In the inner loop, a collection of training sets is created from Di with the bootstrap
resampling technique and each one is used to train an individual SVM learner Lij. Here,
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an ensemble is created of s learners. When the same process is repeated m/2 times, a total
of m/2 ∗ s learners are trained to build SVM chains. For each tuple x in the test set T, a
prediction is made by each classifier in the SVM chain separately, and, therefore, a set of
predictions (P1, P2, . . . , Pm/2∗s) is obtained. Finally, the tournament voting method is used
to combine the predictions and determine the ultimate output. All predicted class labels
are stored in a single list, named C.

Algorithm 1: Support Vector Machine Chains (SVMC).

Inputs:
D: dataset D = {(xi, yi)}n

i=1
m: number of features
s: chain size
T: test set

Outputs:
C: the predicted class labels

Begin
for i = 1 to m

Calculate mutual information (MI) for feature fi
end for
(F1, F2, . . . , Fm) = Sort features in descending order according to MI scores
for i = 1 to m/2

Di = D with features (F1, F2, . . . , Fm−i+1)
for j = 1 to s

Dij = Generate a new set from Di with bootstrapping
Lij = SVM(Dij)

end for
end for
P = ∅
C = ∅
foreach x in T

for i = 1 to m/2
for j = 1 to s

P.Add (Lij(x))
end for

end for
C.Add(TournamentVoting(P))

end for
End Algorithm

Algorithm 2 presents the pseudocode of the proposed tournament voting method. The
predicted class labels in array P = {Pi}m/2∗s

i=1 are the input of the algorithm. It gradually
splits them into groups with a size of t and the candidates in the groups compete. The
recursively structured algorithm continues to process the labels in groups until only one
class label c is left. The dominant label (i.e., the most common label or the mode of class
labels) advances to the next round as the winner and the competition continues until only
one final label c remains.
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Algorithm 2: Tournament Voting.

Inputs:
P: array of predicted class labels
t: the number of candidates in the group

Output:
c: final class label

Begin
if length(P) = 1

c = P[0]
return c

else
Divide P into groups with the size of t
P = ∅
for candidates in groups

winner = mode (candidates)
P.Add(winner)

end for
return TournamentVoting(P)

endif
End Algorithm

We can summarize the advantages of the SVMC method as follows:

• Since SVMC is an ensemble-learning-based method, it tends to produce a better success
rate than a single SVM model. Although some models make incorrect predictions,
other models in the ensemble are predisposed to correct these errors.

• Most significantly, the rank-based feature elimination strategy in SVMC makes the data
less redundant, thus reducing the possibility of decision making based on unimportant
and irrelevant features.

• The proposed tournament voting aims to achieve correct outcomes by excluding
incorrect answers in local groups. It benefits from the strengths of a group of classifiers
while overcoming the weaknesses of one classifier in the group.

• The SVMC handles feature selection, sampling, and model fusion on its own. During
the construction of chain classifiers, various subspaces of the dataset are assessed
along with sample and feature selection. Therefore, it benefits from the advantages of
providing diversity.

• Many application domains, such as bioinformatics and text mining, usually have
many input features, often of several hundreds, where many of them include only a
small amount of information. In the analysis of such high-dimensional data, feature
selection based on their importance can provide higher accuracy than using all features
or choosing features randomly.

• Another advantage of SVMC is its implementation simplicity. The algorithm is es-
sentially an enhanced ensemble learning algorithm that involves chaining together
multiple SVM classifiers in a special structure.

• If it is required, SVMC can be easily parallelized. It is suitable for distributed and
parallel environments.

4. Experimental Studies

In the experiments in this research, the proposed SVMC approach was applied to 14
commonly used and publicly available datasets to demonstrate its classification ability. The
application was implemented in the Python programming language. SVM learners were
built with default parameters. In the verification step, 10-fold cross-validation was applied
to evaluate the stability of the models. The proposed method was compared with the
state-of-the-art methods in terms of the accuracy, precision, recall, and F-measure metrics,
as given in Equations (3) to (6), respectively.
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Accuracy is a widely used criterion to evaluate the performance of a model in the
classification task. It is calculated by determining the counts of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision shows how many of the examples that we classify as correct are actually
correct. It is particularly crucial in research where false positive estimations are costly. In
such cases, the precision value is examined in model selection.

Precision =
TP

TP + FP
(4)

Recall shows how many of the samples that should be positively predicted are correctly
estimated by the model. It is the preferred metric when the cost of false negative predictions
is high.

Recall =
TP

TP + FN
(5)

The F-measure is the harmonic average of the precision and recall values. For datasets
that are not evenly distributed, it allows the evaluation of both states and provides a more
accurate direction for model selection than accuracy.

