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Abstract: Feature selection has become essential in classification problems with numerous features.
This process involves removing redundant, noisy, and negatively impacting features from the dataset
to enhance the classifier’s performance. Some features are less useful than others or do not correlate
with the system’s evaluation, and their removal does not affect the system’s performance. In most
cases, removing features with a monotonically decreasing impact on the system’s performance
increases accuracy. Therefore, this research aims to propose a dimensionality reduction method using
a feature selection technique to enhance accuracy. This paper proposes a novel feature-selection
approach that combines filter and wrapper techniques to select optimal features using Mutual
Information with the Sequential Forward Method and 10-fold cross-validation. Results show that the
proposed algorithm can reduce features by more than 75% in datasets with large features and achieve
a maximum accuracy of 97%. The algorithm outperforms or performs similarly to existing ones. The
proposed algorithm could be a better option for classification problems with minimized features.

Keywords: K-Nearest Neighbor; Logistic Regression; Mutual Information; Sequential Forward
Feature Selection

1. Introduction

Feature selection is used as a dimensionality reduction technique in most of the
problems of different research areas, where many attributes are available due to improved
data collection methods [1–4]. For defining a single sample, a large set of features increases
the computational complexity and the manifold space dimension. Out of these many
features, most of the features are not informative or sometimes misleading, thus degrading
the classifier’s performance. In many other works, datasets are presented with missing
values [5,6]. The strategies used for selecting features aim to find the optimal subset
of features and discard redundant information. Methods for the selection of optimal
features, which are exhaustive, are NP-hard. So, in order to perform these tasks, intelligent
frameworks are designed. According to their working principle, these frameworks are
divided into filter, wrapper, and embedded methods [7]. Filter methods use intrinsic
properties of data to evaluate the features and are efficient and computationally faster.
Wrapper methods evaluate the features at the time of the learning mechanism. These
are more accurate than the filter methods. However, these methods sometimes cause
overfitting. The overfitting could be overcome by using different techniques such as the
hold-out method, cross-validation, L1/L2 regularization, etc. Embedded methods try
to use the strength of these two methods. These methods are computationally costlier
than filter methods and are not smart with respect to handling high-dimensional data.
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Classification problems are those that are used to identify which new data belong to which
known class. Classification could be classified into two types: (a) binary classification and
(b) multi-classification. In binary classification, there are two output classes in total; i.e.,
the output could be either yes or no; for example, in the case of cancer, a person has cancer
or does not. In multi-classification for the problem, the output comes in k classes, where
k is an integer ranging from 2 to n. Depending on the output, the classification problem
could be linearly separable or linearly inseparable. Multiple methods have been devised to
solve these problems. Some of them include K-Nearest Neighbor [8], Random Forest [9],
Gradient Boosting [10], SVM [11], and Ada Boost [12].

The methods designed for feature selection are used in dealing with many challenges
such as reducing the data dimensionality, computational complexity, computational cost, or
storage space, or increasing the classification rate, and the ratio of features selected [13,14].
A method designed for feature selection cannot cover all the existing challenges in one go.
So most of the existing methods deal with only accuracy. In existing methods, data with
fewer features have average accuracy. Increasing the number of features (high-dimensional
dataset), the accuracy abruptly decreases. Moreover, most of the existing challenges, such
as computational cost, storage space, ratios of features selected, and high classification rate
with fewer features, are not covered by previous work, and they remain challenges for
today also.

Therefore, concerning the previous work and existing challenges, we have proposed a
hybrid algorithm. Through this algorithm, we try to overcome the issues not handled with
optimality in previous work and some of the existing challenges. The proposed hybrid
algorithm combines filter and wrapper techniques to select optimal features using Mutual
Information with a Sequential Forward Selection method (a greedy method) abbreviated
MISFS for feature selection and calculating classification accuracy of multiclass datasets.
The algorithm in the first phase applied the Mutual Information method on the dataset
to remove those features which are highly independent compared to the target. After
removing those features, in the second phase, we applied the Sequential Forward Feature
Selection method on the remaining features to select the best features having optimized
accuracy. Selecting filter methods in the first phase involves less computational time.
By taking Mutual Information as a filter approach, redundant data are easily removed.
Moreover, with this method, one can determine how relevant the target class is to the
input features and also how relevant individual features are to each other. Selecting
the Sequential Forward Selection method in the second phase as a wrapper approach
involves less computational time and is robust against overfitting. The proposed algorithm
MISFS covers a few existing challenges, such as maximum reduction of features in high-
dimensional datasets, higher classification rate, and less computational time, with the
limitation of not addressing the computational space and other complexities.

The paper is framed with Section 2 covering the background regarding dimensionality
reduction and different feature-selection models available in the literature. Section 3
discusses the related work on the different methods of selecting features and classification
problems with accuracy available in the literature. Section 4 covers the methodology of
the novel feature-selection approach MISFS with the algorithm. Section 5 presents the
experimental evaluation of the proposed methodology on different problems. This section
covers the experimental setup with details of the datasets covered, performance metrics
used for measuring performance, comparison techniques used to include results, and
discussion on different datasets with their performance evaluation and comparisons with
other multiple techniques and the other research work. Section 6 covers the conclusion,
which includes the algorithm’s performance and future work.

2. Background
2.1. Dimensionality Reduction

When we have selected the dataset for work, we have no idea about which features are
essential concerning dependent features, which are noisy, irrelevant, or redundant. Most of
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the real-life application areas include bioinformatics, speech recognition, the oil industry,
text processing, the Internet, engineering applications, medicine, diseases, and many more.
The datasets covered in these areas are high-dimensional data with noisy, irrelevant, and
redundant attributes. Thus, the feature-selection process is applied to selecting those
attributes that result [7] in minimum computing time with high accuracy. Achieving these
results includes numerous factors, such as:

• Is there any methodology to find the optimal features?
• Is there any evaluation process that could determine that the selected features are optimal?
• Is there a methodology used for independent feature-selection applications?

Other motivations for performing feature selection or dimensionality reduction are to
perform general data reduction (minimum storage space with minimum execution time),
feature set reduction (to save resources for the next step of data collection or utilization),
performance improvement, and higher data understanding.

Figure 1 presents the dimensionality reduction.
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Figure 1. Dimensionality Reduction.

