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Abstract: This paper presents the application of the concepts and approaches of linear graph (LG)
theory in the modeling and simulation of a four-wheel skid-steer mobile robotic system. An LG
representation of the system is proposed, and the accompanying state-space model of the dynamics
of a mobile robot system is evaluated using the associated LGtheory MATLAB toolbox, which was
developed in our lab. A genetic algorithm (GA)-based parameter estimation method is employed
to determine the system parameters, which leads to a very accurate simulation of the model. The
developed model is then evaluated and validated by comparing the simulated LG model trajectory
with the trajectory of an ROS Gazebo-simulated robot and experimental data obtained from the
physical robotic system. The obtained results demonstrate that the proposed LG model, combined
with the GA parameter estimation process, produces a highly accurate method of modeling and
simulating a mobile robotic system.
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1. Introduction

Engineering systems are becoming increasingly more advanced with the integration
of multiple physical domains, such as mechanical, electrical, fluid and thermal domains,
into systems in an integrated and unified manner, which may have traditionally only
been considered interconnected independent subsystems, each of which comprised just
a single physical or energy domain. The resulting field of multi-disciplinary engineering,
known as mechatronic engineering, has brought with it a significant acceleration in tech-
nological advancement. While this advancement has come with parallel advancements in
computer-automated robotic, vehicular, machine tool, and electronic systems as well as
more sophisticated control, this has also resulted in an increase in the complexity associated
with modeling, simulating, designing, and controlling such multi-domain engineering
systems. In recent decades, many methods of system modeling have been introduced to
address this complexity issue, but most of them lack the necessary integrated and unified
focus of mechatronics, which can be facilitated by graph-based modeling methods. In
particular, in the 1960s, Henry M. Paynter introduced two separate graph-based methods
of dynamic system modeling: linear graphs (LGs) and bond graphs (BGs) [1].

While BG modeling has seemingly surpassed the popularity of LG modeling, due in
part to the development of commercial software tools such as 20sim, which facilitate the
process of evaluating complex BG models [2–5], the LG approach provides some additional
benefits beyond those associated with BG theory.

The key benefit that the LG approach provides over the BG approach is the intuitive
nature in which LG models can be constructed and recognized so that the model structure
directly corresponds to the actual physical structure of the system. Figure 1 shows an
example of modeling a mechanical system using LG and BG. Notably, the electrical and
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mechanical systems will have analogous structures in their LG models. For many energy
domains, such as electrical and fluid, the conversion of their schematic diagrams to LG
models can often result in a nearly identical topological layout.
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Additionally, the use of simple node and loop network equations, such as those of
Kirchhoff’s current and voltage laws, allow for the analogous application of electrical
network-like algorithms across systems consisting of many energy domains, leading to
analogous loop equations and analogous node equations. Similarly, the network represen-
tation provided by the LG approach provides a more intuitive method of determining the
power flow of the system, thus allowing for an easier method of determining the dependent
and independent variables of the system. Furthermore, LG modules can be introduced
to represent such physical devices as amplifiers by means of modulated source elements,
converters from the energy domain to the information domain (e.g., process to sensor), and
converters from the information domain to the energy domain (e.g., control to actuator) [6].

LG theory, evolved from Leonhard Euler’s graph theory, was first applied in engi-
neering for the analysis of large electrical networks before being expanded to applications
spanning multiple energy domains [7]. Before LG theory, the analysis of multi-domain
systems was neither integrated nor unified, meaning that different physical domains
were modeled separately without considering their dynamic interactions, and different
(non-analogous) techniques were used for modeling each domain. While initial devel-
opments in LG theory focused on the primary energy domains (electrical, mechanical,
fluid, and thermal), developments in additional domains, such as thermohydraulic [8,9],
electrochemical [10], and multibody [11,12], started to emerge. While the recent work in the
field of LGs is rather limited when compared with BGs, some research is being conducted
on the application of LG theory for automatic design evolution [13].

