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Abstract: Reaching out the function of the brain in perceiving input data from the outside world is one
of the great targets of neuroscience. Neural decoding helps us to model the connection between brain
activities and the visual stimulation. The reconstruction of images from brain activity can be achieved
through this modelling. Recent studies have shown that brain activity is impressed by visual saliency,
the important parts of an image stimuli. In this paper, a deep model is proposed to reconstruct the
image stimuli from electroencephalogram (EEG) recordings via visual saliency. To this end, the proposed
geometric deep network-based generative adversarial network (GDN-GAN) is trained to map the EEG
signals to the visual saliency maps corresponding to each image. The first part of the proposed GDN-
GAN consists of Chebyshev graph convolutional layers. The input of the GDN part of the proposed
network is the functional connectivity-based graph representation of the EEG channels. The output
of the GDN is imposed to the GAN part of the proposed network to reconstruct the image saliency.
The proposed GDN-GAN is trained using the Google Colaboratory Pro platform. The saliency metrics
validate the viability and efficiency of the proposed saliency reconstruction network. The weights of the
trained network are used as initial weights to reconstruct the grayscale image stimuli. The proposed
network realizes the image reconstruction from EEG signals.

Keywords: visual saliency; electroencephalogram; image reconstruction; geometric deep network;
generative adversarial network

1. Introduction

Elucidating the function of the brain in perceiving the input data from the outside
world is of particular importance to help improve biometric innovations and BCI challenges.
Brain recording techniques play an essential role in realizing this concept. The recordings
pave the way to modeling the representation of the information in the brain to recognize
how it works to perceive the input data. This modeling has been the subject of a number of
studies in the fields of brain encoding and decoding [1].

EEG as one of the most popular non-invasive brain recording methods has been used
vastly in studies related to understanding the brain activities in various circumstances; for
example, experiments concerning attention, memory [2], motor control [3], drowsiness
in the brain [4], EEG-based driving safety monitoring [5], emotions [6], driver fatigue [7,8],
visual decoding [9,10], brain activities during sleep [11], and movement intention detec-
tion [12]. Some studies have focused on the relation between visual input to the brain and
EEG recordings. In 2010, Ghebreab et al. [13] investigated the recorded EEG signals in
response to natural visual stimulation, and the prediction of visual inputs was realized
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using EEG responses. A better accuracy was achieved in comparison to a similar work by
Kay et al. in 2008 [14]. These studies have had the potential to reveal the effects of visual
features such as color [15], orientation [16], and position [17] on the brain signals of the
visual cortex.

The representation of visual stimuli in the brain relates to important points of the
picture. To illustrate the priority of a location in a visual image to represent in the brain, and
to identify them efficiently, the concept of a saliency map was first proposed by Koch and
Ulman in 1985 [18]. Followed by the concept introduced by Koch and Ullman, Itti et al. in
1998 introduced a computational model corresponding to the understanding of the saliency
map [19]. Following the work of Itti et al. in 1998 [19], detecting rarity, distinctiveness, and
uniqueness in a scene is compulsory for salient object detection. Based on the proposed
model by Itti [19], many models have been developed for predicting image saliency.

Realizing how the salient region affects the brain signal is of great importance to
understanding how the visual system works. Although some works have been made to
explore the relationship between the brain activity through recorded EEG signals and the
salient regions of the visual stimuli, the mapping of the EEG signals to image saliency has
not been realized. Moreover, the use of dynamic information between the connected EEG
channels according to the functional connectivity between different brain regions has not
been considered to explore the connection between brain activity and salient regions.

To achieve an efficient mapping of EEG signals to the salient region corresponding
to the visual stimuli, a deep network based on the graph representaion of EEG records is
introduced. The mapping would extract the visual saliency map related to the recorded EEG
signals. The proposed network consists of two parts, including the geometric network and
the generative adversarial network. The graph representation of the EEG records facilitates
to exploit the functional connectivity between different channels in each EEG recordings in
the classification procedure of the geometric deep network part of the proposed network.
The overall model realizes the visual saliency reconstruction through the EEG records.

The contributions made by this article can be highlighted as:
(i) It provides an efficient deep network to extract a saliency map of visual stimuli

from visually provoked EEG signals.
(ii) Reconstruction of the visual stimuli is possible through the proposed deep network.
(iii) It provides a geometric visual decoding network for extracting features from

the EEG recordings to identify 40 different patterns of EEG signals corresponding to
40 image categories.

(iv) A graph representation of the EEG channels is imposed as an input to the proposed
GDN-GAN, in which functional connectivity between 128 EEG channels is employed to
construct the graph.

(v) In the proposed method, the time samples of EEG channels are used directly as the
graph nodes to remove the feature extraction phase and to decrease the computational burden.

(vi) For the first time, it presents a model to connect the EEG recordings, visual saliency,
and visual stimuli together.

(vii) For the first time, it proposes a fine-tuning process to realize image reconstruction
from EEG signals via visual saliency reconstruction.

The remainder of this paper is arranged as follows. Section 2 reviews the related
works. Section 3 provides the details of the EEG-ImageNet database, and reviews the
mathematical preliminaries of graph convolution and generative adversarial networks.
Section 4 describes the details and the structure of the proposed framework for EEG-
based visual saliency detection and visual stimuli reconstruction. Section 5 provides
and presents the experimental results, and validates the performance of the proposed
framework compared with the state-of-the-art methods, and finally, the conclusions are
provided in Section 6.
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2. Related Work

In a number of early works on salient region detection [20–22], saliency was consid-
ered as being unique, and was frequently calculated as center–surround contrast for every
pixel. In 2005, Hu et al. [23] used generalized principal component analysis (GPCA) [24]
to compute salient regions. GPCA has been used to estimate the linear subspaces of the
mapped image without segmenting the image, and salient regions have been determined
by considering the geometric properties and feature contrast of regions. Rosin [25] pro-
posed an approach for salient object detection, which has required very simple operations
for each pixel, such as moment preserving binarization, edge detection, and threshold
decomposition. Valenti et al. [26] proposed an isophote-based framework where isocenter
clustering, color boosting, and curvedness have been used for the estimation of the saliency
map. In addition, some supervised learning-based models for saliency detection were
proposed, such as support vector machine in 2010 with Zhong et al. [27], regression in 2016
with Zhou et al., and neural networks with Duan in 2016 [28].