From paper [7], the general framework of the feature-selection process, shown in
Figure 2, could be categorized as follows:

• In the first step, generate the feature subset by applying some methodology.
• After that, evaluate the feature subset.
• Then the termination conditions are applied.
• Finally, the result is validated.

2.2. Model for Feature Selection

A different feature-selection model includes a filter, wrapper, and embedded mod-
els [7]. Filter-based feature-selection methods select the features using several scoring
metrics in an unsupervised fashion, requiring no classifier in its core. Compared to the
other two methods, they are computationally more efficient. However, in terms of perfor-
mance, wrapper methods are far better than filter methods. Wrapper methods select the
optimal feature set by applying the learning algorithm at its core. The heart of this method
is the classifier, whose purpose is to upsurge the performance of carefully chosen features
at each iteration. The computational cost of the wrapper method is greater compared to
filter methods. Filter and wrapper methods differ mostly by evaluation criteria. Filter
methods are sometimes acclimatized with feature-ranking methods. Similar to wrapper
methods are embedded methods, using the inherent properties of the model as a metric
during the learning phase. The more complex problems are handled easily via embedded
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methods in contrast with filter methods. Moreover, in the case of larger training samples,
embedded methods beat the filter methods. Hybrid methods also exist, which are a combi-
nation of filter and wrapper methods first applying the filter method to rank features to
generate a nested subset of features; these are computed via a learning mechanism, i.e., a
wrapper approach.

Electronics 2023, 12, x FOR PEER REVIEW  4  of  24 
 

 

 

Figure 2. A general framework of the feature-selection process. 

2.2. Model for Feature Selection 

A different feature-selection model includes a filter, wrapper, and embedded models 

[7]. Filter-based feature-selection methods select the features using several scoring metrics 

in an unsupervised fashion, requiring no classifier in its core. Compared to the other two 

methods,  they  are  computationally more  efficient. However,  in  terms of performance, 

wrapper methods are far better than filter methods. Wrapper methods select the optimal 

feature set by applying the learning algorithm at its core. The heart of this method is the 

classifier, whose purpose  is  to upsurge the performance of carefully chosen features at 

each iteration. The computational cost of the wrapper method is greater compared to filter 

methods. Filter and wrapper methods differ mostly by evaluation criteria. Filter methods 

are sometimes acclimatized with feature-ranking methods. Similar to wrapper methods 

are embedded methods, using the inherent properties of the model as a metric during the 

learning phase. The more complex problems are handled easily via embedded methods 

in contrast with filter methods. Moreover, in the case of larger training samples, embed-

ded methods beat the filter methods. Hybrid methods also exist, which are a combination 

of filter and wrapper methods first applying the filter method to rank features to generate 

Figure 2. A general framework of the feature-selection process.

Algorithms designed based on these methods are not perfect or suitable for all real-life
applications. Selecting an algorithm suitable for a given application area or all application
areas is a tedious and complex task. The reason for this is that each application area is
different from others. Moreover, the model or algorithms designed to solve a problem in
a particular domain work differently depending on the data available. A small change
in data could lead to different feature selections. So, the algorithm designed to solve a
problem in one domain does not work well in another domain. Furthermore, each model
could handle some of the challenges mentioned above. Most of the models available in the
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literature deal either with accuracy or reduction in features. However, achieving both at
the same time is not achieved at a higher rate with these algorithms.

So, the purpose of this proposed methodology is to handle most of the challenges.
It can be seen that the MISFS method achieves higher accuracy with maximum feature
reduction on both low- and high-dimensional datasets. Moreover, the computational
efficiency is low compared to existing methods, reduced data dimensionality is achieved,
and the ratio of features selected is also calculated. This approach’s limitation is that it
covers storage space to a very limited extent.

3. Related Work

The ability to acquire massive data in an existing period is a two-edged sword. Firstly,
it allows us to analyze features more soundly due to the availability of more informa-
tion about data. On the other hand, storing and processing these data is becoming more
complex. Thus, techniques needed for dimensionality reduction are becoming more im-
portant because they help to remove features that are less needed without impairing the
learner’s performance. Features that cannot discriminate the samples from different classes
or clusters are irrelevant. The learning performance of the system is not hampered after
removing such features. However, most of the time, the system’s performance is improved
if a suitable model is used for performing feature selection depending on the area and type
of problem selected.

Most of the research has been carried out, and many overview papers have been
designed, to evaluate feature-selection methods available in the literature [1,7] in detail
with their categorization. There are major studies in the area of classification problems,
which include both binary and multi-class problems. Filter methods are used for counting
the number of samples misclassified in two gene expression datasets [15]. Classification
accuracy is calculated for artificial datasets [16] using different filters, wrappers, and
embedded methods. Again, the microarray datasets are considered by [17] for calculating
the classification accuracy using filter methods. Some reviewed the ensemble feature-
selection techniques for classification [18]. In [19], the authors used various strategies, such
as considering sentiment data for classification and using ensemble feature selection with
hesitant fuzzy sets to attain results. They selected the top k features based on a relevancy
score. The existing algorithms do not address all the existing challenges. Mostly, these
methods cover only accuracy as a parameter. The weakness of these methods is that they do
not cover the number of features selected, computational time, and storage space and are
tuned via specific feature-selection methods and low accuracy in high-dimensional datasets.

In the case of diseases, there are common symptoms for some diseases. Therefore,
diagnosing them is sometimes a little complex, so various optimization techniques are
required to overcome this problem. Research has also been carried out on diseases caused
by diabetes. The authors of [20] used the deep learning technique to predict eye, kidney,
and cardiovascular diseases caused by diabetes. They used statistical methods to evaluate
the performance. Most research has been carried out on the widely used the PIMA Indian
Diabetes Dataset available at the UCI repository. One of the research works in [21] predicted
diabetes by employing a classification model based on the Synthetic Minority Oversampling
Technique and DT, thus improving the accuracy of the estimation of diabetes by eliminating
class imbalance. They achieved a classification rate of 94.70% on the dataset considered.
However, these existing research works have weaknesses in that they do not handle
existing issues such as reduction in data dimensionality, computational cost, and higher
classification accuracy but somehow achieved the accuracy at par level. Most reports on
methods do not outline their weaknesses.