F−measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

4.1. Dataset Description

The proposed SVMC method was tested in 14 different real-world datasets, which are
available in the UCI Machine Learning Repository [24]. Table 1 shows the characteristics
of the experimental datasets. The datasets are suitable for both binary and multiclass
classification. In addition to datasets with only categorical features or numeric features,
some datasets have features that include both types. The datasets come from different
domains, including health, marketing, animal science, and the environment.

Table 1. Characteristics of experimental datasets (#: The number of elements,
√

: available).

No. Dataset #Class #Feature #Instance Categoric Numeric

1 Breast Cancer 2 30 569
√

2 Dermatology 6 34 366
√ √

3 Diabetes 2 9 768
√

4 Ecoli 4 8 336
√

5 Hepatitis 2 20 155
√ √

6 Horse Colic Surgical 2 28 300
√ √

7 Ionosphere 2 35 355
√ √

8 Iris 3 5 150
√

9 Lenses 3 5 24
√

10 Mammographic Mass 2 6 961
√

11 Spectf Heart 2 45 349
√

12 User Knowledge 5 6 403
√

13 Wholesale Channel 2 8 440
√ √

14 Wine 3 14 178
√

4.2. Experimental Results

The superiority of the proposed SVMC method over the traditional SVM method
was demonstrated on various datasets. In order to assess the model’s effectiveness in a
variety of ways, tests were specifically performed on different types of datasets, containing
categorical, numerical, or mixed values and having binary or multi-class labels. As seen
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in Table 2, SVMC outperformed SVM in terms of accuracy in 13 of 14 datasets, which
are marked by bullet points. For example, SVMC (89.16%) achieved better classification
performance than SVM (86.80%) on the hepatitis dataset. The proposed method obtained
the highest improvement (10%) compared to the conventional SVM method on the lenses
dataset. On average, SVMC demonstrated higher classification ability than SVM. Similar
improvements were also obtained in terms of the precision and recall measures.

Table 2. Comparison of the proposed SVMC method with the standard SVM method (•: higher
accuracy).

Dataset
SVM SVMC (Proposed)

Accuracy (%) Precision Recall Accuracy (%) Precision Recall

Breast Cancer 91.37 0.9209 0.9137 91.55 • 0.9225 0.9155
Dermatology 97.76 0.9814 0.9776 98.30 • 0.9863 0.9830

Diabetes 77.59 0.7920 0.8912 77.99 • 0.7912 0.9008
Ecoli 87.21 0.8728 0.8721 87.80 • 0.8773 0.8780

Hepatitis 86.80 0.8781 0.9750 89.16 • 0.9001 0.9750
Horse Colic Surgical 85.66 0.8584 0.9337 85.00 0.8562 0.9215

Ionosphere 93.18 0.9640 0.8437 94.60 • 0.9663 0.8859
Iris 96.00 0.9698 0.9600 96.66 • 0.9748 0.9666

Lenses 60.00 0.4861 0.6000 70.00 • 0.6944 0.7000
Mammographic Mass 80.43 0.8268 0.8040 81.06 • 0.8319 0.8118

Spectf Heart 82.52 0.6628 0.7069 83.11 • 0.6678 0.6877
User Knowledge 88.57 0.8912 0.8857 89.81 • 0.8950 0.8981

Wholesale Channel 89.09 0.9103 0.9295 90.22 • 0.9164 0.9387
Wine 97.71 0.9829 0.9771 98.30 • 0.9862 0.9830

Average 86.71 0.8570 0.8764 88.11 0.8762 0.8890

As some of the datasets were imbalanced according to the target classes, the F-measure
values were also assessed. The F-measure values obtained by the SVM and SVMC methods
are visually represented in Figure 3. As can be seen, SVMC outperformed SVM in terms of
the F-measure in 12 of 14 datasets. For example, SVMC (0.9663) achieved better performance
than SVM (0.8976) on the ionosphere dataset. SVMC increased the performance of the
model since it applied a special feature selection and sampling strategy to build a chain
structure. Another reason is that the final result was reached by tournament voting, rather
than majority voting.

To demonstrate the efficiency of the proposed voting technique, SVMC was conducted
with both tournament voting (TV) and majority voting (MV). In TV, the predictions of the
classifiers in the ensemble compete in groups, whereas MV delivers the result with the most
votes out of all the outcomes returned from the classifiers. Table 3 presents the accuracy,
precision, and recall values obtained by both techniques. According to Table 3, SVMC with
TV achieved equal or higher performance compared to SVMC with MV on all the datasets,
where the results are marked by bullet points. For example, TV (83.11%) demonstrated
higher classification ability over MV (82.53%) on the spectf heart dataset.
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Table 3. Comparison of the proposed tournament voting with the majority voting.