Some of the saliency detection methods are based on models developed for simulating
the visual attention processes. Visual attention is a selective procedure that occurs for
understanding the the visual input to the brain from the surrounding environment. Neisser,
in 1967 [29], suggested that bottom-up and top-down processes occur in the brain during the
time of the processing objects of a visual scene. Bottom-up is a pre-attentive that considers
primitive feature-driven, and top-down is a task-driven attentive model. According to these
processes, bottom-up-based models, top-down-based models, and some others, considering
both of the processes, have been proposed for visual attention.

An analysis of a bottom-up-based visual attention mechanism has resulted in bottom-
up-based saliency detection models. It is a fast process and it uses low-level visual proper-
ties such as color, intensity, and orientation. A number of researchers have made efforts
to improve the performance of the bottom-up-based saliency models. In 2013, Zhang
and Sclaroff measured the contour information of regions using a set of Boolean maps
to segment the salient objects from the background, and the efficiency of the model was
demonstrated by five sets of eye tracking databases [30]. In 2015, Mauthner et al. proposed
an estimation of the joint distribution of motion and color features based on Gestalt theory,
in which the local and global foreground saliency likelihoods have been described with an
encoding vector, and these individual likelihoods generated the final saliency map [31].

Top-down visual attention process resulted in the top-down-based saliency map
detection models. The intention and thoughts have been involved in this process, and it is
impressed by the prior knowledge and given task to the brain. To realize the difference
of the impact of these two processes on saliency models, consider an image including
two kinds of fruits. Two kinds will have the same saliency level in the bottom-up model.
However, in the top-down model, the given task will have an impact on the saliency levels
of each kind. Top-down saliency-based models, as in the work of Xu et al. in 2014 [32],
have been conducted through contextual guidance and pre-defining of the discriminant
features and allocating learned weights for different features, as performed by Zhao and
Koch in 2011 [33], and in 2017, Yang [34] adapted feature space in a supervised manner to
obtain the saliency output.

The third category is an integration of the bottom-up and top-down saliency detection
models. The detection of possible salient regions is achieved through the bottom-up process,
and the effect of the given task is processed according to the top-down model.

After designating the process model between these three models, the features ex-
tracted from every pixel in the input, or the spatial attributes according to the regions
are considered to compute the saliency features. Although real-time saliency detection
with hand-crafted features has good performance, it does not work well in challenging
scenarios to capture salient objects. One of the proposed solutions to these challenges is
using neural networks [35,36]. One of the most popular networks in machine learning are
convolutional neural networks (CNNs) [35], and they have been implemented to solve a
number of vision problems such as edge detection, semantic segmentation [37], and object
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recognition [38]. Recently, in the work by Shengfeng He et al. and Ghanbin Li et al. [39,40],
the effectiveness of CNNs has been shown when applied to salient object detection. A
series of techniques has been proposed to learn saliency representations from large amounts
of data by exploiting the different architectures of CNNs. Some of the models proposed
for saliency detection via neural networks use multilayer perceptrons (MLPs). In these
models, the input image is usually oversegmented into small regions and feature extraction
is performed using a CNN. The extracted features are fed to an MLP to determine the
saliency value of each small region. The saliency problem in [39] has been solved using the
one-dimensional convolution-based methods by He et al. Li and Yu [40] have utilized a
pre-trained CNN as a feature extractor, such that the input image has been decomposed
into a series of non-overlapping regions and a CNN with three different-scale inputs has
been proposed to extract features from the decomposed regions. Advanced features at
different scales have been captured using three subnetworks of the proposed CNN, and
have been concatenated to feed into a small MLP with only two fully connected layers.
These dense layers act as a regressor to output a distribution over binary saliency labels.

Two recently proposed deep learning-based saliency models are salicon [41,42] and
salnet [43]. Like other saliency detection methods, the purpose of the salicon is to realize
and to predict visual saliency. This model has used the coefficients of pre-trained AlexNet,
VGG-16, and GoogleNet. The last layer of the proposed salicon is a convolutional layer
that is used to extract the salient points. The initial parameters have been determined
using the pre-trained network based on ImageNet dataset, and the back propagation
has been used to optimize the evaluation criterion, in spite of previous approaches that
used support vector machine. The training process in salnet has been achieved using the
Euclidean distance between the mapped predicted salient points and the ground truth
pixels. A shallow and a deep network have been presented. The shallow net consists of
three convolutional layers and two fully connected layers with trained weights. ReLU is
used as the activation function of each layers of shallow net. The deep network consists of
10 layers and 25.8 million parameters.

In recent years, some efforts have been made to understand the connection between
the visual saliency content and the brain activity. In 2018, Zhen Liang et al. [44] presented
a model to study this connection and extracted sets of efficient features of EEG signals to
map to the visual salient related features of the video stimuli. The model has used the work
of Tavakoli et al. in 2017 [45]. The reconstruction of the features of the salient visual points
based on the features of the EEG signal has been performed with good accuracy in [44],
and prediction of the temporal distribution of salient visual points has been done using
EEG signals recorded in a real environment. In another study [46], the identification of the
objects in images recorded by robots was the purpose of the study, and a method based on
P300 wave was applied to identify the objects. The significant challenge for extracting the
objects of interest in navigating the robots is how to use a machine to extract the objects of
interest for humans. The combination of a P300-based BCI and a Fuzzy color extractor has
been applied to identify the region of interest. Humbeeck et al. [47] have presented a model
for calculating the importance of the salient points for the fixation positions. Brain function
related to the extracted model has been studied using the eye-tracker and recording the
EEG signal. An evaluation of the connection between the importance of salient points and
the amplitude of the EEG signal has been done via this modeling. A multimodal learning
of EEG and image modalities has been performed in [48] to achieve a Siamese network for
image saliency detection. The idea of the work in [48] is the training of a common space of
brain signal and image input stimuli by maximizing a compatibility function between these
two embeddings of each modality. The estimation of saliency is achieved by masking the
image with different scales of image patch and computing the corresponding variation in
compatibility. This process is performed at multiple image scales, and results in a saliency
map of the image.
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In this article, we propose a novel deep network for mapping the visually provoked
EEG signals to image saliency. In the next section, we explain the database settings and the
mathematical background of the propsed method.