The authors of [22] implemented PCA and PSO for feature selection in multiple com-
binations with classification algorithms on the PIMA Indian Diabetes Dataset and the
Localized Diabetes Dataset (LDD) gathered from Bombay Medical Hall, Upper Bazar,
Ranchi, India, and achieved the highest classification rate of 79.56% with a combination
of PCA and Logistic Regression for the PIMA Indian Diabetes Dataset and 95.58% for
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the LDD with PCA–PSO–C4.5 DT. This showed that the efficiency of the proposed model
shows different performances on two datasets. However, it is better than the traditional
approach in terms of increased accuracy, as mentioned in this paper. Moreover, there was a
50% reduction in features in both datasets via PCA and PSO. However, the authors remain
silent on computation time and storage space and do not cover the high-dimensional data
to evaluate the performance of the proposed method. Moreover, they do not guarantee that
the same performance and the same percentage of reduction in features will be achieved
on other datasets. A similar task was addressed by [23] while calculating the accuracy
of the PIMA Indian Diabetes Dataset. They compared the performance of the Support
Vector Machine, ANN, Naïve Bayesian, J48 DT, and Bagging methods and also added
the performance of the Genetic Algorithm with Support Vector Machine. Moreover, they
analyzed the weaknesses and strengths of these methods. They concluded that statistical
methods are not successful on categorical data and handling missing values; that is why ma-
chine learning methods are used. In [24], they used the SOM optimization algorithm with
four heuristic algorithms, namely Particle Swarm Intelligence (PSO), Newton-based self-
organizing map PSO, self-organizing map Harmony Search Algorithm and self-organizing
map Swarm. They implemented it on various bio-medical datasets. They compared the
performance of these on the PIMA Indian Diabetes Dataset, Appendicitis, Heart, Hepatitis,
Mammographic, Wisconsin Breast Cancer, and New Thyroid datasets. They achieved 91%
accuracy on the New Thyroid dataset using the Newton-based self-organizing map PSO
and 97% accuracy on the Wisconsin dataset through the self-organizing map Harmony
Search Algorithm. The method exhibited a good quantization error for clustering and good
accuracy with statistical measures. The authors proposed that multi-strategy SOM deep
mapping learning can be adopted for multi-dimensional unstructured big-data problems.
However, they have issues in dealing with big-data preprocessing.

Researchers have proposed various feature-selection methodologies designed with
the Mutual Information (MI) technique. This is an approach based on the filter method.
The first classification approach using MI dates back to [25]. In that study, the authors used
a Mutual Information-based feature-selection method for text classification. The degree
of correlation between the independent feature and dependent feature is calculated with
Mutual Information and also helps in filtering out the irrelevant features. This method
does not consider the relationship between the candidate and selected features. Moreover,
in cases of heavily redundant data, the performance of Mutual Information is degraded.
The issue of not considering the relationship between the candidate and selected features
is considered in [26]. The authors of that study proposed Mutual Information based on
Feature Selection (MIFS) which checks for the availability of unnecessary information
between candidate features and the selected features.

The patient’s records are maintained through biomedical datasets containing multiple
features. Several methods based on the wrapper and hybrid filter wrapper are used as
ideal methods. Hybrid methods built on the Information Gain Genetic Algorithm [27] and
Information Gain Particle Swarm Intelligence [28] showed the classification accuracy of
combined filter and wrapper methods. In [27], the authors concluded that no classification
technique outperforms all the other existing methods. They also concluded that the Genetic
Algorithm somewhat improves the classification performance of different classifiers. The
Artificial Bee Colony algorithm [29] used only seven features on the Cleveland Heart
Disease dataset with a better classification accuracy compared to other feature-selection
methods. Feature selection is carried out with Artificial Bee Colony methodology, and
the performance is measured using the KNN classifier; the performance is excellent on
the Cleveland Heart Disease dataset [30]. There are a few other domains in which LSTM
networks have been successfully applied in sequence classification. For example, [31]
used the LSTM network for air-quality prediction. The authors used data from air-quality
sensors for the same purpose. They cleaned the raw data and filled in the missing data
using edge-based components exploiting temporal and spatial information. The predicted
accuracy was improved by 40.18% on the mean absolute percentage error.
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This section on previous work shows that various feature-selection methods have
been designed for classification problems on different diseases. Most of researchers used
the methods to deal with classification accuracy, and some dealt with feature selection on
different datasets and then calculated the accuracy. However, it is noteworthy that most of
the methods do not provide higher accuracy with maximum feature reduction. Moreover,
most of the existing challenges, explained above, are not handled with the existing methods.
This research proposes a methodology, MISFS, which identifies the issues with the existing
methods and tries to find solutions to most of the existing challenges. The proposed method
uses the hybrid filter–wrapper method to cope with the issues mentioned in the literature.
This combination benefits from the advantages of both the filter and wrapper methods,
thus improving the classification accuracy; some of those advantages are reduced feature
set, short computational time, and small storage space. Mutual Information (MI) is used
as a filter method to rank the features and then select the features with higher ranking
from all feature sets, passing the higher ranked features to Sequential Forward Feature
Selection (SFS)—a greedy-based wrapper method—for further selection of features and
calculating the accuracy. Thus, the maximum amount of features of lesser importance
and redundant and noisy features are removed while achieving higher accuracy. As the
approach is greedy-based, it decreases the computational complexity as a whole. Thus,
the proposed MISFS method covers existing challenges regarding data dimensionality,
computational complexity, computational cost, storage space to some extent, classification
accuracy, and the ratio of features selected.

The proposed MISFS method covers the application area of the medical field but it
could be used for different application areas.

4. Methodology
4.1. Overview of MISFS Approach

Here the authors have proposed an approach, MISFS, for selecting optimized fea-
tures to obtain a good classification rate. We have designed a hybrid approach for select-
ing optimized features. Here, we utilized the strengths of both the filter and wrapper
approaches by exploiting their diversified evaluation capabilities in both methodology
phases. In this process, we used the strengths of filter and wrapper methods. The filter
approach, which considers only the data for evaluation, is algorithm-independent. The
wrapper approach considers both the data and the learning algorithm for evaluation and is
algorithm-dependent. Separately, both have some disadvantages, which are overcome by
the hybrid approach we propose.

4.2. Abstract View of MISFS and Comparison Methods

We propose a methodology called MISFS for feature selection and calculating accuracy.
First of all, the dataset is divided into a training set and a test set. After that, MISFS is
implemented on the training set to find the optimal features. After finding the optimal
features, the training data accuracy and testing data accuracy are calculated using MISFS
with KNN and LR. Then, the results of the MISFS are compared with three different styles:

• First, after calculating the accuracy of MISFS, we implemented different classifiers
on the original dataset, calculated the classification rate, and compared the result
with MISFS.