To demonstrate the LG approach and its versatility and robustness, this paper develops
an LG model representation of the dynamics of a four-wheel skid-steer mobile robot and
verifies the accuracy by comparing the physical system and existing model provided in a
popular robotics simulator (Gazebo). A MATLAB toolbox, named the LG theory MATLAB
toolbox, has been developed in our laboratory to address the lack of available LG-based
software tools [14]. This toolbox will be utilized to automate the process of formulating
the state-space model of the dynamic system. This model will be further enhanced with
a genetic algorithm (GA)-based parameter estimation procedure in order to calibrate the
unknown parameter values of the model. Evaluation and validation of the proposed model
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will be performed via comparisons of the trajectory response of the simulated LG model
against the data collected from a robot operating system (ROS)-based Gazebo simulation
and from experimental data of real-world driving scenarios using a Clearpath Husky
mobile robotic system.

The research problem of the paper is to address mechatronic engineering concerns on
the development of integrated (or concurrent) design approaches with synergistic consid-
eration of multidisciplinary (or multi-domain or multi-physics) systems using “unified”
approaches (involving analogous methodologies across physical domains) in a systematic
manner to arrive at a “unique” solution (which implicitly means the use of an optimization
scheme). The objective of the proposed approach in this paper will lead to improvements
in efficiency, reliability, component compatibility, ease of system design, expansion, and
enhancement while reducing the system complexity.

2. Linear Graph Modeling

The LG approach is a method of modeling and evaluating complex dynamic systems
through the use of a simplistic graphical representation in order to derive their state-space
models. This is a systematic, unique, integrated, and unified approach which uses a well-
established set of steps (systematic) leading to a single model (unique) by considering all
physical domains and their interactions simultaneously (integrated) and using analogous
methods to model the different domains (unified). Essentially, it provides a robust modeling
method which produces a single unique model for a specific system through the analogous
application of methodologies across multiple energy domains. This means that a multi-
domain mechatronic system is evaluated while not using a single integrated model as a
series of separate models (which is the “sequential” approach) and while applying similar
network equations and algorithms for each of the system’s energy domains [6].

The procedure introduced in [15] can be applied to LG representation of the physi-
cal model to derive a standard form of state-space model of the modeled multi-domain
engineering system as shown in Equation (1):

.
x = Ax + Bu
y = Cx + Du

(1)

The conversion between the graphical LG model and the mathematical state-space
model was achieved by using the developed LGtheory Matlab Toolbox in our lab [14].

Figure 2 shows an example of modeling a hydro-mechanical system consisting of an
electric motor to power a positive-displacement pump and piston, which actuate a mass
element attached to a spring, and to stay grounded in the mechanical translation domain.

The following equations represent the state-space model produced by the toolbox,
with outputs specified as the pressure of the fluid between the pump and the piston and
the velocity of the mass element:[ .

vm.
Fk

]
=

[
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K 0

][
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]
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0

]
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PR f
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]
=

[
−AR f 0

1 0

][
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Fk

]
+

[
0
0

]
[ωs]

(2)

With the successful development and validation of an automated tool for evaluating
LG models, this approach can now be employed to facilitate more advanced applications,
such as the automated evolutionary design of engineering systems, the modeling of larger
more complex multi-domain dynamic systems, and the monitoring and design optimization
of complex multi-domain mechatronic systems.
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Figure 2. (a) System model and (b) LG model.

3. Development of the Linear Graph Model for Mobile Robots

The physical four-wheel skid-skip mobile robot (ClearPath Husky) and the diagram
of its subsystems are shown in Figure 3. The LG model of the robot consists of various
subsystems that encompass multiple physical domains and functions of the robotic system.
The complete model includes the electrical subsystem, consisting of DC motors powered
by a voltage source (battery), the drivetrain subsystems, consisting of the front and rear
axles and wheels for both of the independent left and right side powertrains, and the
translational and rotational subsystems, representing the linear and rotational movements
of the entire mobile robot.