3. Materials and Methods

The EEG-ImageNet database is used in this paper and is explained in detail in this
section. The mathematical background of Chebyshev graph convolution will be explained
to know the function of a convolutional layer of the geometric deep network. Furthermore,
we have an overview of generative adversarial networks and saliency evaluation metrics.

3.1. Database Settings

In this section, the details of the EEG-ImageNet database is described. This dataset is
publicly available in perceive lab [48,49]. The EEG-ImageNet dataset has been recorded
using a 128-channel cap (actiCAP 128Ch) [50]. Figure 1 illustrates the EEG placement
according to this standard. The EEG-ImageNet includes the EEG signals of six human
subjects produced as the result of visual stimulation.

The visual stimulation used in this research contains 40 categories of different im-
ages of the ImageNet database [51], comprising ‘sorrel ’, ‘Parachute’, ‘Iron’, ‘Anemone’,
‘Espresso maker’ , ‘Coffee mug’, ‘Bike’, ‘Revolver’, ‘Panda’, ‘Daisy’, ‘Canoe’, ‘Lycaenid’,
‘Dog’, ‘Running Shoe’, ‘Lantern’, ‘Cellular phone’, ‘Golf ball’, ‘Computer’, ‘Broom’, ‘Pizza’,
‘Missile’, ‘Capuchin’, ‘Pool table’, ‘Mailbag’, ‘Convertible’, ‘Folding chair’, ‘Pajama’, ‘Mit-
ten’, ‘Electric guitar’, ‘Reflex camera’, ‘Piano’, ‘Mountain tent’, ‘Banana’, ‘Bolete’, ‘Watch’,
‘Elephant’ , ‘Airliner’, ‘Locomotive’, ‘Telescope’, ‘Egyptian cat’.

Figure 1. ActiCAP128 standard-2: EEG channel placement; each channel in this figure is identified by
a prefix letter referring to brain cortex (Fp: frontal, T: temporal, C: central, P: parietal, O: occipital)
and a number indicating the electrode [50].
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To record the data as described in [49], each image has been shown on the computer
screen for 500 ms, and a set of 50 images of each category has been shown to each of the
subjects in 25 s. A total running time of 1400 s has been dedicated to recording the EEG
data of each subject. The total number of records used in our experiments is equal to 11,965.

3.2. Chebyshev Graph Convolution

In this section, we make a brief overview on graph convolution. The research of
Michaël Defferrard et al. [52] was the cause of the popularization of graph signal pro-
cessing (GSP). The functions in GSP take into consideration the properties of the graph’s
components, and also the structure of the graph. GSP is used to expand convolutions to
the graph domain, and this field of research uses signal processing functions such as the
Fourier transform and applies them to the graphs. The use of Fourier transform in GSP
leads to graph spectral filtering, also called graph convolution [53].

We explain graph convolution, as described in [53]. Let D ∈ R(N×N) and W ∈
R(N×N), respectively; denote the diagonal degree matrix and the adjacency matrix of a
graph. The i-th diagonal element of the degree matrix can be calculated by

Dii = ∑
j

wij (1)

Then, L, the Laplacian matrix of the graph, is expressed as

L = D−W ∈ R(N×N) (2)

The basis functions in the graph domain are calculated according to the eigenvectors
of the graph Laplacian matrix. The eigenvectors of the graph Laplacian matrix denoted by
U can be acquired via the singular value decomposition (SVD):

L = UΛUT (3)

in which the columns of U = [u0, ..., uN−1] ∈ R(N×N) constitute the Fourier basis, and
Λ = diag([λ0, ..., λN−1]) is a diagonal matrix. Calculating the eigenvectors of the Laplacian
returns the Fourier basis for the graph.

The graph convolution operation is defined as (4). Substituting f (L) in (4) with the
Chebyshev polynomial expansion of L, we will have the Chebyshev graph convolution of X.

Y = f (L)X = U f (Λ)(UT)X (4)

where L can be calculated from W based on (2), and the calculation of Λ can be conducted
using (3).

The approximation of the f (Λ) is performed via the K-order Chebyshev polynomials.
Approximating the f (Λ) function is accomplished via the normalized version of Λ. The
largest element among the diagonal entries of Λ is defined by λMax, and the normalized Λ

is as follows:
Λ̂ = 2Λ/λmax − IN (5)

where IN is the N× N identity matrix, and the diagonal elements of Λ̂ lie in the interval
of [−1,1]. The approximation of g(Λ) based on the K-order Chebyshev polynomials
framework is as follows:

f (Λ) =
K

∑
k=0

(θk)(Tk(Λ̂)) (6)

where θk denotes the coefficient of Chebyshev polynomials, and Tk(Λ̂) can be acquired
according to the following formulas:

{T0(Λ̂) = 1, T1(Λ̂) = Λ̂, Tk(Λ̂) = 2(Λ̂)(Tk−1)(Λ̂)− Tk−2(Λ̂)} (7)
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According to (6), the graph convolution operation defined in (4) can be expressed
using (7), as illustrated in (8).

Y = U f (Λ)(UT)X

=
K

∑
k=0

U(

θkTk(λ̂0) . . . 0
...

. . .
...

0 . . . θkTk(λ̂N−1)

)(UT)X

=
K

∑
k=0

θkTk(L̂)X

(8)

where L̂ = 2(L/λmax)− IN is the normalized Laplacian matrix.
The expression of Chebyshev graph convolution in (8) shows that it is equivalent to

the combination of the convolutional results of x, with each components of the Chebyshev
polynomial [53].

3.3. Generative Adversarial Network

Generative deep modeling is considered as an unsupervised learning task that discovers
and learns the contents in input data in such a way that the extracted model can be used to
generate new examples that could have been extracted plausibly from the original dataset. A
spatial case of generative models is the generative adversarial network (GAN) that constructs
two sub-networks, including generator and discriminator, to solve the problem.

The generator network is trained to generate new examples, and the classification of
these examples as either real or fake is performed through the discriminator sub-network.
The two sub-networks are trained in an adversarial way, such that the generator part
outputs some examples to the real data, and the discriminator part is fooled and cannot
diagnose a difference between the real domain and the generated examples. The generator
should learn how to generate data in such a way that detection between fake and real
cannot happen by the discriminator.