Dataset

SVMC
(Majority Voting)

SVMC
(Tournament Voting)

(Proposed)

Accuracy (%) Precision Recall Accuracy (%) Precision Recall

Breast Cancer 91.55 0.9225 0.9155 91.55 • 0.9225 0.9155
Dermatology 98.03 0.9837 0.9803 98.30 • 0.9863 0.9830

Diabetes 77.73 0.7886 0.9003 77.99 • 0.7912 0.9008
Ecoli 87.50 0.8755 0.8750 87.80 • 0.8773 0.8780

Hepatitis 89.16 0.9001 0.9750 89.16 • 0.9001 0.9750
Horse Colic Surgical 84.66 0.8523 0.9209 85.00 • 0.8562 0.9215

Ionosphere 94.03 0.9652 0.8643 94.60 • 0.9663 0.8859
Iris 96.66 0.9748 0.9666 96.66 • 0.9748 0.9666

Lenses 70.00 0.6944 0.7000 70.00 • 0.6944 0.7000
Mammographic Mass 80.64 0.8271 0.8099 81.06 • 0.8319 0.8118

Spectf Heart 82.53 0.6533 0.6961 83.11 • 0.6678 0.6877
User Knowledge 89.81 0.8896 0.8981 89.81 • 0.8950 0.8981

Wholesale Channel 90.00 0.9107 0.9424 90.22 • 0.9164 0.9387
Wine 98.30 0.9862 0.9830 98.30 • 0.9862 0.9830

Average 87.90 0.8731 0.8877 88.11 0.8762 0.8890

The F-measure values obtained by the majority voting and tournament voting tech-
niques are visually displayed in Figure 4. For example, TV (0.9663) demonstrated better
performance than MV (0.9103) on the ionosphere dataset. As can be observed, TV usu-
ally achieved higher F-measure values than MV. This is because grouping the results and
analyzing them locally decreases the disadvantage that can occur in the event of equal
votes, as opposed to returning the value that is most prevalent among all outcomes as the
final result.
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The results of this study were compared with those of state-of-the-art studies that used
the same datasets. The research was organized according to the datasets and the findings
are shown in Table 4.

The effectiveness of our method was experimentally verified by comparing the ac-
curacy values of other methods on the same datasets. When we compared it with the
decision-tree-based studies, it was observed that the C5.0, conditional inference tree (CTree),
recursive partitioning tree (RPART), traditional tree, and Boolean sensing-based tree (BSNS-
ING) methods obtained the maximum of 80.80% accuracy on the hepatitis dataset [25],
whereas the SVMC method achieved 89.16% accuracy. Similar improvements were also
demonstrated for other datasets.

When we compared it with ensemble learning techniques such as random forest (RF)
and AdaBoost, our method also outperformed them in terms of accuracy. For instance,
SVMC (87.80%) demonstrated its superiority over the classifier ensemble approach based
on reduce-error pruning (CEREP) (82.42%), progressive-subspace ensemble learning (PSEL)
(83.42%), and the classifier ensemble approach based on complementarity measure pruning
(CECMP) (82.82%) methods [26] on the ecoli dataset.

When we compared it with the variations of k-nearest neighbor (KNN), such as
center-based nearest neighbor (CNN) and k-nearest centroid neighborhood (K-NCN), the
SVMC method achieved higher accuracy on the datasets. For instance, in the spectf heart
dataset, 79.47%, 79.77%, and 76.05% accuracy rates were obtained with the k-min–max
sum (K-MMS), k-min ranking sum (K-MRS) [27], and interval valued k-nearest neighbor
(IV-KNN) [28] methods, respectively, while an 83.11% accuracy rate was obtained with
SVMC. Similarly, SVMC (98.30%) outperformed the k-nearest neighbor learning with graph
neural networks (KNNGNN) method (94.78%) [29] on the wine dataset.

In some studies, genetic algorithm and gene expression programming (GEP) methods
were used for the classification task, which offered the opportunity to evaluate our method
from different perspectives. For instance, on the ionosphere dataset, SVMC (94.60%)
demonstrated a stronger classification ability over the adaptive reference-point-based non-
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dominated sorting with GEP (AR-NSGEP) method (87.35%) [30], generational genetic
algorithm (GGA) (90.85%), steady state genetic algorithm (SSGA) (91.04%), and cross-
generational elitist selection (CHC) method (90.63%) [31].

Table 4. Comparison of the proposed method with the state-of-the-art methods on the same datasets.