Electronics 2022, 11, 2453 5 of 17 
 

 

 
Figure 3. ClearPath Husky mobile robotic system and the diagram of its subsystems. 

3.1. Electrical Subsystem 
The Husky’s electrical subsystem consists of two 24-V brushed DC motors, each with 

a 78.71:1 gearbox reduction attachment which transmits the output torque of the motors 
to the primary axles of the two independent drivetrains. Each DC motor drive module is 
modeled as a series LG circuit, consisting of a controlled DC voltage source (𝑉ௌଵ), a D-type 
resistive element (𝑅ଵ), a T-type inductive element (𝐿ଵ), and a two-port transformer element 
representing the combined output of the motor torque constant and the gearbox reduction 
(𝑇ெ௅). 

The equations produced by the LGtheory toolbox for the electrical subsystem based 
on the constitutive equations and the normal tree of the LG model are as follows: 

The continuity equations for each passive branch are: 𝑖ோభ = 𝑖்ಾಽ = 𝑖௅భ (3)

The compatibility equation for each loop formed by the temporary inclusion of each 
passive link is: 𝑉௅భ = 𝑉௦ଵ − 𝑉 ಾಽ − 𝑉ோభ  (4)

3.2. Drivetrain and Wheel Subsystem 
The drivetrain subsystem of Husky consists of two independent drivetrains, each 

powered by its own DC motor. Each of these independent drivetrains consists of a pri-
mary axle, to which the DC motor is directly connected, and a secondary axle, which re-
ceives power from the primary axle via a 1:1 belt drive system. Each of these independent 
drivetrains powers both of the wheels on their respective sides of the vehicle. Figure 4 
shows a diagram of the system configuration of Husky, with the drivetrain components 
and sensors used for data collection. 

 
Figure 4. LG model and the normal tree of the Husky robot electrical subsystem. 

Figure 3. ClearPath Husky mobile robotic system and the diagram of its subsystems.



Electronics 2022, 11, 2453 5 of 16

3.1. Electrical Subsystem

The Husky’s electrical subsystem consists of two 24-V brushed DC motors, each with
a 78.71:1 gearbox reduction attachment which transmits the output torque of the motors
to the primary axles of the two independent drivetrains. Each DC motor drive module
is modeled as a series LG circuit, consisting of a controlled DC voltage source (VS1), a
D-type resistive element (R1), a T-type inductive element (L1), and a two-port transformer
element representing the combined output of the motor torque constant and the gearbox
reduction (TML).

The equations produced by the LGtheory toolbox for the electrical subsystem based
on the constitutive equations and the normal tree of the LG model are as follows:

The continuity equations for each passive branch are:

iR1 = iTML = iL1 (3)

The compatibility equation for each loop formed by the temporary inclusion of each
passive link is:

VL1 = Vs1 −VTML −VR1 (4)

3.2. Drivetrain and Wheel Subsystem

The drivetrain subsystem of Husky consists of two independent drivetrains, each
powered by its own DC motor. Each of these independent drivetrains consists of a primary
axle, to which the DC motor is directly connected, and a secondary axle, which receives
power from the primary axle via a 1:1 belt drive system. Each of these independent
drivetrains powers both of the wheels on their respective sides of the vehicle. Figure 4
shows a diagram of the system configuration of Husky, with the drivetrain components
and sensors used for data collection.
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The present paper presents two methods for modeling the drivetrain subsystem. The
first method, termed the expanded model, considers the dynamics of all the wheels on the
vehicle separately and models the compliance and slippage of the belt drive system. The
second method, termed the simplified model, assumes the belt drive system is not flexible
and models the inertias of the two axles of each drivetrain as a single element.