The two sub-networks are trained simultaneously, such that a generative model G settles
random vector y adapted from preceding distribution P(y) into the domain data; additionally,
a discriminative model D tries to detect dissimilarity between true examples obtained from
the training input data domain P and simulated examples from the generator G.

Such networks are trained inconsistently until none of them can make additional
progress against one another. An illustration of the GAN objective function is depicted
as follows:

min
G

max
D

V(D, G) = min
G

max
D

[EX P
data(x)

[logD(x)] + EY p
y(y)

[log(1− D(G(y)))]] (9)

In the cost function of GAN as in (9), x is the real data and y signifies the feature vector
imposed to the generator; furthermore, G(y) portrays the output of the generator, given
a feature vector y. D(x) is the output of the discriminator with real image data, and has
to be as close as possible to 1, to perform better. D(G(y)) represents the output of the
discriminator, considering the generated samples indicated with G(y). The probability
density of x and y is represented accordingly, with Pdata(x) and py(y) in the cost function
of (9).

In the training procedure of a GAN, G is trained in a way that reduces log (1− D(G(y)))
to mislead discriminator D. Contrarily, D is trained so that it can increase the likelihood that
the generated data is analogous to the real data, and the likelihood would be near to 1 and far
from 0, which is the likelihood of being fake data.
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3.4. Saliency Metrics

In this section, saliency evaluation metrics are described. Ground truth is necessary
for calculating these metrics. Another input would be the saliency map. Considering these
two inputs and computing these metrics, the degree of the similarity between them would
be available.

Similarity (SIM) is a metric for measuring the intersection between distributions [54].
The similarity between two distributions can be measured with this metric. The input maps
are normalized, and the sum of the minimum values at each pixel is computed as SIM.
Considering a saliency map SM and a continuous fixation map FM:

SIM(SM, Pt) = Σ
j
min(SMj, Fj

M)

where Σ
j
SMj = Σ

j
(Fj)

M = 1
(10)

In (10), iteration is made for discrete pixel locations j. For the same distributions, SIM
is equal to one, while if there is no overlap between distributions, SIM would be zero.

Structural similarity (SSIM) is calculated using the different windows of an image [55].
Considering two windows g and h of size K × K, SSIM can be calculated as follows:

SSIM(g, h) =
(2× µgµh + c1)(2× σgh + c2)

(µg2 + µg2 + c1)(σg2 + σh
2 + c2)

(11)

µg is the mean-value of g;
µh is the mean-value of h;
σg

2 is the variance of g;
σh

2 is the variance of h;
σgh is the covariance of g and h;
c1 = ((k1)L)2;
c2 = ((k2)L)2;
two variables to stabilize the division with a weak denominator;
L is the dynamic range of the pixel-values (typically, this is (2(bitsperpixel))− 1);
k1 = 0.01 and k2 = 0.03 by default.

Pearson’s correlation coefficient (CC) is a metric for evaluating the linear relationship
between distributions [54]. Considering saliency and fixation maps, SM and FM, CC can be
calculated as follows:

CC(SM, FM) = σ(SM, FM)/σ(SM)× σ(FM)
(12)

In (12), σ(SM, FM) is the covariance of SM and FM.
CC is invariant to linear transformations. This metric corresponds to a symmetric

function, and it is the reason for why it would deal equally with false positives and false
negatives. If both the saliency map and ground truth have similar magnitudes, high
positive CC values occur.

The normalized scanpath saliency (NSS) is computed as the average normalized
saliency at fixated locations. Becuase the mean-value of saliency is subtracted during
computation, NSS is robust against linear transformations [54]. This metric is sensitive to
false positives. False positives would contribute to lower the normalized saliency value at
each fixation location, and the overall NSS would be reduced. Given a saliency map SM
and a binary map of fixation locations FB:
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NSS(SM, FB) = (1/K)(Σ
i

¯SMi × (Fi)
B)

where K = Σ
i
(Fi)

B

and ¯SM = SM− µ(SM)/σ(SM)

(13)

where i indexes the ith pixel, and K is the total number of fixated pixels.
The shuffled area under the ROC curve (s-AUC) is a metric that uses the receiver

operating characteristic (ROC) curve. Considering various thresholds of the saliency map,
the ROC curve is obtained by plotting the true positives against the false positives. This
metric needs sampling thresholds to obtain the ROC curve [54]. An important issue in
computing the s-AUC metric is how to sample thresholds to approximate the ROC curve.
Sampling the threshold is performed at a fixed step size (from 0 to 1 by increments of 0.1),
and the calculation of this metric would be realized.

4. Proposed Geometric Deep Network-Based Generative Adversarial Network

The details of the proposed geometric deep network-based generative adversarial
network (GDN-GAN) for visual saliency and image reconstuction is explained in this
section, and the structure of the proposed framework is shown in Figure 2.

4.1. The Proposed Network Architecture

The proposed geometric deep network-based generative adversarial network (GDN-
GAN) architecture contains two parts of sequential layers. Each part consists of a number
of layers to map the EEG signals to the image saliency and to reconstruct the image stimuli.
The GDN part extracts discriminative features of the different categories that the input
belongs to. The GAN part maps the extracted feature vector to the image saliency. The
trained weight vectors of the network parameters are used as initial weight vectors to train
the network to map the EEG signal to the image stimuli and realize the image reconstruction
from the brain activity. The detailed schematic of the proposed network architecture is
represented in Figure 2. After functional connectivity-based graph embedding of the
recorded visually evoked EEG signals, it imposed to the GDN part of the proposed network.

Figure 3 shows the detailed structure of the first GDN part of the network, and as it
can be seen, it includes four layers of graph convolution. The Laplacian of the input graph
is necessary to estimate the graph convolution of the input in each layer. The estimation is
performed via the Chebyshev polynomial expansion of the Laplacian graph. Then, a batch
normalization filters the output of each layer. After the fourth graph convolution layer, the
extracted feature vector is passed through a dropout layer. Then, the flattened output of
the dropout layer is fed to a dense fully connected layer, and a log-softmax function is used
for the classification of the output of the fully connected layer.

The weights are trained to classify 40 categories of image stimulation and the flattened
vector before the last dense layer is used to impose to the next GAN part of the network.
The dimension of the flattened vector is equal to 6400.