Ref. Year Method

Accuracy (%)

Dermatology Ecoli Hepatitis Ionosphere Iris Spectf
Heart Wine

[25] 2022

C5.0 94.90

-

75.95 89.20 93.40

-

92.00
CTree 93.40 79.10 90.50 94.10 89.70

RPART 92.80 78.90 87.00 93.00 88.90
Tree 92.30 80.80 87.40 93.60 92.10

BSNSING 91.50 79.80 85.90 94.50 91.10

[29] 2021
Uniform KNN

-
81.47

-
81.92 91.14

-
89.65

Weighted KNN 82.97 82.10 92.34 91.39
KNNGNN 81.51 91.62 94.27 94.78

[32] 2018

SVM

-

60.41

- -

90.66

-

85.39
KNN 54.16 84.66 79.77
C4.5 55.65 92.66 41.01

CBCC-IM-EUC 83.78 94.66 97.15

[33] 2018
C4.5 94.10 82.83 79.22 89.74 94.73

-
93.20

CC4.5 94.07 82.95 77.63 88.95 94.73 92.98
AdaptiveCC4.5 93.96 81.72 80.62 88.27 94.13 92.47

[30] 2018 AR-NSGEP 95.41 71.10 87.23 87.35 96.53 - 94.60

[31] 2016

No TSS 96.62 78.00 86.08 89.17 93.33 79.49 96.08
GGA 97.30 80.92 87.64 90.85 96.52 83.10 97.07
CHC 93.29 78.89 83.59 90.63 92.67 76.44 96.67
SSGA 97.42 80.42 88.33 91.04 94.00 82.31 96.88

[26] 2016

PSEL 97.51 83.42

-

93.62 94.87 81.06 96.96
Random Subspace 96.98 84.38 93.36 94.67 79.40 96.33

Random Forest 97.37 85.30 93.53 95.13 81.12 97.69
MultiBoostAB 50.25 64.59 91.20 95.20 80.83 91.91
AdaBoostM1 50.25 64.59 92.37 95.33 80.15 91.35

Bagging 96.09 83.06 92.20 94.60 80.72 95.05
CECMP 94.81 82.82 91.45 93.73 79.85 91.40
CEREP 95.06 82.42 89.94 93.67 78.76 91.46
RTBoost 92.55 77.11 88.38 94.20 73.74 92.86

[28] 2015 IV-KNN - 82.76 84.67 84.32 94.67 76.05 96.60

[34] 2015
PMC 98.00 76.19 87.10 93.73 96.00 72.51 97.55
KNN 96.90 80.67 82.51 85.18 94.00 68.18 95.49
CNN 95.78 67.89 82.33 89.17 92.67 64.07 96.63

[35] 2015
eW KNN

- - - -
92.77

-
96.12

dW KNN 95.40 96.75
dW-ABC KNN 94.11 97.04

[27] 2011

NN 85.68

- -

85.24 95.20 72.81 71.57
K-NN 85.68 83.71 94.80 79.10 67.39
K-MRS 85.68 83.71 95.20 79.77 68.75
K-MMS 85.08 84.90 94.53 79.47 69.63
K-NCN 89.89 92.25 96.27 79.32 71.22

Average 90.69 76.86 82.44 88.82 93.97 77.65 89.33 Overall
Average 85.68

SVMC (proposed method) 98.30 87.80 89.16 94.60 96.66 83.11 98.30 Overall
Average 92.56

According to Table 4, the overall average accuracy reported in the state-of-the-art
studies on the seven datasets was 85.68%, while the proposed method obtained average
accuracy of 92.56%. When we take into account the difference between these values, it is
clear that our method achieved an average of a 6.88% accuracy improvement compared
to its counterparts. The highest improvement (11%) was recorded in the ecoli dataset.
As a result, the SVMC method, which includes specific feature selection, sampling, and
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aggregating processes at the same time, outperformed the methods used in the previous
studies on the same datasets.

5. Conclusions and Future Work

The SVMC method is proposed in this paper, in which multiple SVM models are built
with bootstrapped samples and features, assessed according to mutual information values
in each iteration. The proposed method differs from the conventional machine learning
methods with its special chain structure that includes feature selection in a specific manner,
sample selection, and model fusion all at once. The predictions of the models on a given
new data are combined using a novel voting mechanism, called tournament voting. In this
voting process, class labels compete against one another within and between groups until
only one finalist is left.

The main contributions of this study are highlighted as follows:

i. It proposes a novel method, called support vector machine chains (SVMC), that has a
structure in which the training SVM model is included in the chain by reducing the
attributes in the dataset by one at each iteration.

ii. It proposes a novel voting mechanism, called tournament voting, in which the outputs
of classifiers compete in groups, the common result in each group gradually moves
to the next round, and, in the last round, the winning class label is assigned as the
final prediction.

iii. The results of the experiments showed the superiority of SVMC (88.11%) over SVM
(86.71%) in terms of average accuracy on the same datasets.

iv. The proposed tournament voting achieved higher accuracy than the standard majority
voting in terms of the accuracy, recall, precision, and F-measure metrics when they
were tested and compared on 14 well-known benchmark datasets.

v. The proposed method outperformed the state-of-the-art methods, with a 6.88% im-
provement in average accuracy.

One limitation is that the developed version of the SVMC method is suitable for the
classification task only. Research and development is necessary to create a version that
works for the regression task. In the future, this situation will be addressed.
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