For the expanded model (considering only the drivetrain on the left-hand side of the
vehicle here, as the other half of the drivetrain is modeled in the same manner), the second
branch of the two-port element (coming from the corresponding motor of the electrical
subsystem) splits at its upper node into four paths. The first two of these paths, which
are set in parallel with the second port of the motor transformer, consist of elements that
represent the parameters of the primary axle of the drivetrain. The first path contains an
A-type element (JRL), and the second path consists of a D-type element (BRL) in series with
two transformer elements (TF1 and TF2). The first path represents the combined inertial
load of the wheel and shaft of the primary axle, whereas the second path collectively
represents all of the energy that is lost or transferred out of the drivetrain system. The
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D-type element represents the energy dissipation from the system due to friction in the
shaft bearings and also the friction of the wheels slipping on the driving surface, and the
transformer elements represent the transmission of torque from the drivetrain subsystem
to the translational and rotational dynamics subsystems of the Husky vehicle. The third
and fourth paths consist of a D-type (BBeltL) element and a T-type (KBeltL) element in
parallel, representing the compliance and slip of the belt in the pulley transmission system,
respectively. These paths then split at their shared second node into two more paths,
representing to the inertial load (JFL) and the energy dissipation and transmission (BFL,
TF3, and TF4) of the secondary axle, similar to the primary axle.

Figure 5 illustrates the mentioned benefits of LG modeling over other modeling
approaches. The structure of the LG model has a closer resemblance to the physical system
than any other form of dynamic system modeling, such as a BG model. In particular, the
LG model shows how the elements represent the dynamics of each axle and overlay their
respective wheels, while the parallel D-type and T-type elements closely resemble the belt
that connects the two shafts.
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Figure 5. LG model of the left-side drivetrain subsystem overlaid on the profile of the Husky robot.

For the simplified model, it is assumed that the belt is not flexible, thus eliminating the
compliance between the primary and secondary axles of the drivetrain. With this change,
the model can be further simplified by combining the inertia of the primary and secondary
axels into a single element (JL) as shown in Figure 6.
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torque of the wheels. 
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Figure 6. Simplified LG model and the normal tree of the left-side drivetrain subsystem.

The equations produced by the LGtheory toolbox for the simplified drivetrain subsys-
tem based on the constitutive equations and normal tree of the LG model are as follows.

The continuity equations for each passive branch are

τJLW = −τBFL − τBRL − τTML
τTF1 = τTF2 = τBRL
τTF3 = τTF4 = τBFL

(5)
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The compatibility equations for each loop formed by the temporary inclusion of each
passive link are

ωTML = ωJLW
ωBRL = ωJL −ωTF1 −ωTF2

ωBFL = ωJL −ωTF3 −ωTF4

(6)

Drivetrain Transformer Equations

The four transformer elements of the half drivetrain model shown in Figure 7 represent
the conversion of the wheel torque into the traction force that propels the vehicle linearly
(TFodd) and the conversion of the torque and traction force of the wheel into the moment
that rotates the vehicle (TFeven). The equations that define these power conversions are
determined next.
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Figure 7. Diagrams of (a) vehicle rotational moments and (b) wheel tractive forces produced by the
torque of the wheels.

For TFodd, the rotation of the wheels of the vehicle due to the power provided by the
DC motors creates friction between the tread of the tire and the driving surface (FFi ). This
traction between the two surfaces creates a counter force on the vehicle (FWi ), which propels
the vehicle forward.

Referring to the constitutive equations for a transformer, f1 is the generalized through-
variable of the first port, representing the wheel torque, and f2 is the generalized through-
variable of the second port, representing the traction force of the wheels. In order to convert
the wheel torque into a force, f1 must be divided by the radius of the wheel (rW):

TFodd = 1
rW

(7)

Similarly, for TFeven, the traction force that propels the vehicle which is generated by
the torque of the DC motors also produces the moment that rotates the vehicle.