• Then, again, we implemented the Pearson Correlation method for feature selection,
calculated the accuracy of the different threshold values, and compared the result
with MISFS.

• Again, we compared the MISFS results with the prevailing work results.

Figure 3 shows an abstract view of the overall flow of calculation and comparison
of results.
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4.3. Implementation of MISFS

The MISFS approach, designed for feature selection, is a hybrid approach, as explained
in Section 4.1, and is implemented in two phases. The first phase is called Phase 1, and the
second phase is called Phase 2. Each phase can be summarized as follows:

(i.) First phase: We implemented the filter approach, and in the second phase, we im-
plemented the wrapper approach. The main task of the algorithm is to calculate the
improved classification rate of the datasets after feature selection. So, in the first phase,
we implemented Mutual Information, which is a filter method, for feature selection.
Through this method, we selected features highly correlated with the output class.
After that, by selecting these features, we implemented our second phase.

(ii.) Second phase: We implemented the Sequential Forward Feature-Selection (SFS)
method, a wrapper model, for feature selection. This methodology is based on the
greedy approach. Here, the classifier first calculates the performance of each feature
individually. After that, in the next step, it selects the feature with the best perfor-
mance, pairs it with the remaining features, and evaluates the classifier’s performance.
For clarification, let us say there are four features f1, f2, f3, and f4. In the first step, the
individual performance of each feature is evaluated. Let f2 be the feature with the
best performance. In the next step, we start from f2 and pair it with the remaining
features (pair will be {f2 f1}, {f2 f3}, {f2 f4}) and evaluate their performance. Then we
again start with the best-performing pair and repeat the same process by adding
the remaining features. Finally, we obtain the optimal feature set with maximum
performance. KNN classifier is used with SFS while evaluating the performance and
selecting the optimal features.

4.4. Method and Algorithm

This sub-section covers the implementation details of the MISFS algorithm phase-wise.
Moreover, an algorithm is designed to implement the MISFS approach completely.
Phase 1:

In the first step, we use a Mutual Information-based filter approach to rank all features.
The method used here considers the correlation among different features and the correlation
between the target and features for ranking. The highly correlated features are ranked
higher, and features with less correlation are ranked low. Mutual Information (MI) detects
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non-linear relationships between variables, as an example, for the popular correlation
coefficient. Mutual Information is also defined for multidimensional variables, taking joint
relevancy and redundancy of features into account while selecting features. If A and B
are independent variables, then there will be no MI between them; it will be zero. This is
because A contains no information about B and vice versa. We have used the following
concept for implementing mutual information.

(i.) We used the concept of probability density function to calculate Mutual Information
between A and B, defined as

I(A; B) = H(A)−H(A|B) = H(B)−H(B|A) = H(A) + H(B)−H(A; B) (1)

where

• H(.) denotes entropy;
• H(A|B) and H(B|A) are conditional entropies;
• H (A; B) is the joint entropy of A and B

(ii.) The joint entropy H (A; B) is calculated as

H(A) = −
∫

a
pA(a)logpA(A)da (2)

H(B) = −
∫

b
pb(b)logpB(B)db (3)

H(A; B) = −
∫

a

∫
b

pa,b(a, b)logpA,B(a, b)da db (4)

where

• logpA,B(a, b) is the joint probability density function;
• pA(a) and pB(b) are the marginal density functions of A and B, respectively.

(iii.) The marginal density functions are

pA(a) =
∫

a
pA,B(a, b)db (5)

pB(b) =
∫

b
pB,A(x, y)da (6)

(iv.) By substituting Equations (2)–(4) into Equation (1), the Mutual Information equation
will be

I(A; B) =
∫

a

∫
b

pA,B(a, b)logpA,B(a, b)
pA(a)pB(b)

dadb (7)

In discrete forms, the integration is substituted by summation over all possible values
that appear in data.
Phase 2:

After selecting the features according to their ranking with Mutual Information, we
again applied the Sequential Feature-Selection method based on wrapper methodology to
select the best features from the remaining ones. There are multiple ways to implement
Sequential Feature Selection, out of which we implemented the Sequential Forward Feature-
Selection (SFS) method. SFS uses a greedy approach that reduces the primary p-dimensional
feature set to an m-dimensional feature subset where m < p. The property of SFS is that it
inevitably selects the most relevant subset of features according to the problem. Using this
methodology, we improved the computational efficiency of the model and removed the
irrelevant as well as noisy features, thus reducing the model generalization error.

Algorithm 1 covers the MISFS approach for feature selection. The algorithm, in total,
is divided into 13 steps. Steps 1–7 cover Phase 1, and the remaining steps cover Phase 2.
Lines 3–6 implement the MI to rank the features and passes those features in line 7 for
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further implementation and evaluation for Phase 2. Phase 2 is initialized in line 8, and
further implementation (inclusion) is done from lines 9–11 and repeated until we obtain the
subset of features with maximum classifier performance. Termination criteria are covered
in line 12. Step 13 shows the implementation of cross-validation in Phase 2.

Algorithm 1: MISFS model

Input: d, total features available in repository P
P = p1, p2, p3, . . . . . . ., pd

Result : Best minimum features Xm selected after applying MISFS.
Phase 1: Mutual Information (MI)

1.
d, total features available in dataset P

P = p1, p2, p3, . . . . . . ., pd
2. apply Mutual Information (MI) for ranking the features as in step
3. for each d do
4. compute MI (pi, C)
5. Rank each feature pi & arrange them in descending order
6. end for

7.
Select top k features based on ranking for phase II

P′ = {p1, p2, p3,....., pk}
Phase 2: Sequential Forward Feature Selection (SFS)
Input: k features selected after MI (from step 7)

P′ = {p1, p2, p3,....., pk}
Output:

Xm = {xi|i = 1, 2, . . . ., m; xi ∈ P’, where m = (0, 1, 2 . . . , k)}
Through SFS we selected the best m features where m < k, and it is a subset of features
in P’.

8.