Figure 4 illustrates the differences in the dimensions of every layer of the GDN. As
each of the recorded EEG signals includes 128 channels, the constructed graph as input to
the proposed GDN part in Figure 2 has 128 nodes. Every node in the constructed graph
includes 440 samples. The input dimension of the graph convolutional layer independent
of the number of graph nodes is considered to be 440, equal to the number of samples
in each node. The obtained graph with the first graph convolution has 128 nodes with
440 samples in each vertex. A graph with 128 nodes with 220 samples in each vertex is the
output of the second graph convolution, and the output of the third graph convolution
operation is a 128-node graph with 110 samples in each of the nodes, and accordingly, the
graph output of the fourth layer has 50 samples in each node. The attained 128-node graph
with 50 samples in each node outputs a vector with 6400 elements. The flattened vector is
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passed through a dense layer and the dimensions of the inputs and outputs of the dense
layer are 6400 and 40, respectively.

Figure 2. The schematic overview of the proposed GDN-GAN.

Table 1 shows the dimensions of weight tensors for different layers of GDN part of the
proposed GDN-GAN. Moreover, it shows the total number of parameters of graph convo-
lutional layers according to the order of the Chebyshev polynomial expansion considered
for each layer.

Figure 5 illustrates different layers of the GAN part of the proposed network.
Tables 2 and 3 give information about the details of the generator and discriminator parts
of the proposed network, respectively. The generator part of the GAN consists of two
dense layers, followed by four sequential transposed two-dimensional (2D) convolution
layers, and one 2D convolution layer and leaky rectified linear unit is used as the activation
function of all layers except for the first dense layer. The output of the GDN is imposed
to the generator, the input dimension of the generator is equal to 6400, and the output
dimension of the first layer is 100. The output dimension of the second dense layer is equal
to 20,000. The reshape layer converts the shape of the 20,000-dimensional vector to a three-
dimensional output to impose to a 2D convolutional layer. Eight two-dimensional output
with (50, 50) dimensions are imposed to the first transposed two-dimensional convolution
layer. The kernel size in each of the transposed convolutional layers is equal to 4× 4, and
the number of filters in each of them is equal to eight. The size of the strides in the first
transposed convolution layer is equal to 2× 2, in the second transposed convolutional
layer, it is equal to 3× 3, and in the next two transposed layers, it is equal to 1× 1. The
output of the fourth transposed convolution 2D is imposed to the 2D convolution layer.
The kernel size of the 2D convolution layer is considered as being equal to 2× 2, and the
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size of the strides in this layer is equal to 2× 2. The output dimension of this layer is
equal to (299, 299), and is imposed to the last reshape layer. The output of the generator
is a 299× 299-dimensional image. The schematic view of the outputs of each layer and
the differences in the dimensions of the generator part of the proposed GDN-GAN are
illustrated in Figure 6.

Table 1. Number of training parameters of the GDN part of the proposed GDN-GAN.

Layer Layer Type Shape of Weight Array Shape of Bias Number of Parameters

1 graph convolution [1, 440, 440] [440] 194,040

2 batch normalization [440] [440] 880

3 graph convolution [1, 440, 220] [220] 97,020

4 batch normalization [220] [220] 440

5 graph convolution [1, 220, 110] [110] 24,310

6 batch normalization [110] [110] 220

7 graph convolution [1, 110, 50] [50] 5550

8 batch normalization [110] [110] 220

9 dense layer [6400, 40] [40] 256,040

Figure 3. The network architecture of the GDN part of the proposed GDN-GAN.
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Figure 4. Dimensions of different layers of the GDN part of the proposed GDN-GAN.

Table 2. Details of the generator part of the proposed GDN-GAN architecture.

Layer Layer Activation Output Size of Strides Number of Padding Number of
Type Function Shape Kernel Filters Parameters

1 Dense Layer (None, 100) 640,000

2 Dense Layer LeakyReLU (None, 20,000) 2,000,000
(alpha = 0.2)

3 Reshape (None, 50, 50, 8) 0

4 Transposed LeakyReLU (None, 100, 100, 8) 4× 4 2× 2 8 yes/same 1024
Convolution 2D (alpha = 0.2)

5 Transposed LeakyReLU (None, 300, 300, 8) 4× 4 3× 3 8 yes/same 1024
Convolution 2D (alpha = 0.2)

6 Transposed LeakyReLU (None, 300, 300, 8) 4× 4 1× 1 8 yes/same 1024
Convolution 2D (alpha = 0.2)

7 Transposed LeakyReLU (None, 300, 300, 8) 4× 4 1× 1 8 yes/same 1024
Convolution 2D (alpha = 0.2)

8 Convolution 2D LeakyReLU (None, 299, 299, 1) 2× 2 2× 2 1 no/valid 33
(alpha = 0.2)

9 Reshape (None, 299, 299, 1) 0
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Figure 5. The block diagram of the GAN part of the proposed GDN-GAN for saliency reconstruction.

Figure 6. Dimensions of different layers of generator part of the proposed GDN-GAN.
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The adversarial part of the proposed GAN has three 2D convolution layers with the
rectified linear unit as the activation function. The size of the kernel for each of these
convolutional layer is considered equal to 4× 4, the size of the strides is equal to 2× 2,
and the number of filters for each of them is equal to four. The output of the third 2D
convolution is flattened and imposed to a dense layer with an output dimension that is
equal to one, to discriminate between fake or real images generated by the generator part
of the GAN. Figure 7 illustrates schematic view of dimensions of different layers and it
presents a tangible view of the outputs in each phase of the network.

Table 3. Details of the discriminator part of the proposed GDN-GAN architecture.

Layer Layer Activation Output Size of Strides Number of Padding Number of
Type Function Shape Kernel Filters Parameters

1 Convolution 2D LeakyReLU (1, 150, 150, 4) 4× 4 2× 2 4 yes/same 68
(alpha = 0.2)

2 Dropout (0.3) (1, 150, 150, 4) 0

3 Convolution 2D LeakyReLU (1, 75, 75, 4) 4× 4 2× 2 4 yes/same 260
(alpha = 0.2)

4 Dropout (0.3) (1, 75, 75, 4) 0

5 Convolution 2D LeakyReLU (1, 38, 38, 4) 4× 4 2× 2 4 yes/same 260
(alpha = 0.2)

6 Dropout (0.3) (1, 38, 38, 4) 0

7 Flatten (1, 5776) 0

8 Dense (1, 1) 5777

Figure 7. Dimensions of different layers of discriminator part of the proposed GDN-GAN.