Referring to the same constitutive equations for a transformer as before, f1 is the
generalized through-variable of the first port, representing the wheel torque, and f2 is the
generalized through-variable of the second port, representing the moment applied on the
vehicle. In this transformer, two conversions occur: the first is the conversion of the wheel
torque into traction force, and the second is the conversion of the traction force into the
rotational moment of the vehicle. Again, to create the traction force, the torque of the wheel
must be divided by the radius of the wheel. To convert this traction force into rotational
torque, the distances from the center of mass of the vehicle to the contact point of each
wheel and the driving surface (rci ) must be found. The rotational torque of the vehicle
produced by each wheel can then be determined by multiplying these distances by the
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tangential component of the force of each wheel (where Equation (8) is “+” for right side
wheels and “−“ for left):

TFeven = ±cos
(
θWi

)
·rCi ·

1
rW

(8)

Here, TF2 corresponds to the rear left wheel (W2), TF4 the front left wheel (W1), TF6 the
front right wheel (W4), and TF8 the rear right wheel (W3), as shown in Figure 7. Therefore,
for TF2 and TF8, the following equations apply:

θW2 = θW3 = tan−1
(

b
c

)
(9)

rC2 = rC3 =
√
(b)2 + (c)2 (10)

Additionally, for TF4 and TF6, the following equations apply:

θW1 = θW4 = tan−1( a
c
)

(11)

rC1 = rC4 =
√
(a)2 + (c)2 (12)

3.3. Mobile Robot Translational Dynamic Subsystem

The translational dynamics of the Husky robot are determined by the summation
of the traction forces produced by the wheels of the vehicle as shown in Figure 8. This
is represented in LG form by placing the second ports of the odd-numbered transformer
elements in parallel with an A-type element (MHusky) representing the mass of the Husky
vehicle. This configuration means that the forces produced by each tire will be summed in
order to induce an acceleration in the vehicle when the wheels produce a non-zero resultant
force and allow the vehicle to remain stationary when the tire forces are balanced (i.e., the
vehicle is stopped or turning on the spot).
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Figure 8. LG model and the normal tree of the Husky robot translational dynamic subsystem.

The equations generated by the LGtheory toolbox for the translational dynamic sub-
system of the mobile robot based on the constitutive equations and the normal tree of the
LG model are as follows.

The continuity equation for each passive branch is

FMHusky = −FTF1 − FTF3 − FTF5 − FTF7 (13)

The compatibility equations for each loop formed by the temporary inclusion of each
passive link are

vTF1 = vTF3 = vTF5 = vTF7 = vMHusky (14)

3.4. Mobile Robot Rotational Dynamics Subsystem

The rotational dynamics of the Husky robot are determined by the summation of the
rotational moments produced by the wheels of the vehicle as shown in Figure 9. This is
represented in LG form by placing the second ports of the even-numbered transformer
elements in parallel with a D-type element (BHusky) and an A-type element (JHusky), rep-
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resenting the resistance to rotational movement and the inertia of the Husky vehicle,
respectively. This configuration means that the torques produced by each tire will be
summed in order to induce a rotation on the vehicle when the wheels produce a non-zero
resultant moment and allow the vehicle to remain stationary when the rotational moment
is balanced (i.e., the vehicle is not turning).
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Figure 9. LG model and the normal tree of the Husky robot’s rotational dynamic subsystem.

The equations produced by the LGtheory toolbox for the mobile robot rotational
dynamics subsystem based on the constitutive equations and the normal tree of the LG
model are given next.