Initialization
X0 = ∅, m = 0

At the initial stage of SFS, we consider an empty set ∅, so the m = 0 (where m is the
subset of features from k features).
Inclusion:

9. x = argmaxS(Xm + xi), where xi ∈ P’ − Xm
10. Xm+1 = Xm + x
11. m = m + 1

goes again to step 9

12.
Termination:
m = p

13.
Cross-validation and k-NN used with SFS
Cross-validation is used while working in Phase 2.

Algorithm 1 covers the MISFS model for feature selection and measuring classification
accuracy. In this algorithm, in line 4, C stands for computation, and steps 9–11 are the
inclusion step. In this step, another attribute x is included in the attribute subset Xk. x is
the attribute that capitalizes on the performance of the criterion function. This means that
if adding x in Xm increases the classifier’s performance, then it is included; otherwise, it
is excluded. This procedure is repeated until all the features are exhausted and we have
satisfied the termination criterion. Step 12 is the termination step. In this step, we add
features from the feature subset P′ until the feature subset of size m contains the number
of desired features p that we specified a priori. In our algorithm, we find the m best
features which maximize the classifier’s performance. Step 13 covers the cross-validation
in Phase 2. While working in Phase 2, we used 10-fold cross-validation with a Sequential
Forward Feature-Selection method along with k-NN as a classifier to make use of the
optimized feature selection. Cross-validation also helps overcome overfitting and increases
the prediction model’s performance estimation. The computational time of the algorithm is
min(f(nm)), where f is the number of features selected, n is the number of features, and m
is the number of samples.
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4.5. Workflow of the MISFS

The workflow of MISFS is covered in this section using diagrams. Figure 4 presents
the flow of the proposed methodology covered in Section 4.4, and Figure 5 demonstrates
how cross-validation is implemented in MISFS, as covered in Section 4.4 and Algorithm 1.
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Figure 4 is partitioned into six steps. In the very first step, we considered the original
dataset for implementation. Then, in the next step, we split the dataset into 70% training
data and 30% testing data. In the third step, we implemented MI on training data to rank
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the features and selected the top k features for further analysis using SFS in step 4. In step 5,
we implemented SFS on the features selected after MI to select the best features with higher
accuracy. Finally, the optimal feature subset could be obtained. Then, we implemented it
on testing data to calculate accuracy using KNN and LR.

Figure 5 demonstrates how cross-validation is implemented in SFS. Cross-validation is
implemented in Step 2 of SFS on the training dataset for hyperparameter tuning and feature
selection. The training set is divided into the ‘n/k’ validation fold and the remaining train-
ing fold in K-fold cross-validation. A total of k experiments are performed, with shifting
validation fold in each experiment and calculating the performance at each experiment.

After that, the average performance is calculated, and optimal features are provided.
After receiving the optimal features, we evaluate the training accuracy using KNN and LR.

5. Experimental Evaluation
5.1. Experimental Setup

We executed the methodology on multiple datasets to see the performance of the
proposed algorithm. The motive of the approach is to select the minimum number of
features with moderate accuracy. To achieve this, we divided the dataset into training and
testing datasets. After that, we used mutual information to find features highly correlated
with the output class. After selecting the features with high Mutual Information, we
implemented the Sequential Forward Selection approach on the remaining features to
obtain the features with moderate accuracy. We used the model K-Nearest Neighbor with
10-fold cross-validation for Sequential Forward Selection. A detailed description of the
algorithm is covered in the previous section.

5.1.1. Datasets

The following datasets are selected to assess the performance of the proposed method
in terms of the number of features selected and efficiency. A few of them are from the UCI
repository, and others are taken from different sources. The datasets that are considered are
PIMA Indian Diabetes, Spectfheart, Breast Cancer, Parkinson, PCOS, and Cleveland.

i. PIMA Indian Diabetes: This dataset is available on the UCI machine learning reposi-
tory. It has 768 samples from female patients of PIMA Indian tradition, with 8 numeric
valued features and output as a binary class. The dataset is used to diagnose type 2
diabetes. It contains information on women 21 years or older and is of non-linear type.
It includes two classes: Class 1 is normal with 500 samples, and Class 2 is patients
with PIMA Indian Diabetes with 268 samples. The eight features are pregnancies,
glucose, BP, BMI, skin thickness, age, insulin, and diabetes pedigree function.

ii. Spectfheart: This dataset is made available from the UCI machine learning repository.
It contains 267 samples diagnosing Cardiac Single Proton Emission Computed To-
mography (SPECT) images. It consists of 44 features, and the classes for classifying
patients are normal and abnormal. The details of 44 features can be examined from
the UCI repository.

iii. Breast Cancer: This dataset is available on the UCI machine learning repository. It
comprises 569 samples of heart disease patients, having 33 features and output as a
binary class. The output is a challenge to classify whether each person’s tumor lies
malignant or benign. The 33 feature details are given in the UCI repository.

iv. Parkinson dataset: The UCI machine learning repository makes the dataset available.
It comprises 195 samples of heart disease patients, having 24 features and output as
a binary class. Output is the “status” feature, representing 0 for healthy and 1 for
Parkinson’s disease. The details of features are given in the UCI repository.

v. COS dataset: This dataset is made available from the UCI machine learning repository.
It contains information from 10 different hospitals. It contains 541 samples of PCOS
patients, with 45 features and output as a binary class. The output is whether the male
person is infected with PCOS or not. The details of the 45 features are given in the
UCI repository.
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vi. Cleveland dataset: The UCI machine learning repository makes the dataset available.
It comprises 297 samples of heart disease patients, with 13 integer-valued features
and output as 5 classes from 0 to 4. The output is to see that the patient has heart
disease, and 0 to 4 signifies the absence and distinguished occurrence of disease. The
13 features are age, sex, cp, tpb, sc, fbs, resting electrocardiographic results, mhr
received, exercise-induced angina, op, the peak exercise slope, major vessel amount,
and thal.

Table 1 shows the necessary information regarding the above data samples:

Table 1. Overview of Data Samples.

Dataset #Samples #Attributes #Classes Variable
Description

PIMA [a] 768 9 2 768 × 9
Spectfheart [b] 267 45 2 267 × 45

Breast Cancer [c] 569 33 2 569 × 33
Parkinson [d] 195 24 2 195 × 24

PCOS [e] 541 45 2 541 × 45
Cleveland [f] 297 13 5 297 × 13

Among these datasets, Spectfheart and PCOS have a large number of features, 45.
One dataset is considered, which is multiclass with 5 classes. These datasets have been
employed in numerous works available in the literature for evaluation.