Figure 8 presents an overview of the proposed method for image reconstruction using
the trained network for realizing the saliency map reconstruction. As it can be seen in
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this figure, the weights of the network are initialized with the pre-trained weights of the
saliency map reconstruction scenario. Fine-tuning the transfered weights realizes the image
stimuli reconstruction.

Figure 8. The block diagram of the GAN part of the proposed GDN-GAN for image reconstuction.

4.2. Training and Evaluation

In order to fit the proposed GDN part of the proposed GDN-GAN to the EEG-
ImageNet dataset, a training procedure is implemented, and the parameter weights of the
network are optimized. A 10-fold cross-validation strategy is used to train and evaluate the
proposed network. A standard gradient descent (SGD) is used to optimize the proposed
GDN in each iteration, and the optimum parameters of the GDN are determined with the
convergence of the train and test accuracy. The trained weights of the GDN are transfered
to the GDN-GAN to train the reconstruction part of the network.

Binary cross-entropy is used as a loss function for the GAN part of the GDN-GAN.
Discriminator loss is considered as the sum of the loss of the original image and the loss of
the generated image. For the loss of the discriminator output of the original image, instead
of the ones vector as reference for calculating the cross-entropy between the reference
and the original image, 0.9 is used as the coefficient of the ones vector. For the loss of
discriminator output of the generated image, the cross-entropy is calculated between the
generated image and the zeros vector with dimensions equal to the generated image.
Generator loss is considered as the cross-entropy between the generated image and the
ones vector with dimensions equal to the generated image. An Adam optimizer with a
learning rate equal to 0.0001 is used to train both the generator and discriminator networks.

The tuning of different parameters of the proposed GDN-GAN is achieved through a
trial–error procedure. Training is performed with the use of different parameters available
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in Table 4 as a search space. The optimal values for training with good convergence are
represented in this table.

Table 4. Search space for selecting the optimal parameters for the proposed GDN-GAN.

Prameters Search Space Optimal Value

Optimizer of GDN part Adam, SGD SGD

Sparsity level for graph embedding for GDN part 0.1, 0.2, 0.5, 0.8, 0.9, 0.98 0.9

Number of graph convolution layers 2, 3, 4, 5, 6, 8 4

Size of output sample in graph convolution layers 25, 50, 100, 200, 400 400, 200, 100, 50

Learning rate of GDN part 0.1, 0.01, 0.001 0.001

Weight decay of SGD optimizer of GDN part 4× 10−3, 4× 10−5 4× 10−5

Dropout rate of GDN part 0.1, 0.2 0.2

Optimizer of GAN part Adam, SGD Adam

Learning rate of GAN part 0.01, 0.001, 0.0001, 0.00001 0.0001

Number of transposed 2D convolution layers of generator of GAN part 2, 3, 4 4

Number of 2D convolution layers of discriminator of GAN part 2, 3, 4 3

pre-trained weights in GAN part Inception—V3 none

5. Results and Discussion

In this section, the simulation results of the proposed GDN-GAN are presented. Our
framework is implemented on a laptop with a 2.8 GHz Core i7 CPU, 16 GB RAM, and a
GeForce GTX 1050 GPU using the EEG-ImageNet database described in Section 3.1, avail-
able in perceive lab [48,49]. The proposed network is trained using the Google Colaboratory
Pro platform.

At first, in order to illustrate the effect of different visual stimuli on brain activity
during the visual process in the brain, we consider the average of the time–domain samples
of each EEG channel among all the recordings, in accordance with the particular category
of visual stimulation. A representational similarity analysis of signals is represented in
Figure 9. This representation shows the similarity between brain activity according to
different categories. This is a good evidence that EEG signals contain visually related
information in order to lead a person to the recognition of the surrounding environment.

The functional connectivity estimation of EEG channels is the first step of the GDN
part of the proposed GDN-GAN. Approximating the connectivity matrix according to the
specific sparsity level is achieved, and the number of nonzero elements of the corresponding
adjacency matrix would decrease to avoid computational complexity. The adjacency matrix
would be the sparsely approximated connectivity matrix. Figure 10 illustrates the circular
connectivity, considering the threshold level for sparsifying the connectivity matrix with
the best training convergence result. The circular connectivities for the green (Ch1 − Ch32),
yellow (Ch33 − Ch64), red (Ch65 − Ch96), and white (Ch97 − Ch128) electrodes according to
Figure 1 are shown seperately.

Figure 11a shows the training/test accuracy of GDN part of the proposed GDN-GAN,
and Figure 11b shows the training/test loss function variations with respect to the number
of iterations in this network for the classification of 40 different categories of visual stimuli.

Figure 12 shows the receiver operating characteristic (ROC) plot for the GDN part
of the proposed GDN-GAN and other state-of-the-art methods for classification of the
EEG-ImageNet dataset, including region-level stacked bi-directional LSTMs [56], stacked
LSTMs [57], and Siamese network [48]. The superiority of the GDN in terms of the area
under the ROC can be seen in this figure compared to the other existing methods.

Furthermore, the performance of the GDN against the above-mentioned state-of-the-
art methods in terms of precision, F1-score, and recall metrics is shown in Table 5.
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Figure 9. Representational similarity analysis.

Figure 10. Circular connectivity of the approximated connectivity matrix; from (left) to (right):
green (Ch1 − Ch32), yellow (Ch33 − Ch64), red (Ch65 − Ch96), white (Ch96 − Ch128) labeled electrodes
according to actiCAP128 standard-2, described in Figure 1.

To demonstrate the efficiency of the GDN, we compare the performance of our method
with traditional feature-based CNN and MLP. For this purpose, three hidden layers for
MLP and CNN with a learning rate of 0.001 have been considered. Maximum, skewness,
variance, minimum, mean, and kurtosis have been used as feature vectors for every single
channel. According to Figure 13, feature-based traditional deep networks such as MLP,
CNN, and feature-based GDN have a poor performance in the case of classification of
the EEG-ImageNet dataset with 40 different categories. This figure shows the obtained
accuracy of feature-based MLP, CNN , and GDN in 50 iterations. This figure illustrates
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that feature-based GDN, MLP, and CNN have shown relatively similar performances, and
the training times per epoch for these methods are very high for these traditional methods.
This figure confirms the good efficiency of the proposed GDN against the traditional
feature-based deep networks. According to this figure, the proposed network has high
classification accuracy compared to the other networks.