The continuity equation for each passive branch is

τJHusky = −τTF2 − τTF4 − τTF6 − τTF8 − τBHusky (15)

The compatibility equations for each loop formed by the temporary inclusion of each
passive link are

ωTF2 = ωTF4 = ωTF6 = ωTF8 = ωJHusky

ωBHusky = ωJHusky

(16)

3.5. Complete Linear Graph Model of the Mobile Robot

The complete LG model of the Husky robot is produced by combining the LG models
of the subsystems presented in the previous section. The results for the LG model presented
in Figure 10 encompass the dynamics of the entire Husky system.
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By evaluating the sets of equations produced by the various subsystem models along
with the corresponding equations for the right-side powertrain and the constitutive equa-
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tions for each element, the LGtheory toolbox generates the following state-space model for
the Husky system. Note that the “Husky” subscript has been replaced with “H”:

dx
dt

= A



ωJLW
ωJRW
vMH
ωJH
iL1

iL2

+ B
[

Vs1
Vs2

]
(17)

y = C



ωJLW
ωJRW
vMH
ωJH
iL1

iL2

+ D
[

Vs1
Vs2

]
(18)

A =



−BFL−BRL
JL

0 BFL TF3+BRL TF1
JL

BFL TF4+BRL TF2
JL

TML
JL

0

0 −BFR−BRR
JR

BFR TF5+BRR TF7
JR

BFR TF6+BRR TF8
JR

0 TMR
JR

BFL TF3+BRL TF1
MH

BFR TF5+BRR TF7
MH

−BRL TF2
1−BFL TF2

3−BFR TF2
5−BRR TF2

7
MH

−BFL TF3 TF4−BFR TF5 TF6−BRL TF1 TF2−BRR TF7 TF8
MH

0 0
BFL TF4+BRL TF2

JH

BFR TF6+BRR TF8
JH

−BFL TF3 TF4−BFR TF5 TF6−BRL TF1 TF2−BRR TF7 TF8
JH

−BRL TF2
2−BFL TF2

4−BFR TF2
6−BRR TF2

8−BH
JH

0 0

− TML
L1

0 0 0 − R1
L1

0

0 − TMR
L2

0 0 0 − R2
L2


(19)

B =



0 0
0 0
0 0
0 0
1
L1

0
0 1

L2


(20)

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 (21)

D = [0]4×2 (22)

The outputs of the state-space model are chosen to be the state variables representing
the rotational velocities of the left and the right wheels, as well as the linear and rotational
velocities of the mobile robot itself. The selection of these outputs allows for a comparison
of these states with the corresponding Gazebo-simulated and experimental state values of
the robot for the purposes of model validation and parameter estimation.

3.6. Parameter Estimation Using the Genetic Algorithms

GAs are a form of multi-point, population-based methods for simultaneously explor-
ing multiple solutions to an optimization problem. Based on the same concepts as natural
evolution, GAs reproduce and evolve members of a population, referred to as solutions,
over many generations in order to obtain an optimized solution to a problem. Throughout
this evolutionary process, new solutions inherit the beneficial characteristics from the
successful solutions of past generations while also introducing new characteristics that
may provide advantages over other solutions. Those solutions that are successful are more
likely to reproduce and thus pass on their beneficial characteristics, while those that are
less successful face the possibility of being purged from the population. This process tends
to lead to a stronger population of solutions over many generations. GAs are stochastic in
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nature, and therefore they do not necessarily guarantee finding the most optimal solution
to a problem. Rather, this method is useful for more complex optimization problems that
are difficult or infeasible to solve through mathematical means [16].

The present paper utilizes the GA capabilities of the Global Optimization Toolbox of
MATLAB. The objective function of the parameter estimation GA is based on the sum of
the absolute tracking errors in the x and y directions between the LG-based mobile robot
simulation and the data obtained from Gazebo and the physical experiments using the
Husky robot:

obj = ∑|xdata(t)− xLG(t)|+ ∑|ydata(t)− yLG(t)| (23)