5.1.2. Performance Metrics

To calculate the performance of these datasets on the MISFS, we considered the confu-
sion metrics, classification rate, recall, specificity, precision, and f-measure as evaluation
metrics [7]. Briefings on these evaluation metrics are shown below:

• Confusion Matrix: This matrix is used to measure how many samples are perfectly
classified and how many samples are misclassified. Four terms are considered in the
confusion matrix.

a. True positive (TPOS): Samples that are labeled positive are predicted to be positive.
b. True Negative (TNEG): Samples that are labeled negative are predicted to

be negative.
c. False Positive (FPOS): Samples that are labeled negative are misclassified as positive.
d. False Negative (FNEG): Samples that are labeled positive are misclassified

as negative.

• Accuracy or Classification Rate: This calculates the total ratio of classes predicted
properly by the classifier.

Accuracy =
TPOS + TNEG

TPOS + FPOS + TNEG + FNEG
(8)

• Sensitivity (or Recall): This calculates what ratio of class labels that are predicted as
positive belongs to positive.

Sensitivity =
TPOS

(TPOS + FNEG)
(9)

• Specificity: This calculates what ratio of class labels that are predicted as negative
belongs to negative labels.

Speci f icity =
TNEG

(TNEG + FPOS)
(10)
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• Precision: This demonstrates the number of predicted classes on all positively classi-
fied labels.

Precision =
TPOS

(TPOS + FPOS)
(11)

• F-measure: Precision and recall are inversely proportional to each other; increasing
one usually decreases the other. This inverse relationship between precision and recall
is called F-measure. It is calculated using HM of precision and recall and considering
both measures. It is computed as follows:

F−measure = 2 ∗ Recall × Precision
(Recall + Precision)

(12)

5.1.3. Comparison Techniques

After designing the algorithm, the proposed algorithm was used to derive the opti-
mized feature subset on the datasets taken for evaluation and also to calculate the amount
of accuracy in percentage and other metrics on the proposed algorithm using K-Nearest
Neighbor and Logistic Regression.

We compared the results of MISFS in three ways:

a. At the first level, we calculated the accuracy of the datasets considered in this work
with different classifiers, taking into account all the features, and compared them
with the proposed algorithm.

b. At the second level, we implemented the Pearson Correlation method to select the
optimal features and then applied dissimilar classifiers considered in point (a) to
calculate the accuracy and compare it with the proposed algorithm.

c. At the last level, we compared the performance of MISFS with the existing methods.

5.2. Results and Discussion

To evaluate the performance of the proposed algorithm, we evaluated MISFS on the above-
mentioned datasets. The results of the experiments are reported in the following sections:

5.2.1. Features Selected

The optimized features selected on each dataset are shown in Table 2 for the application
of MISFS on the datasets mentioned above,.

Table 2. Optimized Features Selected.

Dataset Total Features Including
Output Class

Features after Applying the
MISFS Algorithm

PIMA 9 4
Spectfheart 45 6

Breast Cancer 33 12
Parkinson 24 12

PCOS 45 15
Cleveland 14 6

Table 2 shows that the feature reduction of larger datasets is comparatively greater
compared to smaller feature sets. In the PIMA Indian Diabetes set, there were 9 features,
and after applying the proposed algorithm, that number was reduced to 4. The Parkinson
dataset was reduced from 24 to 12, and the Cleveland dataset was reduced to 6 out
of 14 after applying the proposed algorithm. This shows that on smaller features, the
reduction is about 50%. While working on other datasets which have larger feature sets, the
reduction was more than 75%. The Breast Cancer dataset with 33 features was reduced to
12, while the PCOS dataset with 45 features was reduced to 15 with the proposed algorithm,
with percentage reductions up to 36.36% and 33.33%, respectively. In these datasets, the
reduction in features was near to or greater than 65%. Considering the Spectfheart dataset,
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the features were reduced from 45 to 6. That is, only 13.33% of features remained, showing
more than an 85% reduction. Figure 6 shows a bar chart of features reduced on each dataset
after applying the algorithm MISFS. Thus, it covers the general data reduction, limiting the
storage requirement to some extent and increasing the algorithm speed, which could be
strongly proven after achieving the accuracy.
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It can be seen from Figure 6 that on applying the algorithm, the total features obtained
are minimized, and it can be seen that in the case of datasets with a large number of features,
the performance of the algorithm is comparatively healthier as compared to smaller feature
datasets. This can be easily seen from the results of the Spectfheart and PCOS datasets.

5.2.2. Performance on Different Datasets

This section presents the results of the proposed model MISFS on real-world datasets.
Each dataset result for the proposed algorithm is shown in Table 3.

Table 3. Performance of the Proposed Algorithm, MISFS.

Dataset Proposed
Method Accuracy Precision Recall F1-Score Support

PIMA
MISFS+KNN 77.48 0.8098 0.8400 0.8250

231MISFS+LR 75.75 0.7853 0.8854 0.8323

Spectfheart MISFS+KNN 76.540 0.5 0.6316 0.5581
81MISFS+LR 79.012 0.6 0.3158 0.4138

Breast
Cancer

MISFS+KNN 94.73 0.9626 0.9537 0.9581
171MISFS+LR 97.07 0.97 0.97 0.97

Parkinson
MISFS+KNN 94.91 0.95 0.95 0.95

59MISFS+LR 89.83 0.89 0.90 0.90

PCOS
MISFS+KNN 84.66 0.85 0.85 0.84

163MISFS+LR 87.11 0.87 0.87 0.87

Cleveland
MISFS+KNN 52.22 0.54 0.59 0.59 90
MISFS+LR 58.88 0.54 0.59 0.59 90

The results of the proposed algorithm, MISFS, for different datasets show that the
highest accuracy achieved with the algorithm is 97.07% on the Breast Cancer dataset by
using the classifier Logistic Regression. (LR). Table 3 shows the accuracy of each dataset
with MISFS using LR and KNN. It also shows the precision, recall, and f1-score achieved
on each dataset. The accuracy achieved with most of the datasets is above 84% except for
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Spectfheart, PIMA Indian Diabetes, and Cleveland datasets. Figure 7 shows the bar graph
of accuracy achieved on each dataset using MISFS.
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5.2.3. Comparison of the Proposed Algorithm with LR, KNN, and PCC

The comparison is implemented among the highest accuracy achieved with the pro-
posed algorithm, MISFS, with LR, KNN, PCC-LR, and PCC-KNN, as shown in Table 4.