(a)

(b)

Figure 11. Model performance tracking of GDN part of the proposed GDN-GAN. (a) Accuracy for
training and test phases. (b) Loss for training and test phases.

Table 5. Performance evaluation in terms of precision, F1-score, and recall for different networks.

Metric GDN Region-Level Stacked BiLSTMs Stacked LSTMs Siamese Network

Precision 98.56% 97.5% 91.1% 87.3%

F1-score 98.56% 97.5% 91.1% 87.3%

Recall 98.56% 97.5% 91.1% 87.3%
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Figure 12. ROC in 10-fold cross-validation technique for different networks.

Figure 13. Comparison between feature-based classical methods.

A good confirmation to the performance of the proposed method is the confusion
matrix shown in Figure 14. The confusion matrix is an appropriate illustration of the
performance of a network on test splits in the case of multi-class classification. Figure 14
shows the confusion matrix of the GDN part of the proposed method. This figure confirms
the good performance of the classification part of the GDN-GAN.

For the reconstruction phase of the proposed GDN-GAN, the training and evaluation
of the proposed GDN-GAN are conducted according to the 10-fold cross-validation. The
ground truth data are obtained using open-Salicon. The open-Salicon has been implemented
using compiled the Python-compatible Caffe environment. The saliency evaluation metrics
of the proposed GDN-GAN for different categories of visual stimuli are reported in detail
in Table 6.
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Figure 14. Confusion matrix for classification of test splits in 10-fold cross-validation technique with
GDN part of the proposed GDN-GAN.

Table 6. SSIM, CC, NSS, and s-AUC of the proposed GDN-GAN for each category.

Category Number Visual Category SSIM CC NSS s-AUC

1 ‘sorrel’ 96.02% 99.61% 99.83% 96.01%

2 ‘Parachute’ 97.40% 99.52% 99.73% 97.2%

3 ‘Iron’ 96.02% 99.73% 99.82% 96.02%

4 ‘Anemone’ 96.03% 99.25% 99.35% 96.01%

5 ‘Espresso maker’ 95.55% 99.41% 99.52% 95.4%

6 ‘Coffee mug’ 97.37% 99.69% 99.82% 97.2%

7 ‘Bike’ 93.79% 99.50% 99.62% 93.44%

8 ‘Revolver’ 67.03% 99.73% 99.82% 66.92%

9 ‘Panda’ 94.04% 99.19% 99.42% 94.01%

10 ‘Daisy’ 95.35% 99.46% 99.54% 95.2%

11 ‘Canoe’ 96.98% 99.64% 99.82% 96.88%
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Table 6. Cont.

Category Number Visual Category SSIM CC NSS s-AUC

12 ‘Lycaenid’ 94.04% 98.54% 98.74% 94%

13 ‘Dog’ 96.72% 99.52% 99.64% 96.44%

14 ‘Running Shoe’ 54.17% 99.45% 99.63% 58%

15 ‘Lantern’ 25.28% 99.85% 99.9% 56%

16 ‘Cellular phone’ 65.82% 98.98% 99.9% 68%

17 ‘Golf ball’ 23.70% 99.81% 99.9% 64.42%

18 ‘Computer’ 95.41% 99.54% 99.8% 96.54%

19 ‘Broom’ 96.72% 99.43% 99.54% 95.52%

20 ‘Pizza’ 92.98% 99.83% 99.9% 91.99%

21 ‘Missile’ 94.28% 99.39% 99.63% 93.34%

22 ‘Capuchin’ 98.20% 99.71% 99.82% 97.7%

23 ‘Pool table’ 95.59% 99.43% 99.66% 94.87%

24 ‘Mailbag’ 91.97% 99.22% 99.64% 90.03%

25 ‘Convertible’ 91.57% 98.79% 98.96% 90.14%

26 ‘Folding chair’ 94.51% 98.11% 98.78% 91.12%

27 ‘Pajama’ 96.51% 99.70% 99.80% 95%

28 ‘Mitten’ 95.04% 99.57% 99.68% 94%

29 ‘Electric guitar’ 93.38% 98.52% 98.89% 90.09%

30 ‘Reflex camera’ 97.17% 99.06% 99.42% 95.68%

31 ‘Piano’ 94.43% 99.40% 99.55% 93.50%

32 ‘Mountain tent’ 90.71% 99.11% 99.44% 89.09%

33 ‘Banana’ 94.21% 99.77% 99.82% 90.09%

34 ‘Bolete’ 93.93% 98.70% 98.4% 91.88%

35 ‘Watch’ 97.41% 99.52% 99.02% 96.03%

36 ‘Elephant’ 95.23% 99.47% 99.1% 95.01%

37 ‘Airliner’ 97.79% 99.70% 99.83% 95.65%

38 ‘Locomotive’ 96.60% 99.03% 99.54% 94.73%

39 ‘Telescope’ 97.21% 99.63% 99.82% 96.43%

40 ‘Egyptian cat’ 98.84% 99.88% 99.94% 96.54%

- Overall Average 89.46% 99.39% 99.55% 90.51%

This table illustrates the saliency evaluation metrics according to the proposed method.
The EEG signals are categorized in first part of the GDN-GAN. According to the extracted
label, image stimuli is determined, and this image with the extracted feature of the first
phase of the proposed method is imposed to the GAN part of the network to map the EEG
signal to the saliency map of the image stimuli. After training, to test the GAN part, the
EEG signals are imposed to the GDN-GAN, and the extracted images are compared to the
original ground truth data through different saliency evaluation metrics, and the average
of these metrics are reported in this table according to each category. Furthermore, the
overall SSIM, CC, NSS, and s-AUC are represented through computing of the average of
the saliency evaluation metrics among all categories.
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According to this table, the proposed category-level performance of the visual saliency
reconstruction method is over 90% except for six categories including Revolver, Running
shoe, Lantern, Cellular phone, Golf ball and Mountain tent, in terms of SSIM and s-AUC.
SSIM interprets the structural similarity index using the mean and standard deviation of
pixels of a selected window with fixed size in reconstructed image and the ground truth
data, and it would bring a reliable measure of similarity. The s-AUC uses true positives and
false positives according to the pixels of the reconstructed image in the locations of fixations
in ground truth data, and is a confident metric of similarity between the two images.
Considering these details, SSIM and s-AUC illustrate the limitations of the proposed GDN-
GAN. However, considering the detailed values of the four saliency metrics, this table
shows that the proposed GDN-GAN is a reliable and efficient method to map the EEG
signals to the saliency map of the visual stimuli.