While most of the system parameters of the Husky robot can be determined from the
manufacturer documentation or from the component datasheets, some system parameters
that are based on specific environmental conditions must be calibrated for. These param-
eters, which will be calibrated using a GA, are the unknown damping constant values
given in Table 1, representing the losses of the drivetrain systems due to slip and friction
(BLW , BRW) and the resistance to the rotational movement between the wheels of the Husky
vehicle and the driving surface (BHusky). Additionally, the GA will calibrate the coefficient
value (c) of a simple multivariable function, which is used to estimate the motor voltage
signals from the recorded command velocity signals sent to the robot. Since real-time
measurements of the motor voltages cannot be obtained at a sufficiently fast rate from the
ROS for the physical experiments, the following functions have to be utilized in order to
estimate the voltage inputs for the state-space model:

Vs1 = 24·(c·vt + 0.541·c·vr) (24)

Vs2 = 24·(c·vt − 0.541·c·vr) (25)

Table 1. State-space parameters, including unknown values.

Description Parameter Value Units

Voltage Inputs Vs1, Vs2 ±24 V
Internal Motor Resistance R1, R2 0.46 Ω
Internal Motor Inductance L1, L2 0.22 mH

Motor Torque Constant kt 0.044488 N·m/A
Gear Ratio GR 78.71:1 Gear Ratio

Motor Transformer Ratio TML, TMR kt × GR N·m/A
Drivetrain Inertia JLW , JRW 0.08 kg·m2

Drivetrain Damping BRL,FL,FR,RR Unknown rad/(N·m·s)
Power Conversion
Transformer Ratios

TFodd Equation (7)
TFeven Equation (8)

Husky Mass MHusky 48.39 kg
Husky Rotational Damping BHusky Unknown rad/(N·m·s)

Husky Inertia JHusky 3.0556 kg·m2

Here, vt and vr are the command values for the translational and rotational velocities,
respectively. It was found through experimentation with the command signals to the motor
that a rotational velocity command which was numerically equivalent to a translational
velocity command would result in 54.1% rotational speed of the Husky wheels, and hence
the inclusion of the 0.541 values in Equations (24) and (25).

Table 1 presents the known and unknown parameter values for the mobile robot
state-space model.

4. Results and Discussion
4.1. ROS Gazebo Simulation Environment

Gazebo is a physics-based 3D environment for simulating the rigid body dynam-
ics of robotic systems as shown in Figure 11. Along with dynamic simulations, Gazebo
can be used for simulating sensor readings, evaluating and training artificial intelligence
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(AI)-based control systems, and much more. Integration of Gazebo with an ROS allows
for exploiting the data transfer and communication capabilities which the ROS facili-
tates. These capabilities facilitate recording of the command signals and sensor data of
the robot using the following ROS topics: /tf (the transformation frames of the robot
used for linear speed and trajectory), /imu_um7/data (the IMU data readings for ro-
tational speed of the Husky) /joint_states (the encoder readings of each wheel), and
/husky_velocity_controller/cmd_vel (the command signals sent to the robot from the
gamepad controller). The ROS then provides this recorded data to be filtered for the com-
mand data and replayed as the input to a Gazebo simulation in order to seek replicating
the results.
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4.2. GA Estimation and Comparison of Results

Initial calibration of the Husky LG model was conducted using data collected from
the physical robot while executing a circular maneuver. This maneuver involved an initial
straight trajectory before entering a circular trajectory. Once a full revolution was complete,
the Husky exited the circle again in a straight path.

Figure 12 shows the performance of the GA-based parameter estimation procedure.
The procedure used to calibrate the model was run with a population of 100 solutions
for a maximum of 100 generations and with a crossover fraction of 0.5. Table 2 gives the
parameters that are estimated, the upper and lower bounds of their searches, and the results
obtained which produced the optimal simulation results.
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Table 2. Variables adapted by the GA and the resulting values.