Table 4. Comparison of performance of the proposed algorithm, MISFS, with LR, KNN, and PCC.

Dataset

Result

Methodology

MISFS
(Proposed) LR KNN PCC+KNN PCC+LR

PIMA
FS 4 9 9 9 9

Accuracy 77.48 72.39 65.62 73.95 72.39

Spectfheart FS 6 45 45 45 All
Accuracy 79.012 72.89 67.90 77.61 85.07

Breast
Cancer

FS 12 33 33 28 28
Accuracy 97.07 96.50 96.50 96.50 94.40

Parkinson
FS 12 24 24 13 13

Accuracy 94.91 83.67 89.79 85.71 89.79

PCOS
FS 15 45 45 38 38

Accuracy 87.11 86.02 67.64 89.70 85.29

Cleveland
FS 7 14 14 All All

Accuracy 58.88 58.66 48.89 56 56

Comparing the performance of MISFS with LR, KNN, and PCC with both LR and
KNN performance on the PIMA dataset, it can be seen that MISFS obtained the maximum
accuracy of 77.48% with the Logistic Regression classifier, which is larger than the accuracy
achieved with LR, KNN, and PCC with both KNN and LR. The accuracy achieved with
MISFS is higher on all datasets, as shown in Table 4, except on PCC with LR on Spectfheart
and PCC with KNN on PCOS. Evaluating the results of the Spectfheart dataset with the
MISFS obtained the highest classification accuracy of 79.012%. Evaluating the performance
of the Spectfheart dataset with all features, with the classifiers mentioned, led to an accuracy
of 67.90% with K-Nearest Neighbour and 72.89% with LR, which is much less than received
with the proposed algorithm. The reason could be that the proposed algorithm tried to
find the best feature selection, and outliers are removed using Mutual Information, so
the proposed algorithm’s performance is improved. Moreover, the proposed algorithm’s
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precision, recall, and f1-score are average. Figure 6 shows the comparison of each dataset
with the LR and KNN accuracy with all features and also the comparison of PCC for feature
selection with LR and KNN separately.

With the MISFS algorithm, the Breast Cancer dataset received 98.23% training accuracy
with KNN, 94.73% testing accuracy with the KNN classifier, and 97.07% testing accuracy
with LR. The precision, recall, and f1-score value is also above 0.95 for both the approaches
with the proposed methodology. This showed that the algorithm proposed performs
soundly on the dataset. Evaluating the performance of these classifiers with all features
led to an accuracy of 96.05% with both KNN and LR, which is smaller than the accuracy
with MISFS. Again, applying PCC to select features and then applying these classifiers
led to accuracies of 96.50% and 94.40% with KNN and LR, respectively, which are again
smaller than MISFS. The Parkinson dataset received a training accuracy of 95.58% (not
shown in Table 4) with KNN and almost similar testing accuracy of 94.91% with KNN.
When comparing the results of MISFS with the dataset with all features, its performance
was 89.79% with KNN and 83.67% with LR, which is low compared to the performance
we received with MISFS. Using PCC for feature selection with the threshold value of 0.5 to
0.95, we received an accuracy of 85.71% with KNN and 89.79% with LR, which is less than
achieved via the proposed MISFS algorithm.

Similarly, on the PCOS dataset, higher accuracy was obtained with MISFS when
compared to the performance with LR, KNN, and PCC-LR. In contrast, PCC-KNN has
higher accuracy compared to MISFS. The case is similar with the Cleveland dataset.

5.2.4. Comparison of the Proposed Algorithm with the Existing Algorithm

In this section, we compared the accuracy of the proposed algorithm, MISFS, on each
dataset with the accuracy of existing work separately from Tables 5–10 as shown in Figure 8.

Table 5. Comparison of the proposed algorithm, MISFS, with existing work on PIMA Indian Diabetes.

PIMA Indian Diabetes Dataset

Authors Techniques Accuracy Feature
Selected

Choubey et al. [23] PCA_C4.5 DT, PCA_KNN 74.78% 4
Theerthagiri et al. [32] Naïve Bayes, KNN, DT, Extra Trees 72.4137 -

Chatrati et al. [33] KNN, SVM 75 3
Apoorva et al. [34] SVM, DT 75.06
MISFS (Proposed) LR, KNN 77.48 4

Table 6. Comparison of the proposed algorithm with existing work on the Spectfheart dataset.

Spectfheart Dataset

Authors Techniques Accuracy Feature
Selected

Ding et al. [35]
Adaboost with Threshold

Classification (TC)
Multi (TC)

70.59
75.40 -

Cui et al. [36] Relief with new relief-feature
weighting objective function 76.86 -

Qu et al. [37] RFE with SVM 77.1368 14
Deep [38] Grey Wolf Optimizer with KNN 79.40 23

MISFS LR, KNN 79.012 6
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Table 7. Comparison of the proposed algorithm with existing work on the Breast Cancer dataset.

Breast Cancer Dataset

Authors Techniques Accuracy Feature
Selected

Elsadig et al. [39] Chi-square, SVM, Random Forest,
Naïve Bayes, Logistic Regression 97.0 17

Kadhim and Kamil [40] Gradient Boosting 96.77 -
Al-Azzam and
Shatnawi [41] LR with area under the curve 96 -

Khan et al. [42] SVM 97.06 -
Deep [38] Grey Wolf Optimizer with KNN 94.60 3

MISFS LR, KNN 97.07 12

Table 8. Comparing MISFS with previous work on Parkinson dataset.

Authors Techniques Accuracy Feature
Selected

Nguyen et al. [43] ICA + DWT + LSVM 84.5 -
Devi et al. [44] PCM with SVM 89 -

Lamba et al. [45] Extra Tree, MI Gain, GA with Naïve
Bayes, K-Nearest Neighbor, RF 95.58 11

Senturk [46] Recursive Feature Elimination, Feature
Importance, SVM, ANN, CART 93.84 -

MISFS LR, KNN 97.07 12

Table 9. Comparison of the proposed algorithm with existing work on the PCOS dataset.