The trained GDN-GAN for saliency reconstruction is fine-tuned for image construction
issues. The loss plots in the result of training the generator and discriminator networks
for visual saliency and image reconstruction are represented in Figure 15 for three number
of categories. In addition, the SSIM and CC plots of both visual saliency and image
reconstruction per epoch for these categories can be seen in this figure.

The loss plots corresponding to both the saliency reconstruction and image recon-
struction illustrate that the variations in the generator and discriminator loss plots tend to
oscillate around one, as saliency evaluation metrics, including SSIM and CC, start to con-
vergeṪhese are the behaviors of GANs, and these plots are confirmation of the effectiveness
of the proposed reconstruction of the GDN-GAN.

The results of visual saliency and image reconstruction for all of the 40 categories of
image stimuli are illustrated in Figures 16–19. In addition, the ground truth data and the
gray-scale versions of the original input image stimuli are shown in these figures. The
visual evaluations of these figures besides the saliency evaluation metrics confirm the
efficiency of the proposed GDN-GAN.

A comparison of the proposed GDN-GAN with state-of-the-art methods for image
saliency extraction is conducted, and the performance metrics are reported in Table 7.
The results of SalNet [43], SALICON [42], visual classifier-driven detector, ref. [48] and
neural-driven detector [48] are demonstrated in this table.

SALICON and SalNet are valuable approaches, considering the image data for saliency
map extraction according to the eye-fixation points of the eye tracking process while a
subject looking at an image. Another valuable approach, the visual classifier-driven detector
and the visual neural-driven detector by Pallazo et al. [48], merges two modalities of EEG
signals and image data to extract the image saliency map efficiently. Our proposed GDN-
GAN is the first method that maps the EEG signals to the corresponding saliency map of
the visual stimuli and reconstructs the saliency map and image stimuli. Considering the
metrics according to these state-of-the-art methods concerning saliency map extraction in
Table 7, this confirms the efficiency of the the proposed GDN-GAN.

Table 7. Saliency performance comparison between the proposed GDN-GAN and state-of-the-
art methods.

Method CC NSS s-AUC

SalNet 27.10% 61.80% 63.70%

SALICON 34.80% 72.80% 67.80%

visual classifier-driven detector 17.30% 49.50% 53.20%

neural-driven detector 35.70% 94.20% 64.30%

Proposed GDN-GAN 99.39% 99.55% 90.51%
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Figure 15. Training loss and accuracy plots; from left to right: Image used as stimulation, gener-
ator, and discriminator loss for image saliency reconstruction, SSIM, and CC for image saliency
reconstruction, generator, and discriminator loss for image reconstruction, SSIM, and CC for image
reconstruction for three categories, including 8, 21, and 40.
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Figure 16. Reconstructed saliency and gray-scale images for categories 1–10; from (left) to (right):
Image used as stimulation, fixation map, EEG-based reconstructed saliency map, gray-scale image,
EEG-based reconstructed gray-scale image.
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Figure 17. Reconstructed saliency and gray-scale images for categories 11–20; from (left) to (right):
image used as stimulation, fixation map, EEG-based reconstructed saliency map, gray-scale image,
EEG-based reconstructed gray-scale image.



Electronics 2022, 11, 3637 26 of 30

Figure 18. Reconstructed saliency and gray-scale images for categories 21–30; from (left) to (right):
image used as stimulation, fixation map, EEG-based reconstructed saliency map, gray-scale image,
EEG-based reconstructed gray-scale image.
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Figure 19. Reconstructed saliency and gray-scale images for categories 31–40; from (left) to (right):
image used as stimulation, fixation map, EEG-based reconstructed saliency map, gray-scale image,
EEG-based reconstructed gray-scale image.
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In spite of the fact that the proposed GDN-GAN have a good performance in the
reconstruction process, the limitations of the approach cannot be ignored. The first is that
the ground truth data are generated using the pre-trained Open-Salicon using the image
samples corresponding to the EEG-ImageNet database. This point should be considered in
future works, and the solution is to use a good eye-tracker device and to record the eye
fixation maps at the same time as the EEG recordings. These recorded eye fixation maps
should be used as the ground truth data in future works.

Another limitation of the proposed GDN-GAN is the two-phase process of saliency re-
construction and three-phase of image reconstruction, considering the functional connectivity-
based graph representation of the EEG signals imposed as the input to the network. An
end-to-end process should be considered as the target deep network to decrease the training
phases, eventually reducing the computational complexity, and hence increasing the speed of
the network.

6. Conclusions

In this paper, an innovative graph convolutional generative adversarial network is
proposed to realize the visual stimulation reconstruction using the EEG signals recorded from
human subjects while they are looking at images from 40 different categories of the ImageNet
database. The graph representation of the EEG records is imposed to the proposed network,
and the network is trained to reconstruct the image saliency maps. The effectiveness of the
proposed method is demonstrated with different saliency performance metrics. The trained
weights are used as the initial weights of the proposed network to reconstruct the gray-scale
versions of images used as visual stimulation. The results demonstrate the viability of the
proposed GDN-GAN for image reconstruction from brain activity.

This research would be applicable to BCI projects for helping disabled people to
communicate with their surrounding world. Neural decoding of the visually provoked
EEG signals in BCI will interpret the brain activity of the subject and realize the auto-
matic detection of the stimuli. It will pave the way toward mind reading and writing via
EEG recordings, and is a preliminary step to help blind people with producing a mod-
ule to realize vision through the generation of EEG signals corresponding to the visual
surrounding environment.

The limitation concerning the ground truth data would be considered in future works
to have a deep network that acts more similarly to real-world circumstances. The ground
truth data in the proposed GDN-GAN are generated using the Open-Salicon pre-trained
weights. These data should be recorded using a good eye tracker device at the same time as
the EEG recordings. Considering the eye fixation maps of the subjects as the ground truth
data would increase the efficiency of the proposed GDN-GAN in BCI applications.
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