Variable BFL,BRL,BRR,BFR BHusky c

Upper Bounds 1 1 0.75
Lower Bounds 100 100 1.00

Results 1.3016 12.8650 0.8961

Figure 13 shows the response of the state-space outputs specified for the LG model
against the corresponding measured data from the Husky vehicle for the duration of the
circular maneuver. As can be seen, there was a strong conformance between the response
of the simulated output states and the Husky sensor readings.
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Figure 14 shows the trajectory response and the tracking error of the calibrated LG
model in comparison to the trajectory of the physical robot and the Gazebo-simulated
robot. As can be observed from this figure, the trajectory of the LG model closely agreed
with the trajectory of the real robot, whereas the trajectory of the Gazebo simulation
differed significantly, despite the same system inputs being used in the two simulation
approaches. The bounds of the maximum tracking error of the LG-based simulation for this
maneuver are ∣∣X∣∣ ≤ 0.1397[m]

∣∣Y∣∣ ≤ 0.0819[m]
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Figure 15 shows the trajectory response and the tracking error of the pre-calibrated
LG model and the Gazebo simulations in comparison with the response of the physical
robot for an S-bend maneuver. As can be observed from this figure, the trajectory of the LG
model closely agreed with the trajectory of the physical robot while, again, the trajectory of
the Gazebo simulation differed quite significantly. The bounds of the maximum tracking
error of the LG-based simulation for this maneuver are∣∣X∣∣ ≤ 0.0352[m]

∣∣Y∣∣ ≤ 0.1027[m]
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Figure 16 presents the trajectory response and the tracking error of the pre-calibrated
LG model and the Gazebo simulations in comparison with the response of the physical
robot for an obstacle avoidance maneuver. Again, the trajectory of the LG model closely
followed the trajectory of the real robot, whereas the trajectory of the Gazebo simulation
differed significantly after the initial turn. The bounds of the maximum tracking error of
the LG-based simulation for this maneuver are∣∣X∣∣ ≤ 0.0613[m]

∣∣Y∣∣ ≤ 0.0854[m]
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In each of the three presented maneuvers, the calibrated LG model provided a sig-
nificantly more accurate trajectory response than the Gazebo simulation. The primary
cause of error for the Gazebo simulation was excessive skidding, which could be observed
during rotational movements of the Husky during the simulation. For the circle maneuver,
this excessive skidding resulted in a smaller, oval-shaped trajectory compared with the
larger, circular trajectory of the LG model. Similarly, for the S-bend and obstacle avoidance
maneuvers, the excessive skidding present in the Gazebo simulation resulted in skewing
of the trajectory of the Gazebo robot. While some noticeable error was present in the
LG model, it was much less than what was in the Gazebo simulations. The cause of this
error was likely the complexity associated with modeling the dynamics of the interactions
between the wheels of a skid-steer vehicle and the driving surface.

5. Conclusions

This paper presented a linear graph (LG)-based method of modeling the dynamics
of a mobile robotic system, together with some background on the modeling approach of
LG theory. The recently developed LGtheory MATLAB toolbox was utilized to automate
the process of deriving the state-space model of a complex dynamic system such as the
considered mobile robotic system. The genetic algorithm (GA) capabilities of the Global
Optimization Toolbox were employed for estimating the unknown parameter values of
the robot. The results of a comparison between a computer simulation of the state-space
model for the mobile robot as generated by the LGtheory toolbox in comparison with an
ROS- and Gazebo-based simulation and the experimental data collected while driving a
physical Clearpath Husky mobile robot demonstrated and validated the accuracy of the
developed modeling approach. The successful application of this modeling approach to a
mobile robotic system, as demonstrated in the present work, provides further validation of
both the proposed LG model and the custom software used to construct it.

The paper presented that LG theory is a desirable approach for achieving the “mecha-
tronic purpose” in terms of features of integrated (or concurrent) multidisciplinary (or
multi-domain or multi-physics) and unified approaches. It generated graphical models
to conserve the natural structures of the physical systems. It can generate a unique an-
alytical model in the state-space form directly. Meanwhile, it can be easily integrated
with modern AIs and machine learning techniques in system modeling and design. The
electro-mechanical model robot system in the case study showed its ability and broad
application in other mechatronic applications.
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