Authors Techniques Accuracy Feature
Selected

Sreejith et al. [47] Red Deer Algorithm with RF 89.81 20
Bharati et al. [48] LR with 5-fold cross-validation 85.022 13

Nandipati et al. [49] KNN, SVM 90.83 10
Bharati et al. [50] LR 83 14

MISFS LR, KNN 87.11 15

Table 10. Comparison of MISFS with previous work on the Cleveland Dataset.

Cleveland Dataset

Authors Techniques Accuracy Feature Selected

Cintra et al. [51] FS + R 54.54 -
Mousavi et al. [52] FURIA 56.57 -

Sanz et al. [53] FARC 57.92 -
MISFS LR, KNN 58.88 6

Comparing the accuracy of the existing work with the proposed work on the PIMA
Indian Diabetes dataset, the Spectfheart dataset, and the Breast Cancer dataset, as shown
in Tables 5–7, it can be seen that the classification rate of MISFS is better and almost equal
to all the other existing methods. Moreover, the number of features selected via MISFS
on the Spectfheart dataset is much smaller than the existing methods with similar or
larger accuracy. Concerning the Breast Cancer dataset, the number of features selected via
MISFS is smaller than a few of the existing methods and larger than a few of the existing
methods with similar or larger accuracy. Comparing the accuracy of the existing work with
the proposed work on the Parkinson dataset, it can be seen that the classification rate of
the MISFS is better than the other existing methods. Moreover, the number of features
selected via MISFS is almost similar to the existing methods with higher accuracy. In the
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PCOS dataset, as shown in Table 9, it is noteworthy that MISFS’s accuracy is better than a
few of the existing methods, but nevertheless a few of the existing methods have higher
accuracy compared to MISFS. Moreover, the features selected are almost similar to other
existing methods. Comparing the performance of the Cleveland dataset, it can be seen
that the performance of the proposed algorithm, MISFS, is better than existing methods by
approximately 10%.
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5.2.5. Discussion

This section discusses all the work conducted on this research topic. Six datasets
were used to evaluate the MISFS. All repositories were of human diseases. Accuracy
or classification rate, sensitivity or recall, specificity, precision, and F-measure (or F1-
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score) were used for evaluation. Several features selected were also an important part of
the research.

Evaluating the MISFS algorithm on the various performance metrics, its results were
influential. Table 11 shows the accuracy of the proposed algorithm, MISFS, on different
datasets with a comparative performance study with other methods, as explained in
Section 5.1.3.

Table 11. Summary of MISFS accuracy compared with PCC and datasets considering all features.

MISFS PCC ALL FEATURES

Classifier LR KNN LR KNN LR KNN

PIMA 75.75 77.48 72.39 73.95 72.39 65.62

Spectfheart 79.012 76.540 85.07 77.61 72.89 67.90

Breast
cancer 97.07 94.73 94.40 96.50 96.50 96.50

Parkinson 89.83 94.91 89.79 85.71 83.67 89.79

PCOS 87.11 84.66 85.29 89.70 86.02 67.64

Cleveland 58.88 52.22 56 56 58.66 48.89

It can be seen in Table 11 that considering all six datasets, except Spectfheart and PCOS,
the performance of MISFS is better, either through KNN or LR or both, when compared
with the performance of PCC and all feature datasets. The highest accuracy received with
the algorithm is 97.07%. Considering the Spectfheart dataset, it could be seen that PCC
with LR only received higher accuracy of 85.07%, and the accuracy with other methods is
approximately similar to the accuracy achieved with MISFS.

Comparing the performances of all the datasets with the existing works (Tables 5–10),
it can be seen that the performance of the proposed MISFS algorithm is similar to or
approximately better than the performances in the existing works. The results of the
existing works for each dataset are separately shown in Tables 5–10 for PIMA Indian
Diabetes, Spectfheart, Breast Cancer, Parkinson, PCOS, and Cleveland, respectively. The
highest accuracy received with the proposed algorithm is 97.07 using LR, and the lowest
accuracy received with the algorithm is 75.75 with LR only. The overall discussion shows
that the performance of the MISFS is better for most datasets and is approximately similar
to a few other datasets. Moreover, the features are reduced more compared to other existing
works, and the accuracy achieved is high. So, MISFS can be used for feature selection and
classification accuracy.

In terms of feature selection, the number of features optimized via MISFS is greater
compared to existing work with higher accuracy. Moreover, more than 85% reduction is
achieved with MISFS on higher feature datasets and more than 50% reduction in smaller
feature datasets, as shown in Figure 6. This shows that the proposed algorithm is better in
both feature selection and accuracy on datasets with higher features.

The challenges mentioned in the literature for classification problems and feature
selection include reducing the number of features, the computational complexity, the com-
putational cost, and the storage space, and increasing accuracy, and the ratio of features
selected [54–57]. The MISFS method achieved most of these including a reduction in fea-
tures at a higher rate on high-dimensional data and at an average rate on low-dimensional
data—helping in reducing the storage space to some extent and reducing the ratio of fea-
tures selected. Achieving up-to-the-mark accuracy compared to existing methods reduces
the computation time, thus reducing computation complexity and cost.

6. Conclusions

To improve the performance of the prediction model both in accuracy and feature
selection, this paper proposed a hybrid algorithm, MISFS, which combines MI and SFS
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using cross-validation. The main motivation of this research is to improve the accuracy
and feature selection for classification problems. The results are compared with existing
works and different methods to judge the performance of MISFS. Moreover, computational
complexity is improved. Furthermore, the proposed approach is used in disease diagnosis
datasets, but it can be further used in different application areas such as engineering
applications, intrusion detection, text recognition, and many more. It can be concluded
from the results that the hybrid approach proposed in this research work can be used for
feature selection and also for measuring classification accuracy as the number of features
selected with this method decreases with larger attributes in the dataset. Moreover, the
performance is better than the existing work on these datasets. The highest accuracy
achieved via the proposed MISFS is 97.07%. The proposed method meets most of the
challenges mentioned in the literature.

To improve the accuracy of the model in the future, it is decided that this work could
be transformed into a fuzzy inference system. Second, to improve the trade-off between
different performance-measuring parameters such as accuracy and interpretability, the
fuzzy system will be tuned either by using a genetic algorithm or by using Particle Swarm
Optimization. Thirdly, linguistic terms could be changed and membership functions could
be optimized to explore their influence on accuracy as well as interpretability. Fourth, the
newly generated method of fuzzy clustering could also be used to optimize the trade-offs
between different metrics.
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